Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Curr Microbiol ; 81(10): 319, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167225

RESUMEN

With the emergence of multidrug-resistant microorganisms, microbial agents have become a serious global threat, affecting human health and various plants. Therefore, new therapeutic alternatives, such as chitin-binding proteins, are necessary. Chitin is an essential component of the fungal cell wall, and chitin-binding proteins exhibit antifungal activity. In the present study, chitin-binding peptides isolated from Capsicum chinense seeds were characterized and evaluated for their in vitro antimicrobial effect against the growth of Candida and Fusarium fungi. Proteins were extracted from the seeds and subsequently the chitin-binding proteins were separated by chitin affinity chromatography. After chromatography, two fractions, Cc-F1 (not retained on the column) and Cc-F2 (retained on the column), were obtained. Electrophoresis revealed major protein bands between 6.5 and 26.6 kDa for Cc-F1 and only a ~ 6.5 kDa protein band for Cc-F2, which was subsequently subjected to mass spectrometry. The protein showed similarity with hevein-like and endochitinase and was then named Cc-Hev. Data are available via ProteomeXchange with identifier PXD054607. Next, we predicted the three-dimensional structure of the peptides and performed a peptide docking with (NAG)3. Subsequently, growth inhibition assays were performed to evaluate the ability of the peptides to inhibit microorganism growth. Cc-Hev inhibited the growth of C. albicans (up to 75% inhibition) and C. tropicalis (100% inhibition) and induced a 65% decrease in cell viability for C. albicans and 100% for C. tropicalis. Based on these results, new techniques to combat fungal diseases could be developed through biotechnological applications; therefore, further studies are needed.


Asunto(s)
Antifúngicos , Candida , Capsicum , Quitina , Quitinasas , Fusarium , Semillas , Semillas/química , Antifúngicos/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/metabolismo , Quitina/farmacología , Fusarium/efectos de los fármacos , Quitinasas/farmacología , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/aislamiento & purificación , Candida/efectos de los fármacos , Candida/enzimología , Lectinas de Plantas/farmacología , Lectinas de Plantas/química , Lectinas de Plantas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Péptidos Catiónicos Antimicrobianos
2.
Protein Expr Purif ; 223: 106562, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39094814

RESUMEN

Previous studies have demonstrated the presence of chitinase in Bacillus velezensis through extensive genomic sequencing and experimental analyses. However, the detailed structure, functional roles, and antifungal activity of these chitinases remain poorly characterized. In this study, genomic screening identified three genes-chiA, chiB, and lpmo10-associated with chitinase degradation in B. velezensis S161. These genes encode chitinases ChiA and ChiB, and lytic polysaccharide monooxygenase LPMO10. Both ChiA and ChiB contain two CBM50 binding domains and one catalytic domain, whereas LPMO10 includes a signal peptide and a single catalytic domain. The chitinases ChiA, its truncated variant ChiA2, and ChiB were heterologously expressed in Escherichia coli. The purified enzymes efficiently degraded colloidal chitin and inhibited the spore germination of Penicillium digitatum. Notably, even after losing one CBM50 domain, the resultant enzyme, consisting of the remaining CBM50 domain and the catalytic domain, maintained its colloidal chitin hydrolysis and antifungal activity, indicating commendable stability. These results underscore the role of B. velezensis chitinases in suppressing plant pathogenic fungi and provide a solid foundation for developing and applying chitinase-based biocontrol strategies.


Asunto(s)
Antifúngicos , Bacillus , Quitinasas , Penicillium , Antifúngicos/farmacología , Antifúngicos/química , Bacillus/enzimología , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Quitina/química , Quitinasas/química , Quitinasas/farmacología , Escherichia coli , Penicillium/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
3.
J Agric Food Chem ; 72(28): 15613-15623, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38978453

RESUMEN

Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of ß-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.


Asunto(s)
Aspergillus oryzae , Quitina , Quitinasas , Proteínas Fúngicas , Oligosacáridos , Talaromyces , Quitina/metabolismo , Quitina/química , Quitinasas/metabolismo , Quitinasas/genética , Quitinasas/química , Talaromyces/enzimología , Talaromyces/genética , Talaromyces/química , Talaromyces/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/química , Hidrólisis , Aspergillus oryzae/enzimología , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Biocatálisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
4.
J Agric Food Chem ; 72(29): 16128-16139, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39003764

RESUMEN

Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 µg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.


Asunto(s)
Botrytis , Quitinasas , Enfermedades de las Plantas , Solanum lycopersicum , Botrytis/efectos de los fármacos , Quitinasas/química , Quitinasas/metabolismo , Quitinasas/antagonistas & inhibidores , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Conservación de Alimentos/métodos , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Frutas/química , Frutas/microbiología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Regulación Alostérica/efectos de los fármacos , Descubrimiento de Drogas
5.
BMC Microbiol ; 24(1): 269, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030474

RESUMEN

Candida auris (C. auris) is a yeast that has caused several outbreaks in the last decade. Cell wall chitin plays a primary role in the antifungal resistance of C. auris. Herein, we investigated the potential of chitinase immobilized with UiO-66 to act as a potent antifungal agent against C. auris. Chitinase was produced from Talaromyces varians SSW3 in a yield of 8.97 U/g dry substrate (ds). The yield was statistically enhanced to 120.41 U/g ds by using Plackett-Burman and Box-Behnken design. We synthesized a UiO-66 framework that was characterized by SEM, TEM, XRD, FTIR, a particle size analyzer, and a zeta sizer. The produced framework had a size of 70.42 ± 8.43 nm with a uniform cubic shape and smooth surface. The produced chitinase was immobilized on UiO-66 with an immobilization yield of 65% achieved after a 6 h loading period. The immobilization of UiO-66 increased the enzyme activity and stability, as indicated by the obtained Kd and T1/2 values. Furthermore, the hydrolytic activity of chitinase was enhanced after immobilization on UiO-66, with an increase in the Vmax and a decrease in the Km of 2- and 38-fold, respectively. Interestingly, the antifungal activity of the produced chitinase was boosted against C. auris by loading the enzyme on UiO-66, with an MIC50 of 0.89 ± 0.056 U/mL, compared to 5.582 ± 0.57 U/mL for the free enzyme. This study offers a novel promising alternative approach to combat the new emerging pathogen C. auris.


Asunto(s)
Antifúngicos , Candida auris , Quitinasas , Pruebas de Sensibilidad Microbiana , Nanopartículas , Quitinasas/farmacología , Quitinasas/metabolismo , Quitinasas/química , Antifúngicos/farmacología , Antifúngicos/química , Nanopartículas/química , Candida auris/efectos de los fármacos , Candida auris/genética , Enzimas Inmovilizadas/química , Talaromyces/efectos de los fármacos , Talaromyces/química , Talaromyces/enzimología , Farmacorresistencia Fúngica Múltiple , Hidrólisis , Quitina/química , Quitina/farmacología
6.
Int J Biol Macromol ; 276(Pt 2): 133980, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032901

RESUMEN

N-acetyl-oligosaccharides exhibit antioxidant and antibacterial activities. However, the low catalytic efficiency of chitinase on crystalline chitin hinders the eco-friendly production of N-acetyl-oligosaccharides. A marine-derived chitinase-producing strain Chitiniphilus eburneus YS-30 was screened in this study. The genome of C. eburneus YS-30 spans 4,522,240 bp, with a G + C content of 63.96 % and 4244 coding genes. Among the chitinases secreted by C. eburneus YS-30, Ce0303 showed the highest content at 19.10 %, with a molecular weight of 73.5 kDa. Recombinant Ce0303 exhibited optimal activity at 50 °C and pH 5.0, maintaining stability across pH 4.0-10.0. Ce0303 demonstrated strict substrate specificity, with a specific activity toward colloidal chitin of 6.41 U mg-1, Km of 2.34 mg mL-1, and kcat of 3.27 s-1. The specific activity of Ce0303 toward α-chitin was 18.87 % of its activity on colloidal chitin. Ce0303 displayed both exo- and endo-hydrolytic properties, primarily producing (GlcNAc)1-3 from colloidal chitin. The structure of Ce0303 includes one catalytic domain and two chitin-binding domains. Docking results revealed that the GlcNAc at -1 subsite formed two hydrogen bonds with conserved Trp380. The hydrolytic properties of Ce0303 will provide technical support for the comprehensive utilization of crustacean raw materials.


Asunto(s)
Quitina , Quitinasas , Quitinasas/genética , Quitinasas/química , Quitinasas/metabolismo , Hidrólisis , Especificidad por Sustrato , Quitina/química , Quitina/metabolismo , Concentración de Iones de Hidrógeno , Organismos Acuáticos/enzimología , Filogenia , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Expresión Génica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Estabilidad de Enzimas
7.
Mar Drugs ; 22(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38921598

RESUMEN

To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.


Asunto(s)
Quitina , Quitinasas , Micromonospora , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/aislamiento & purificación , Quitinasas/genética , Quitina/análogos & derivados , Quitina/metabolismo , Quitina/química , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , Micromonospora/enzimología , Micromonospora/genética , Hidrólisis , Escherichia coli/genética , Quitosano/química , Estabilidad de Enzimas
8.
Elife ; 122024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884443

RESUMEN

Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.


Asunto(s)
Quitina , Quitinasas , Simulación de Dinámica Molecular , Quitinasas/metabolismo , Quitinasas/química , Animales , Concentración de Iones de Hidrógeno , Ratones , Quitina/metabolismo , Quitina/química , Conformación Proteica , Cristalografía por Rayos X , Unión Proteica , Ligandos , Cinética , Acetilglucosamina/metabolismo , Acetilglucosamina/química , Modelos Moleculares
9.
Carbohydr Res ; 541: 109170, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830279

RESUMEN

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Asunto(s)
Antifúngicos , Bacillus , Quitina , Quitinasas , Quitinasas/metabolismo , Quitinasas/aislamiento & purificación , Quitinasas/química , Quitinasas/farmacología , Quitina/química , Quitina/metabolismo , Quitina/farmacología , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Antifúngicos/metabolismo , Bacillus/enzimología , Fusarium/enzimología , Fusarium/efectos de los fármacos , Concentración de Iones de Hidrógeno , Temperatura
10.
Z Naturforsch C J Biosci ; 79(5-6): 125-136, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38760917

RESUMEN

Chitin, the most prevalent polymer in nature, a significant structural polysaccharide that comes in second only to cellulose. Chitin is a crucial component of fungal cell walls and also present in many other creatures, such as viruses, plants, animals, insect exoskeletons, and crustacean shells. Chitin presents itself as a promising target for the development of biopesticides. It focuses on unraveling the unique structures and biochemical pathways associated with chitin, aiming to identify vulnerabilities that can be strategically leveraged for effective and environmentally sustainable pest control. It involves a comprehensive analysis of chitinase enzymes, chitin biosynthesis, and chitin-related processes across diverse organisms. By elucidating the molecular intricacies involved in chitin metabolism, this review seeks to unveil potential points of intervention that can disrupt essential biological processes in target pests without harming non-target species. This holistic approach to understanding chitin-related pathways aims to inform the design and optimization of biopesticides with enhanced specificity and reduced ecological impact. The outcomes of this study hold great promise for advancing innovative and eco-friendly pest management strategies. By targeting chitin structures and pathways, biopesticides developed based on these findings may offer a sustainable and selective alternative to conventional chemical pesticides, contributing to the ongoing efforts towards more environmentally conscious and effective pest control solutions.


Asunto(s)
Quitina , Quitinasas , Quitina/metabolismo , Quitina/química , Animales , Quitinasas/metabolismo , Quitinasas/química , Agentes de Control Biológico/metabolismo , Agentes de Control Biológico/química , Control Biológico de Vectores/métodos , Insectos/metabolismo , Hongos/metabolismo , Plaguicidas/química , Plaguicidas/metabolismo
11.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711396

RESUMEN

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Asunto(s)
Quitina , Quitinasas , Proteínas de Insectos , Insecticidas , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Zea mays , Animales , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Quitina/química , Quitina/metabolismo , Insecticidas/química , Insecticidas/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/antagonistas & inhibidores , Zea mays/química , Zea mays/parasitología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Diseño de Fármacos , Control de Insectos , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Relación Estructura-Actividad
12.
J Biol Chem ; 300(6): 107365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750795

RESUMEN

YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.


Asunto(s)
Quitina , Proteína 1 Similar a Quitinasa-3 , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/química , Humanos , Quitina/metabolismo , Quitina/química , Quitinasas/metabolismo , Quitinasas/genética , Quitinasas/química , Evolución Molecular , Hexosaminidasas/metabolismo , Hexosaminidasas/química , Hexosaminidasas/genética , Dominio Catalítico , Sustitución de Aminoácidos , Exones , Secuencia de Aminoácidos
13.
Carbohydr Res ; 540: 109144, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733729

RESUMEN

Chitooligosaccharides, the hydrolysis products of chitin, have superior biological activities and application value to those of chitin itself; however, the ordered and highly crystalline structure of chitin renders its degradation by chitinase difficult. Herein, the effects of plasma-activated water (PAW) pre-treatment on the physicochemical properties, crystal structure, and enzymatic hydrolysis of chitin were investigated. The hydrolysis of PAW-pre-treated chitin (PAW activation time of 5 min) using chitinase from Vibrio harveyi (VhChit2) yielded 71 % more reducing sugar, compared with that from untreated chitin, with the degree of chitin hydrolysis increasing from 13 % without pre-treatment to 23 % post-treatment. Moreover, the amount of VhChit2 adsorbed by chitin increased from 41.7 to 58.2 mg/g. Fourier transform infrared spectrometry revealed that PAW could break the ß-1,4-glycosidic bonds of chitin (but had no effects on the hydrogen and amido bonds), thereby decreasing the molecular weight and crystallinity of the polysaccharide, which caused its structural damage and enhanced its enzymatic hydrolysis by chitinase. Consequently, PAW pre-treatment can be considered a simple, effective, and environmentally-friendly method for the biotransformation of chitin as its easier hydrolysis yields high-value products.


Asunto(s)
Quitina , Quitinasas , Peso Molecular , Vibrio , Agua , Quitinasas/química , Quitinasas/metabolismo , Quitina/química , Quitina/metabolismo , Quitina/análogos & derivados , Agua/química , Hidrólisis , Vibrio/enzimología
14.
Food Chem ; 453: 139675, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781901

RESUMEN

Bioproduction of diverse N-acetyl chitooligosaccharides from chitin is of great value. In the study, a novel GH family 18 bifunctional chitinase gene (PsChi82) from Paenibacillus shirakamiensis was identified, expressed and biochemically characterized. PsChi82 was most active at pH 5.0, and 55 °C, and displayed remarkable pH stability with the broad pH range of 3.0-12.0. It showed high chitosanase activity of 10.6 U mg-1 and diverse hydrolysis products of GlcNAc, (GlcNAc)2, GlcN-GlcNAc and (GlcN)2-GlcNAc, which may facilitate comprehensively understanding of structure-function relationships of N-acetyl COSs. Three engineered variants were then expressed and characterized. Among them, PsChi82-CBM26 possessed specific activity of 25.1 U mg-1 against colloidal chitin, which was 2.1 folds higher than that of PsChi82. The diverse N-acetyl COSs were subsequently produced by PsChi82-CBM26 with a sugar content of 23.2 g L-1. These excellent properties may make PsChi82-CBM26 potentially useful for N-acetyl COSs production in the food and chemical industries.


Asunto(s)
Proteínas Bacterianas , Quitina , Quitinasas , Quitosano , Oligosacáridos , Paenibacillus , Quitinasas/química , Quitinasas/genética , Quitinasas/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Quitina/química , Quitina/análogos & derivados , Quitina/metabolismo , Quitosano/química , Quitosano/metabolismo , Paenibacillus/enzimología , Paenibacillus/genética , Paenibacillus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Hidrólisis , Ingeniería de Proteínas
15.
ACS Synth Biol ; 13(4): 1165-1176, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38587290

RESUMEN

Genetic parts and hosts can be sourced from nature to realize new functions for synthetic biology or to improve performance in a particular application environment. Here, we proceed from the discovery and characterization of new parts to stable expression in new hosts with a particular focus on achieving sustained chitinase activity. Chitinase is a key enzyme for various industrial applications that require the breakdown of chitin, the second most abundant biopolymer on the earth. Diverse microbes exhibit chitinase activity, but for applications, the environmental conditions for optimal enzyme activity and microbe fitness must align with the application context. Achieving sustained chitinase activity under broad conditions in heterologous hosts has also proven difficult due to toxic side effects. Toward addressing these challenges, we first screen ocean water samples to identify microbes with chitinase activity. Next, we perform whole genome sequencing and analysis and select a chitinase gene for heterologous expression. Then, we optimize transformation methods for target hosts and introduce chitinase. Finally, to achieve robust function, we optimize ribosome binding sites and discover a beneficial promoter that upregulates chitinase expression in the presence of colloidal chitin in a sense-and-respond fashion. We demonstrate chitinase activity for >21 days in standard (Escherichia coli) and nonstandard (Roseobacter denitrificans) hosts. Besides enhancing chitinase applications, our pipeline is extendable to other functions, identifies natural microbes that can be used directly in non-GMO contexts, generates new parts for synthetic biology, and achieves weeks of stable activity in heterologous hosts.


Asunto(s)
Quitina , Quitinasas , Biopolímeros , Escherichia coli/genética , Escherichia coli/metabolismo , Quitinasas/genética , Quitinasas/química , Quitinasas/metabolismo
16.
Nat Commun ; 15(1): 3227, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622119

RESUMEN

Loops are small secondary structural elements that play a crucial role in the emergence of new enzyme functions. However, the evolutionary molecular mechanisms how proteins acquire these loop elements and obtain new function is poorly understood. To address this question, we study glycoside hydrolase family 19 (GH19) chitinase-an essential enzyme family for pathogen degradation in plants. By revealing the evolutionary history and loops appearance of GH19 chitinase, we discover that one loop which is remote from the catalytic site, is necessary to acquire the new antifungal activity. We demonstrate that this remote loop directly accesses the fungal cell wall, and surprisingly, it needs to adopt a defined structure supported by long-range intramolecular interactions to perform its function. Our findings prove that nature applies this strategy at the molecular level to achieve a complex biological function while maintaining the original activity in the catalytic pocket, suggesting an alternative way to design new enzyme function.


Asunto(s)
Quitinasas , Dominio Catalítico , Quitinasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Plantas/metabolismo , Antifúngicos/química
17.
Int J Biol Macromol ; 268(Pt 2): 131787, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657939

RESUMEN

Chitin oligosaccharides (CTOS) possess potential applications in food, medicine, and agriculture. However, lower mass transfer and catalytic efficiency are the main kinetic limitations for the production of CTOS from shrimp shell waste (SSW) and crystalline chitin. Chemical or physical methods are usually used for pretreatment to improve chitinase hydrolysis efficiency, but this is not eco-friendly and cost-effective. To address this challenge, a chitinase nanoreactor with the liquid-solid system (BcChiA1@ZIF-8) was manufactured to boost the one-step degradation of SSW and crystalline chitin. Compared with free enzyme, the catalytic efficiency of BcChiA1@ZIF-8 on colloidal chitin was significantly improved to 142 %. SSW and crystalline chitin can be directly degraded by BcChiA1@ZIF-8 without any pretreatments. The yield of N, N'-diacetylchitobiose [(GlcNAc)2] from SSW and N-acetyl-D-glucosamine (GlcNAc) from crystalline chitin was 2 times and 3.1 times than that of free enzyme, respectively. The reason was that BcChiA1@ZIF-8 with a liquid-solid system enlarged the interface area, increased the collision frequency between enzyme and substrate, and improved the large-substrates binding activity of chitinase. Moreover, the biphasic system exhibited excellent stability, and the design showed universal applicability. This strategy provided novel guidance for other polysaccharide biosynthesis and the conversion of environmental waste into carbohydrates.


Asunto(s)
Exoesqueleto , Quitina , Quitinasas , Oligosacáridos , Quitina/química , Quitina/metabolismo , Animales , Quitinasas/metabolismo , Quitinasas/química , Oligosacáridos/química , Exoesqueleto/química , Hidrólisis , Reactores Biológicos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Crustáceos , Cinética , Residuos , Penaeidae/enzimología
18.
J Agric Food Chem ; 72(18): 10271-10281, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655868

RESUMEN

Insect growth regulators (IGRs) are important green insecticides that disrupt normal growth and development in insects to reduce the harm caused by pests to crops. The ecdysone receptor (EcR) and three chitinases OfChtI, OfChtII, and OfChi-h are closely associated with the molting stage of insects. Thus, they are considered promising targets for the development of novel insecticides such as IGRs. Our previous work identified a dual-target compound 6j, which could act simultaneously on both EcR and OfChtI. In the present study, 6j was first found to have inhibitory activities against OfChtII and OfChi-h, too. Subsequently, taking 6j as a lead compound, 19 novel acetamido derivatives were rationally designed and synthesized by introducing an acetamido moiety into the amide bridge based on the flexibility of the binding cavities of 6j with EcR and three chitinases. Then, their insecticidal activities against Plutella xylostella (P. xylostella), Ostrinia furnacalis (O. furnacalis), and Spodoptera frugiperda (S. frugiperda) were carried out. The bioassay results revealed that most of these acetamido derivatives possessed moderate to good larvicidal activities against three lepidopteran pests. Especially, compound I-17 displayed excellent insecticidal activities against P. xylostella (LC50, 93.32 mg/L), O. furnacalis (LC50, 114.79 mg/L), and S. frugiperda (86.1% mortality at 500 mg/L), significantly better than that of 6j. In addition, further protein validation and molecular docking demonstrated that I-17 could act simultaneously on EcR (17.7% binding activity at 8 mg/L), OfChtI (69.2% inhibitory rate at 50 µM), OfChtII (71.5% inhibitory rate at 50 µM), and OfChi-h (73.9% inhibitory rate at 50 µM), indicating that I-17 is a potential lead candidate for novel multitarget IGRs. This work provides a promising starting point for the development of novel types of IGRs as pest management agents.


Asunto(s)
Quitinasas , Diseño de Fármacos , Proteínas de Insectos , Insecticidas , Hormonas Juveniles , Mariposas Nocturnas , Pirazoles , Spodoptera , Animales , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Relación Estructura-Actividad , Hormonas Juveniles/farmacología , Hormonas Juveniles/química , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/antagonistas & inhibidores , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/química , Simulación del Acoplamiento Molecular , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Acetamidas/farmacología , Acetamidas/química , Estructura Molecular
19.
Int J Biol Macromol ; 269(Pt 2): 131924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688335

RESUMEN

The objectives of this study were to purify 42 kDa chitinase derived from Trichoderma asperellum SH16 produced in Nicotiana benthamiana by a polyethylene glycol (PEG)/salt aqueous two-phase system (ATPS). The specific activities of the crude chitinase and the partially purified chitinase from N. benthamiana were about 251 unit/mg and 386 unit/mg, respectively. The study found the 300 g/L PEG 6000 + 200 g/L potassium phosphate (PP) and 300 g/L PEG 6000 + 150 g/L sodium phosphate (SP) systems had the highest partitioning efficiency for each salt in primary extraction. However, among the two types of salt, PP displayed higher efficiency than SP, with a partitioning coefficient K of 4.85 vs. 3.89, a volume ratio V of 2.94 vs. 2.68, and a partitioning yield Y of approximately 95 % vs. 83 %. After back extraction, the enzymatic activity of purified chitinase was up to 834 unit/mg (PP) and 492 unit/mg (SP). The purification factors reached 3.32 (PP) and 1.96 (SP), with recovery yields of about 59 % and 61 %, respectively. SDS-PAGE and zymogram analysis showed that the recombinant chitinase was significantly purified by using ATPS. The purified enzyme exhibited high chitinolytic activity, with the hydrolysis zone's diameter being around 2.5 cm-3 cm. It also dramatically reduced the growth of Sclerotium rolfsii; the colony diameter after treatment with 60 unit of enzyme for 104 spores was only about 1 cm, compared to 3.5 cm in the control. The antifungal effect of chitinase suggests that this enzyme has great potential for applications in agricultural production as well as postharvest fruit and vegetable preservation.


Asunto(s)
Quitinasas , Nicotiana , Fosfatos , Polietilenglicoles , Proteínas Recombinantes , Quitinasas/química , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Nicotiana/enzimología , Fosfatos/química , Proteínas Recombinantes/aislamiento & purificación , Polietilenglicoles/química , Trichoderma/enzimología , Sales (Química)/química , Sales (Química)/farmacología , Agua/química
20.
Int J Biol Macromol ; 267(Pt 1): 131362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583843

RESUMEN

Chitin, recovered in huge amounts from coastal waste, may biocatalytically valorized for utilization in food and biotech sectors. Conventional chemical-based conversion makes use of significant volumes of hazardous acid and alkali. Alternatively, enzymes offer better process control and generation of homogeneous products. Process variables were derived to achieve augmented levels of chitinase (3.8809 Ul-1 h-1) productivity from a novel thermophilic fungal strain Thermomyces dupontii, ITCC 9104 following incubation (96 h, 45 °C). An acidic thermostable chitinase TdChiT having molecular mass of 60 kDa has been purified. Optimal TdChiT activity has been demonstrated at 70 °C and pH 5. Notably decreased activity over a broad range of temperature and pH was observed following deglycosylation. Half-life, activation energy, Gibbs free energy, enthalpy and entropy for denaturation of TdChiT at its optimum temperature were 197.40 min, 105.48 kJ mol-1, 100.59 kJ mol-1, 102.64 kJ mol-1 and 5.95 J mol-1 K-1. TdChiT has specificity towards colloidal chitin and (GlcNAc)2-4. Metal ions viz. Mn2+, Ca2+ and Co2+ and nonionic surfactants notably enhanced chitinase activity. Thin layer chromatography analysis has revealed effective hydrolysis of colloidal chitin and (GlcNAc)2-4. TdChiT may potentially be employed for design of better, eco-friendly and less resource-intensive industrial procedures for upcycling of crustacean waste into value-added organonitrogens.


Asunto(s)
Quitina , Quitinasas , Estabilidad de Enzimas , Oligosacáridos , Temperatura , Quitinasas/química , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Concentración de Iones de Hidrógeno , Quitina/química , Oligosacáridos/química , Quitosano/química , Especificidad por Sustrato , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA