Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.931
Filtrar
1.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095158

RESUMEN

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monoterpenos Bicíclicos , Humedad , Radical Hidroxilo , Oxidación-Reducción , Aerosoles/química , Radical Hidroxilo/química , Monoterpenos Bicíclicos/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , Ozono/química , Modelos Químicos , Atmósfera/química , Monoterpenos/química
2.
J Environ Sci (China) ; 147: 114-130, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003034

RESUMEN

Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.


Asunto(s)
Peróxido de Hidrógeno , Hierro , Eliminación de Residuos Líquidos , Hierro/química , Peróxido de Hidrógeno/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Oxidación-Reducción , Radical Hidroxilo/química
3.
J Hazard Mater ; 479: 135718, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236532

RESUMEN

The widespread use of rubber antioxidants, especially p-phenylenediamines (PPDs), has raised increasing concerns about their risk assessment. However, there is a notable lack of research on their transformation products (TPs). Photolysis, influenced by active components, plays a significant role in the environmental fates of PPDs. This study investigated four emerging PPDs (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), N, N'-diphenyl-p-phenylenediamine (DPPD), N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), and N-cyclohexyl-N'-phenyl-p-phenylenediamine (CPPD)) through a combination of experiments (photolysis kinetics, quenching experiments, acute toxicity test to Vibrio Fischeri (V. fischeri) and identification of photolytic products) and theoretical calculations. The results revealed different pathways for indirect photolysis mediated by the hydroxyl radicals (•OH) and singlet oxygen (1O2) of DPPD and IPPD under simulated sunlight irradiation. The effects of dissolved organic matter (DOM) and fulvic acid (FA) on the rates of photolysis of PPDs highlighted the complex interactions among the molecular structure, light absorption properties, and environmental variables. Quenching for reactive oxygen species (ROS) reduced photo-induced toxicity, whereas the addition of DOM and FA increased it, suggesting the crucial role of ROS in the formation of more toxic photolytic products. The study of photolysis pathways and the evaluation of the health risks provide a comprehensive understanding of the environmental effects of these pollutants.


Asunto(s)
Aliivibrio fischeri , Antioxidantes , Fenilendiaminas , Fotólisis , Contaminantes Químicos del Agua , Fenilendiaminas/química , Fenilendiaminas/toxicidad , Fenilendiaminas/efectos de la radiación , Cinética , Aliivibrio fischeri/efectos de los fármacos , Antioxidantes/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/efectos de la radiación , Goma/química , Radical Hidroxilo/química
4.
Molecules ; 29(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274863

RESUMEN

A Fe2+-EGTA(ethylene glycol-bis (ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid)-H2O2 system emits photons, and quenching this chemiluminescence can be used for determination of anti-hydroxyl radical (•OH) activity of various compounds. The generation of •OH and light emission due to oxidative damage to EGTA may depend on the buffer and pH of the reaction milieu. In this study, we evaluated the effect of pH from 6.0 to 7.4 (that may occur in human cells) stabilized with 10 mM phosphate buffer (main intracellular buffer) on a chemiluminescence signal and the ratio of this signal to noise (light emission from medium alone). The highest signal (4698 ± 583 RLU) and signal-to-noise ratio (9.7 ± 1.5) were noted for pH 6.6. Lower and higher pH caused suppression of these variables to 2696 ± 292 RLU, 4.0 ± 0.8 at pH 6.2 and to 3946 ± 558 RLU, 5.0 ± 1.5 at pH 7.4, respectively. The following processes may explain these observations: enhancement and inhibition of •OH production in lower and higher pH; formation of insoluble Fe(OH)3 at neutral and alkaline environments; augmentation of •OH production by phosphates at weakly acidic and neutral environments; and decreased regeneration of Fe2+-EGTA in an acidic environment. Fe2+-EGTA-H2O2 system in 10 mM phosphate buffer pH 6.6 seems optimal for the determination of anti-•OH activity.


Asunto(s)
Ácido Egtácico , Peróxido de Hidrógeno , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Humanos , Ácido Egtácico/química , Ácido Egtácico/análogos & derivados , Radical Hidroxilo/química , Hierro/química , Luminiscencia , Mediciones Luminiscentes/métodos , Luz
5.
Chemosphere ; 364: 143257, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39241842

RESUMEN

ß-caryophyllonic acid (BCA), as an important precursor of aqueous secondary organic aerosols (aqSOA), has adverse effects on the atmospheric environment and human health. However, the key atmospheric chemical reaction process in which BCA participates in the formation of aqueous secondary organic aerosols is still unclear. In this study, the reaction mechanism and kinetics of BCA with ·OH and O3 were investigated by quantum chemical calculations. The initiation reactions between BCA and ·OH include addition and H-abstraction reaction pathways, subsequent intermediates will also react with O2, ultimately undergo a cracking reaction to generate small molecular substances. The reaction of BCA with O3 can generate primary ozone oxides and the Criegee Intermediates oIM3, subsequent main reaction products include keto-BCA, as well as other small molecule aqSOA precursors. The entire reaction process increases the O/C ratio of aqSOA in the aqueous phase and generates products of small molecules such as 4-formylpropionic acid, which plays an important role in the formation of aqSOA. At 298K, the transformation rate constants of BCA initiated by ·OH and O3 are 1.47 × 1010 M-1 s-1 and 3.16 × 105 M-1 s-1, respectively, the atmospheric lifetimes of BCA reacting with ·OH range from 0.86 h-5.40 h, while the lifetimes of BCA reacting with O3 range from 0.44 h-10.04 years. This suggests that BCA primarily reacts with ·OH. However, under higher O3 concentrations, its ozonolysis becomes significant, promoting the formation of aqSOA. According to the risk assessment, the toxicity of most transformation products (TPs) gradually decreased, but the residual developmental toxicity could not be ignored. In this paper, the atmospheric liquid phase oxidation mechanisms of sesquiterpene unsaturated derived acid were studied from the microscopic level, which has guiding significance for the formation and transformation of aqSOA in atmosphere.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Atmósfera , Radical Hidroxilo , Ozono , Ozono/química , Radical Hidroxilo/química , Atmósfera/química , Aerosoles/química , Contaminantes Atmosféricos/química , Cinética
6.
Chemosphere ; 365: 143342, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39293686

RESUMEN

Tetrabromobisphenol A bis (allyl ether) (TBBPA-BAE) represents an extensively used brominated flame retardant (BFRs) in the production of many fields and their phototransformation in natural water is still unclear. The environmentally persistent free radicals (EPFRs) with preserved activities could exist in the environment for a long time and involve in the phototransformation of many organic pollutants. Here, the photodegradation of TBBPA-BAE with the degradation rate constant (k = 0.060 h-1) under simulate sunlight and the promoting effect of EPFRs on TBBPA-BAE photodegradation (k = 0.135 h-1) were investigated. According to the detected photogenerated electrons (e-) and singlet oxygen (1O2) rather than hydroxyl radicals (•OH) by the electron paramagnetic resonance (EPR), the effect mechanism may not be related to the typical •OH induced by EPFRs. The possible transformation pathways of the ether cleavage, hydrolysis and hydroxylation of propenyl bond and the debromination were proposed by the primary byproducts identified by UPLC-Q-Exactive Orbitrap MS. EPFRs caused a further debromination and ether cleavage and probably be due to EPFRs directly providing electrons to TBBPA-BAE which promoted the photodegradation of TBBPA-BAE, and their reaction mechanism needed further attention. Overall, this study provided useful information to understand the role of EPFRs on phototransformation of TBBPA-BAE in water.


Asunto(s)
Retardadores de Llama , Fotólisis , Bifenilos Polibrominados , Contaminantes Químicos del Agua , Bifenilos Polibrominados/química , Radicales Libres/química , Contaminantes Químicos del Agua/química , Luz Solar , Radical Hidroxilo/química , Agua/química , Oxígeno Singlete/química
7.
J Mol Model ; 30(10): 330, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269493

RESUMEN

CONTEXT: Recently, a few antiviral drugs viz Molnupiravir (EIDD-1931), Favipiravir, Ribavirin, Sofosbuvir, Galidesivir, and Remdesivir are shown to be beneficial against COVID-19 disease. These drugs bind to the viral RNA single strand to inhibit the virus genome replication. Similarly, recently, some artificial nucleotides, such as P, J, B, X, Z, V, S, and K were proposed to behave as potent antiviral candidates. However, their activity in the presence of the most reactive hydroxyl (OH) radical is not yet known. Here, the possibility of RNA strand break due to the OH radical-induced C1'-hydrogen (H) abstraction reaction of the above molecules (except Remdesivir) is studied in detail by considering their nucleotide conformation. The results are compared with those of the natural RNA nucleotides (G, C, A, and U). Due to low Gibbs barrier-free energy and high exothermicity, all these nucleotides (except Remdesivir) are prone to OH radical-induced C1'-H abstraction reaction. As Remdesivir contains a C1'-CN bond, the OH radical substitution reactions at the CN and C1' sites would likely liberate the catalytically important CN group, thereby downgrading its activity. METHOD: Initially, the B3LYP-D3 dispersion-corrected density functional theory method and 6-31 + G* basis set were used to optimize all reactant, transition state, and product complexes in the implicit aqueous medium. Subsequently, the structures of these complexes were further optimized by using the ωB97X-D dispersion-corrected density functional theory method and cc-PVTZ basis set in the aqueous medium. The IEFPCM method was used to model the aqueous medium.


Asunto(s)
Antivirales , Radical Hidroxilo , Nucleótidos , Radical Hidroxilo/química , Antivirales/química , Nucleótidos/química , Conformación de Ácido Nucleico , Tratamiento Farmacológico de COVID-19 , ARN Viral/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/química
8.
Environ Sci Technol ; 58(40): 18033-18040, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39325111

RESUMEN

Humin, endowed with abundant redox functional groups, can be reduced anaerobically under dark. When reduced humin encounters O2, the possibility of ·OH formation arises. However, the exploration of ·OH generation mediated by humin has not been comprehensively conducted. The study found that O2 oxidized the reduced humin, generating 8.61 µmol/g of ·OH. After isolating humin using the methyl isobutyl ketone (MIBK) method, the lipid component was identified as the primary contributor to ·OH generation. Subsequent polar separation revealed that the lipid fraction extracted from the ethanol-water mixture with a volume ratio of 7:3 (LFEW7:3) played the most significant role in ·OH production. Further characterization confirmed that the simultaneous presence of aromatic C═C and C═O were the predominant features contributing to the ·OH generation. The ·OH generation experiments with humin-pyridine analogue compound demonstrated that polycyclic pyridine N (≥3 rings) played a significant role in promoting the ·OH generation. Most importantly, the study compared the ·OH production by humin and homologous humic acid, indicating that ·OH generated by humin was higher than that of humic acid. Overall, these affirmative findings manifested the overlooked role of humin in ·OH production and offered valuable insights into the mechanism of ·OH generation by humin in the dark.


Asunto(s)
Radical Hidroxilo , Oxígeno , Radical Hidroxilo/química , Oxidación-Reducción , Sustancias Húmicas
9.
Environ Sci Technol ; 58(40): 17886-17897, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39344971

RESUMEN

Hydroxyl radical (HO•) and chlorine atom (Cl•) are common reactive species in aqueous environments. However, the intrinsic difference in their reactions with organic compounds has not been revealed. This study compared the reaction mechanisms of HO• and Cl• with 13 aromatic and 11 aliphatic compounds by quantum chemical calculation and laser flash photolysis. Both HO• and Cl• can spontaneously react with aromatic compounds via radical adduct formation (RAF), hydrogen atom transfer (HAT), and single electron transfer (SET) pathways. The SET reactions of Cl• were more thermodynamically favorable than HO•, but contrary results were obtained for HAT reactions. According to the free energy of activation (ΔGaq‡), the dominant oxidation mechanisms of aromatic compounds were RAF and SET by HO• and SET by Cl•. The important role of SET in the HO• reactions with aromatic compounds was further verified by accurately calculating the solvation free energy of HO•/HO- and experimentally tracking the radical cations, which were generally neglected in previous studies. Meanwhile, the ΔGaq‡ value of each reaction pathway of Cl• was lower than that of HO•, resulting in higher rate constants of Cl• with aromatic compounds than HO•. For saturated aliphatic compounds, HAT was found to be the only mechanism accounting for their transformation by HO• and Cl•. This study proposed general rules for the reaction mechanisms of HO• and Cl• and unraveled their differences in the aspects of thermodynamics and kinetics, providing fundamental information for understanding contaminant transformation in processes involving HO• and Cl•.


Asunto(s)
Cloro , Radical Hidroxilo , Compuestos Orgánicos , Termodinámica , Radical Hidroxilo/química , Cloro/química , Cinética , Compuestos Orgánicos/química , Oxidación-Reducción
10.
Theranostics ; 14(12): 4861-4873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239515

RESUMEN

Rationale: Theranostic nanoplatforms exert a vital role in facilitating concurrent real-time diagnosis and on-demand treatment of diseases, thereby making contributions to the improvement of therapeutic efficacy. Nevertheless, the structural intricacy and the absence of well-defined integration of dual functionality persist as challenges in the development of theranostic nanoplatforms. Methods: We develop an atomically precise theranostic nanoplatform based on metal-organic cage (MOC) to provide magnetic resonance imaging (MRI) guided chemodynamic therapy (CDT) for cancer therapy and assess the theranostic performance both in vitro and in vivo. Through UV-vis spectroscopy, electron paramagnetic resonance (EPR), confocal microscopy, flow cytometry, immunofluorescence staining, and western blotting, the ability of MOC-Mn to generate •OH and the subsequent inhibition of HeLa cells was confirmed. Results: The MOC-Mn composed of manganese and calixarene was successfully synthesized and comprehensively characterized. The catalytic activity of manganese within MOC-Mn facilitated the efficient generation of hydroxyl radicals (•OH) through a Fenton-like reaction, leveraging the high concentrations of hydrogen peroxide in the tumor microenvironment (TME). Additionally, its capacity to prolong the T1 relaxation time and augment the MR signal was observed. The theranostic efficacy was verified via rigorous in vitro and in vivo experiments, indicating that MOC-Mn offered clearer visualization of tumor particulars and substantial suppression of tumor growth. Conclusion: This study showcases a precise MRI-guided CDT theranostic nanoplatform for cancer therapy, thereby promoting the advancement of precise nanomedicine and structure-function research.


Asunto(s)
Imagen por Resonancia Magnética , Nanomedicina Teranóstica , Nanomedicina Teranóstica/métodos , Humanos , Animales , Células HeLa , Imagen por Resonancia Magnética/métodos , Ratones , Manganeso/química , Ratones Desnudos , Femenino , Radical Hidroxilo/metabolismo , Radical Hidroxilo/química , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Ratones Endogámicos BALB C , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Nanopartículas/química
11.
Chemosphere ; 365: 143382, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39317243

RESUMEN

2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV328) is an emerging persistent organic pollutant ubiquitously found in environmental matrices. Though some advanced oxidation processes have been tested to degrade UV328 in waste streams, the degradation mechanisms are largely unknown. In this study, the degradation of UV328 by ozone (O3) and peroxymonosulfate (PMS) was systemically investigated. At neutral pH, 97.0% UV328 was removed in 5 min with 6.4 mg/min O3 and 2 mM PMS, and the degradation rate was positively correlated with the concentration of oxidants. Hydroxyl radical (•OH), sulfate radical (SO4•-) and singlet oxygen (1O2) participated in the degradation of UV328, in which 1O2 played a key role. Based on the identified transformation intermediates and density functional theory simulations, three degradation pathways of dehydrogenation, cycloaddition and hydroxylation were proposed. •OH and SO4•- radicals could attack UV328 through hydrogen atom abstraction channel. 1O2-mediated cycloaddition reaction is favorable, and •OH could react with UV328 via radical adduct formation pathway. Toxicity assessment indicated that O3/PMS treatment mitigated the ecological risks of UV328.


Asunto(s)
Radical Hidroxilo , Oxidación-Reducción , Ozono , Peróxidos , Contaminantes Químicos del Agua , Ozono/química , Peróxidos/química , Contaminantes Químicos del Agua/química , Radical Hidroxilo/química , Oxígeno Singlete/química , Fenoles/química
12.
Environ Sci Technol ; 58(35): 15722-15731, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39175437

RESUMEN

Nitrites (NO2-/HONO), as the primary source of hydroxyl radicals (•OH) in the atmosphere, play a key role in atmospheric chemistry. However, the current understanding of the source of NO2-/HONO is insufficient and therefore hinders the accurate quantification of atmospheric oxidation capacity. Herein, we highlighted an overlooked HONO source by the reaction between nitrophenols (NPs) and •OH in the aqueous phase and provided kinetic data to better evaluate the contribution of this process to atmospheric HONO. Three typical NPs, including 4-nitrophenol (4NP), 2-nitrophenol (2NP), and 4-nitrocatechol (4NC), underwent a denitration process to form aqueous NO2- and gaseous HONO through the •OH oxidation, with the yield of NO2-/HONO varied from 15.0 to 33.5%. According to chemical composition and structure analysis, the reaction pathway, where the ipso addition of •OH to the NO2 group on 4NP generated hydroquinone, can contribute to more than 61.9% of the NO2-/HONO formation. The aqueous photooxidation of NPs may account for HONO in the atmosphere, depending on the specific conditions. The results clearly suggest that the photooxidation of NPs should be considered in the field observation and calculation to better evaluate the HONO budget in the atmosphere.


Asunto(s)
Nitrofenoles , Oxidación-Reducción , Nitrofenoles/química , Nitritos/química , Atmósfera/química , Radical Hidroxilo/química , Agua/química , Cinética
13.
ACS Appl Mater Interfaces ; 16(34): 45356-45370, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143699

RESUMEN

This study emphasizes the innovative application of FePt and Cu core-shell nanostructures with increased lattice microstrain, coupled with Au single-atom catalysis, in significantly enhancing •OH generation for catalytic tumor therapy. The combination of core-shell with increased lattice microstrain and single-atom structures introduces an unexpected boost in hydroxyl radical (•OH) production, representing a pivotal advancement in strategies for enhancing reactive oxygen species. The creation of a core-shell structure, FePt@Cu, showcases a synergistic effect in •OH generation that surpasses the combined effects of FePt and Cu individually. Incorporating atomic Au with FePt@Cu/Au further enhances •OH production. Both FePt@Cu and FePt@Cu/Au structures boost the O2 → H2O2 → •OH reaction pathway and catalyze Fenton-like reactions. This enhancement is underpinned by DFT theoretical calculations revealing a reduced O2 adsorption energy and energy barrier, facilitated by lattice mismatch and the unique catalytic activity of single-atom Au. Notably, the FePt@Cu/Au structure demonstrates remarkable efficacy in tumor suppression and exhibits biodegradable properties, allowing for rapid excretion from the body. This dual attribute underscores its potential as a highly effective and safe cancer therapeutic agent.


Asunto(s)
Cobre , Oro , Catálisis , Oro/química , Cobre/química , Humanos , Animales , Ratones , Radical Hidroxilo/química , Antineoplásicos/química , Antineoplásicos/farmacología , Platino (Metal)/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/química , Nanoestructuras/química , Hierro/química , Línea Celular Tumoral , Peróxido de Hidrógeno/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nanopartículas del Metal/química
14.
J Hazard Mater ; 478: 135450, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121737

RESUMEN

The extracellular degradation of antibiotics facilitated by bio-nanoparticles is significant in the field of waste valorization. Among different bio-nanoparticles, bio-FeS nanoparticles stand out for their convenient and cost-effective synthesis. Nevertheless, there is a lack of understanding regarding the extracellular degradation of pollutants driven by bio-FeS nanoparticles. Hence, this study aimed to investigate the role of bio-FeS nanoparticles in the extracellular degradation of tetracycline under aerobic and anaerobic conditions. The findings demonstrated that bio-FeS nanoparticles generated hydroxyl radical (·OH), which significantly contributes to the degradation of tetracycline in both aerobic and anaerobic environments. The production of ·OH in anaerobic conditions was primarily attributed to the limited formation of FeS2 during the biosynthesis of nanoparticles, which was very different from aerobic conditions. The bio-FeS nanoparticles facilitated extracellular electron transport by promoting electron shuttles and Fe(II)/Fe(III) cycling, resulting in the continuous production of ·OH. The degradation pathways showed differences under aerobic and anaerobic conditions, with intermediates exhibiting higher toxicity and greater cellular damage under aerobic conditions. However, in anaerobic conditions, bio-FeS nanoparticles enabled the successful integration of intracellular and extracellular degradation of tetracycline. This research proposed a new avenue for biocatalysis and environmental remediation.


Asunto(s)
Antibacterianos , Radical Hidroxilo , Tetraciclina , Radical Hidroxilo/metabolismo , Radical Hidroxilo/química , Tetraciclina/metabolismo , Tetraciclina/química , Aerobiosis , Anaerobiosis , Antibacterianos/química , Antibacterianos/metabolismo , Nanopartículas/química , Biodegradación Ambiental , Hierro/química , Hierro/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Nanopartículas del Metal/química , Compuestos Ferrosos
15.
Environ Sci Pollut Res Int ; 31(38): 50347-50358, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39095632

RESUMEN

The kinetic study of the gas-phase reactions of hydroxyl (OH) radicals and chlorine (Cl) atoms with CF3CHFCF2OCH3 (HFE-356mec3) and CHF2CHFOCF3 (HFE-236ea1) was performed by the pulsed laser photolysis/laser-induced fluorescence technique and a relative method by using Fourier Transform infrared (FTIR) spectroscopy as detection technique. The temperature dependences of the OH-rate coefficients (kOH(T) in cm3s-1) between 263 and 353 K are well described by the following expressions: 9.93 × 10-13exp{-(988 ± 35)/T}for HFE-356mec3 and 4.75 × 10-13exp{-(1285 ± 22)/T} for HFE-236ea1. Under NOx-free conditions, the rate coefficients kCl at 298 K and 1013 mbar (760 Torr) of air were determined to be (2.30 ± 1.08) × 10-13 cm3s-1and (1.19 ± 0.10) × 10-15 cm3s-1, for HFE-356mec3 and HFE-236ea1, respectively. Additionally, the relative kinetic study of the Cl + CH2ClCHCl2 reaction was investigated at 298 K, as it was used as a reference reaction in the kinetic study of the Cl-reaction with HFE-356mec3 and discrepant rate coefficients were found in the literature. The global atmospheric lifetimes were estimated relative to CH3CCl3 at the tropospheric mean temperature (272 K) as 1.4 and 8.6 years for HFE-356mec3 and HFE-236ea1, respectively. These values combined with the radiative efficiencies for HFE-356mec3 and HFE-236ea1 derived from the measured IR absorption cross sections (0.27 and 0.41 W m-2 ppv-1) yield global warming potentials at a 100-yrs time horizon of 143 and 1473, respectively. The contribution of HFE-356mec3 and HFE-236ea1 to global warming of the atmosphere would be large if they become widespread increasing their atmospheric concentration.


Asunto(s)
Atmósfera , Cloro , Calentamiento Global , Atmósfera/química , Cloro/química , Radical Hidroxilo/química , Cinética , Espectroscopía Infrarroja por Transformada de Fourier
16.
Environ Sci Technol ; 58(37): 16497-16506, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39114886

RESUMEN

The spontaneous generation of hydrogen peroxide (H2O2) within atmospheric microdroplets, such as raindrops and aerosols, plays a crucial role in various environmental processes including pollutant degradation and oxidative stress. However, quantifying hydroxyl radicals (•OH), essential for H2O2 formation, remains challenging due to their short lifespan and low concentration. This study addresses this gap by presenting a highly sensitive and selective surface-enhanced Raman scattering (SERS) nanosensor specifically designed for quantifying •OH within water microdroplets. Utilizing a phthalhydrazide (Phth) probe, the SERS technique enables rapid, interference-free detection of •OH at nanomolar concentrations. It achieves a linear detection range from 2 nM to 2 µM and a limit of detection as low as 0.34 nM. Importantly, the SERS sensor demonstrates robustness and accuracy within water microdroplets, paving the way for comprehensive mechanistic studies of H2O2 generation in the atmosphere. This innovative approach not only offers a powerful tool for environmental research but also holds potential for advancing our understanding of atmospheric H2O2 formation and its impact on air quality and pollutant degradation.


Asunto(s)
Radical Hidroxilo , Nanopartículas del Metal , Plata , Espectrometría Raman , Agua , Radical Hidroxilo/química , Plata/química , Nanopartículas del Metal/química , Agua/química , Peróxido de Hidrógeno/química , Hidrazinas
17.
Environ Sci Technol ; 58(36): 15888-15909, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39206567

RESUMEN

Hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively known as HOx radicals, are crucial in removing primary pollutants, controlling atmospheric oxidation capacity, and regulating global air quality and climate. An imbalance between radical observations and simulations has been identified based on radical closure experiments, a valuable tool for accessing the state-of-the-art chemical mechanisms, demonstrating a deviation between the existing and actual tropospheric mechanisms. In the past decades, researchers have attempted to explain this deviation and proposed numerous radical generation mechanisms. However, these newly proposed unclassical radical generation mechanisms have not been systematically reviewed, and previous radical-related reviews dominantly focus on radical measurement instruments and radical observations in extensive field campaigns. Herein, we overview the unclassical generation mechanisms of radicals, mainly focusing on outlining the methodology and results of radical closure experiments worldwide and systematically introducing the mainstream mechanisms of unclassical radical generation, involving the bimolecular reaction of HO2 and organic peroxy radicals (RO2), RO2 isomerization, halogen chemistry, the reaction of H2O with O2 over soot, epoxide formation mechanism, mechanism of electronically excited NO2 and water, and prompt HO2 formation in aromatic oxidation. Finally, we highlight the existing gaps in the current studies and suggest possible directions for future research. This review of unclassical radical generation mechanisms will help promote a comprehensive understanding of the latest radical mechanisms and the development of additional new mechanisms to further explain deviations between the existing and actual mechanisms.


Asunto(s)
Atmósfera , Atmósfera/química , Oxidación-Reducción , Radicales Libres , Radical Hidroxilo/química
18.
Mikrochim Acta ; 191(9): 511, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103612

RESUMEN

A sequential dual-locked luminescent copper nanoclusters (CuNCs) probe was designed and synthesized for the specific imaging and selective killing of tumor cells. This nanoprobe was prepared by first forming a Fe3+-coupled tannic acid (TA)-stabilized CuNCs (CuNCs-FeIII), which is in quenching state due to the electron transfer between CuNCs and Fe3+, and then coating a protectable layer of hyaluronic acid (HA) on the surface of CuNCs-FeIII to form the final dual-locked nanoprobe (CuNCs-FeIII@HA). When the nanoprobe of CuNCs-FeIII@HA target enter the tumor cells through CD44-HA receptor, HAase will first digest the HA layer of the nanoprobes, and then, GSH over-expressed in tumor cells will reduce Fe3+ to Fe2+, thus restoring the fluorescence emission of CuNCs and at the same time killing the tumor cells with the hydroxyl free radicals (∙OH) produced by the Fenton reaction between Fe2+ and H2O2. This sequential dual-locked luminescent nanoprobe of CuNCs-FeIII@HA has been successfully used for the specific imaging and selective killing of tumor cells.


Asunto(s)
Cobre , Cobre/química , Humanos , Nanopartículas del Metal/química , Ácido Hialurónico/química , Taninos/química , Imagen Óptica , Colorantes Fluorescentes/química , Supervivencia Celular/efectos de los fármacos , Sustancias Luminiscentes/química , Sustancias Luminiscentes/síntesis química , Línea Celular Tumoral , Radical Hidroxilo/química , Antineoplásicos/farmacología , Antineoplásicos/química , Peróxido de Hidrógeno/química
19.
Environ Sci Pollut Res Int ; 31(40): 53040-53051, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39168935

RESUMEN

Despite the vital roles of Fe0/biochar composites in the Fenton-like systems for eliminating pollutants that have been recognized, the contributions of persistent free radicals (PFRs) of carbon-based materials are typically overlooked. In this study, the high-PFR-containing biochar nanoiron composites were prepared (nZVI/500), and the in situ generation of hydroxyl radicals (·OH) and degradation of p-nitrophenol (PNP) were investigated. The results showed that nZVI/500 could effectively remove PNP in solution within the pH range of 3-8. Quantitative experiments of ·OH presented that, compared with low PFRs-containing composites, nZVI/500 could generate 64.6 µM ·OH in 60 min without any extra energy consumption. Mechanistic studies revealed that (1) both PFRs and Fe0 are able to utilize dissolved oxygen to generate H2O2 in situ; (2) PFRs can promote the cycling of Fe3+/Fe2+ in the system due to their strong electron exchange ability; and (3) PFRs directly transfer electrons to H2O2; therefore, the presence of PFRs accelerates the generation of ·OH in the system and facilitates the removal of PNP. This study provides an important theoretical basis and technical reference for expanding the application of PFR-rich carbon-based materials to remove environmental pollutants.


Asunto(s)
Carbón Orgánico , Hierro , Nitrofenoles , Nitrofenoles/química , Hierro/química , Carbón Orgánico/química , Radicales Libres/química , Peróxido de Hidrógeno/química , Radical Hidroxilo/química
20.
Chemosphere ; 364: 143107, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151588

RESUMEN

Although dissolved oxygen plays an important role in electro-Fenton-like processes, few investigations have revealed its underlying effects in such processes. Herein, the effect of dissolved oxygen on peroxide activation in an electro-Fenton-like system comprising electrochemical cells and peroxymonosulfate (PMS) was investigated. Cobalt phosphide-modified carbon aerogel (Co/P/CA) was used as the cathode material owing to the high conductivity and catalytic activity of Co/P/CA. Several free radicals and their effects on organic pollutant removal were observed using electron paramagnetic resonance spectrometry and quenching experiments, respectively. The observations revealed that in the presence of O2, hydroxyl radical (·OH), superoxide (O2-·), and singlet oxygen (1O2) served as the primary active species in the PMS activation process, while in the presence of N2, ·OH and sulfate radical (SO4-·) served as the dominant active species in this process. The factor responsible for the difference in the PMS activation pathways available under O2 and N2 conditions was investigated using rotating disk electrode tests and free energy calculations. The tests indicated that O2 facilitates PMS activation to form ·OH instead of SO4-·. The dissolved oxygen subsequently underwent a single-electron-reduction reaction and was converted into O2-·, which could serve as a source of 1O2. When N2 was introduced, Co species, particularly Co(II), played a key role in activating PMS. The free radicals ·OH and SO4-· were generated during the PMS activation process. This study clearly demonstrates the mediating catalysis role of dissolved oxygen in electro-Fenton-like system through experimental data and theoretical calculations, thereby positively contributing to future studies regarding the continuous activation of peroxides in composite systems and improvement of the efficiency of waterbody remediation.


Asunto(s)
Cobalto , Electrodos , Oxígeno , Peróxidos , Peróxidos/química , Oxígeno/química , Cobalto/química , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Técnicas Electroquímicas , Radical Hidroxilo/química , Oxidación-Reducción , Catálisis , Carbono/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA