Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.056
Filtrar
1.
Wiad Lek ; 77(7): 1425-1433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39241143

RESUMEN

OBJECTIVE: Aim: To establish the features of free radical processes in the endotheliocytes of the chorionic plate of the placenta in chronic chorioamnionitis against the background of iron deficiency anemia of pregnant women using both chemiluminescent and histochemical methods of research. PATIENTS AND METHODS: Materials and Methods: 82 placentas from parturients at 37 - 40 weeks of gestation were studied. Including, for comparison, the placenta during physiological pregnancy and the observation of iron deficiency anemia of pregnant women without inflammation of the placenta. The number of observations in specific study groups is given in the tables. To achieve the objective and solve the tasks set in this study, there were carried out the following histochemical, chemiluminescent, morphometric and statistical methods of material processing. RESULTS: Results: In case of chorionamnionitis against the background of anemia in pregnancy, the R/B ratio (R/B - ratio between amino- (blue) and carboxyl (red) groups of proteins)) in the method with bromophenol blue according to Mikel Calvo was 1.56±0.021, indicators of chemiluminescence of nitroperoxides were 133±4.5, relative optical density units of histochemical staining using the method according to A. Yasuma and T. Ichikawa was - 0.224±0.0015. CONCLUSION: Conclusions: With chronic chorioamnionitis, the intensity of the glow of nitroperoxides, the average indicators of the R/B ratio, and the optical density of histochemical staining for free amino groups of proteins are increased compared to placentas of physiological pregnancy and anemia of pregnant women. Comorbid i anemia of pregnant women causes increasing of the intensity of the glow of nitroperoxides, the average values of the R/B ratio, and the optical density of histochemical staining for free amino groups of proteins comparing to placentas with inflammation without anemia. The key factor in the formation of morphological features of chronic chorioamnionitis with comorbid anemia is the intensification of free radical processes, which is reflected by the increase in the concentration of nitroperoxides in the center of inflammation, with the subsequent intensification of the processes of oxidative modification of proteins, which is followed by the increasing activity of the processes of limited proteolysis.


Asunto(s)
Anemia Ferropénica , Corioamnionitis , Placenta , Humanos , Femenino , Embarazo , Corioamnionitis/patología , Corioamnionitis/metabolismo , Anemia Ferropénica/patología , Placenta/patología , Placenta/metabolismo , Radicales Libres/metabolismo , Radicales Libres/análisis , Adulto , Enfermedad Crónica , Complicaciones Hematológicas del Embarazo/patología
2.
J Am Chem Soc ; 146(38): 26187-26197, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39283600

RESUMEN

Glycyl radical enzymes (GREs) catalyze mechanistically diverse radical-mediated reactions, playing important roles in the metabolism of anaerobic bacteria. The model bacterium Escherichia coli MG1655 contains two GREs of unknown function, YbiW and PflD, which are widespread among human intestinal bacteria. Here, we report that YbiW and PflD catalyze ring-opening C-O cleavage of 1,5-anhydroglucitol-6-phosphate (AG6P) and 1,5-anhydromannitol-6-phosphate (AM6P), respectively. The product of both enzymes, 1-deoxy-fructose-6-phosphate (DF6P), is then cleaved by the aldolases FsaA or FsaB to form glyceraldehyde-3-phosphate (G3P) and hydroxyacetone (HA), which are then reduced by the NADH-dependent dehydrogenase GldA to form 1,2-propanediol (1,2-PDO). Crystal structures of YbiW and PflD in complex with their substrates provided insights into the mechanism of radical-mediated C-O cleavage. This "anhydroglycolysis" pathway enables anaerobic growth of E. coli on 1,5-anhydroglucitol (AG) and 1,5-anhydromannitol (AM), and we probe the feasibility of harnessing this pathway for the production of 1,2-PDO, a highly demanded chiral chemical feedstock, from inexpensive starch. Discovery of the anhydroglycolysis pathway expands the known catalytic repertoire of GREs, clarifies the hitherto unknown physiological functions of the well-studied enzymes FsaA, FsaB, and GldA, and demonstrates how enzyme discovery efforts can cast light on prevalent yet overlooked metabolites in the microbiome.


Asunto(s)
Escherichia coli , Glucólisis , Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Radicales Libres/metabolismo , Radicales Libres/química , Modelos Moleculares
3.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273518

RESUMEN

Cladosporium cladosporioides are the pigmented soil fungi containing melanin. The aim of this work was to determine the influence of amphotericin B on free radicals in the natural melanin isolated from pigmented fungi Cladosporium cladosporioides and to compare it with the effect in synthetic DOPA-melanin. Electron paramagnetic resonance (EPR) spectra were measured at X-band (9.3 GHz) with microwave power in the range of 2.2-70 mW. Amplitudes, integral intensities, linewidths of the EPR spectra, and g factors, were analyzed. The concentrations of free radicals in the tested melanin samples were determined. Microwave saturation of EPR lines indicates the presence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. o-Semiquinone free radicals in concentrations ~1020 [spin/g] exist in the tested melanin samples and in their complexes with amphotericin B. Changes in concentrations of free radicals in the examined synthetic and natural melanin point out their participation in the formation of amphotericin B binding to melanin. A different influence of amphotericin B on free radical concentration in Cladosporium cladosporioides melanin and in DOPA-melanin may be caused by the occurrence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. The advanced spectral analysis in the wide range of microwave powers made it possible to compare changes in the free radical systems of different melanin polymers. This study is important for knowledge about the role of free radicals in the interactions of melanin with drugs.


Asunto(s)
Anfotericina B , Cladosporium , Melaninas , Melaninas/metabolismo , Cladosporium/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Anfotericina B/farmacología , Radicales Libres/metabolismo , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Dihidroxifenilalanina/análogos & derivados
4.
Molecules ; 29(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274889

RESUMEN

Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action.


Asunto(s)
Leishmania infantum , Nitroimidazoles , Leishmania infantum/efectos de los fármacos , Leishmania infantum/metabolismo , Nitroimidazoles/farmacología , Nitroimidazoles/química , Animales , Ratones , Humanos , Células RAW 264.7 , Antiprotozoarios/farmacología , Antiprotozoarios/química , Radicales Libres/metabolismo , Células Hep G2 , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , NADH NADPH Oxidorreductasas
5.
Environ Pollut ; 360: 124638, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089474

RESUMEN

A comparative study explored how photoaging, ozonation aging, and Fenton aging affect tire wear particles (TWPs) and their phosphorus (P) removal in activated sludge. Aging altered TWPs' properties, increasing surface roughness, porosity, and generating more small particles, especially environmental persistent free radicals (EPFRs) in ozonation and Fenton aging. Post-aging TWPs (50 mg/L) inhibited sludge P removal significantly (p < 0.05), with rates of 44.3% and 59.6% for ozonation and Fenton aging, respectively. In addition, the metabolites involved in P cycling (poly-ß-hydroxyalkanoates: PHA and glycogen) and essential enzymes (Exopolyphosphatase: PPX and Polyphosphate kinase: PPK) were significantly inhibited (p < 0.05). Moreover, TWPs led to a decrease in microbial cells within the sludge and altered the community structure, a situation exacerbated by the aging of TWPs. P-removing bacteria decreased (e.g., Burkholderia, Candidatus), while extracellular polymeric substance-secreting bacteria increased (e.g., Pseudomonas, Novosphingobium). Pearson correlation analysis highlighted EPFRs' role in TWPs' acute toxicity to microbial cells, yet, emphasizing particle size's impact on the sludge system's purification and community structure.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Radicales Libres/química , Radicales Libres/metabolismo , Ozono/farmacología , Ozono/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua , Bacterias , Peróxido de Hidrógeno/metabolismo
6.
Chemosphere ; 364: 143088, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146994

RESUMEN

Environmentally persistent free radicals (EPFRs) may pose a potential risk to the ecosystem and human health via oxidation stress and are considered emerging contaminants. Being stable with a lifetime of minutes or several months and abundant in transitional matrices (e.g. biochar), EPFRs continue to affect deposits (e.g. soil) and related media (plants) when the transitional matrices (e.g. biochar) are applied. The impact of EPFR on the plant uptake of chemical elements (CEs) was studied in the field conditions where, for two years, biochar and fertilisers were applied to the agricultural soil for winter triticale cultivation. EPFRs determination methods, along with the element uptake indices (bioaccumulation and biophilicity) and the method of the dynamic factors were applied. Results have shown that EPFRs have influenced the soil properties relevant to CE soil bioavailability and bioaccumulation in plants. The impact of EPFRs on CE transport in the soil-plant system was observed to influence the biogeochemical behaviour of CEs in the soil-plant system. This work provides the first findings on EPFRs-induces changes on CE bioavailability and bioaccumulation intensity, indicating the higher plant uptake risk of some potentially toxic elements (such as Cr).


Asunto(s)
Plantas , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Suelo/química , Plantas/metabolismo , Radicales Libres/metabolismo , Carbón Orgánico/química , Ecosistema , Bioacumulación , Fertilizantes , Monitoreo del Ambiente , Agricultura
7.
Open Vet J ; 14(7): 1526-1537, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39175970

RESUMEN

Free radicals (FRs), also known as reactive oxygen species (ROS), are usually established in the body when adequate oxygen depletion occurs. Oxidative stress and the establishment of FRs in the body are mainly caused by high metabolic activity, the need for rapid growth, inadequate flock management, exposure to viral and bacterial microorganisms, and adverse environmental conditions. Furthermore, FRs can also be produced during the activity of phagocytes when they depend on the action of ROS to kill the engulfed pathogen. FRs have very adverse effects on all cells, particularly the cells of the immune system. They are extremely erratic and reactive molecules that directly harm DNA, cellular proteins, lipids, and carbohydrates within cells. Antioxidants are substances that can eliminate and neutralize FRs within the body and free the body from the oxidative stress that occurs due to the accumulation of FRs. Many vitamins and minerals support the activity and effect of the immune system in fighting against microbes and cancer, which mostly depend on their antioxidant elements to diminish the negative impact of FRs in the body. Examples are vitamin C, vitamin E, superoxide dismutase, selenium, glycine, cofactors of glutathione peroxidase, manganese, essential oils, and phenolic compounds.


Asunto(s)
Antioxidantes , Antioxidantes/metabolismo , Animales , Radicales Libres/metabolismo , Estrés Oxidativo/efectos de los fármacos , Dieta/veterinaria , Especies Reactivas de Oxígeno/metabolismo , Suplementos Dietéticos/análisis
8.
Microb Cell Fact ; 23(1): 219, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103877

RESUMEN

BACKGROUND: Xanthenes and multi-aryl carbon core containing compounds represent different types of complex and condensed architectures that have impressive wide range of pharmacological, industrial and synthetic applications. Moreover, indoles as building blocks were only found in naturally occurring metabolites with di-aryl carbon cores and in chemically synthesized tri-aryl carbon core containing compounds. Up to date, rare xanthenes with indole bearing multicaryl carbon core have been reported in natural or synthetic products. The underlying mechanism of fluorescein-like arthrocolins with tetra-arylmethyl core were synthesized in an engineered Escherichia coli fed with toluquinol remained unclear. RESULTS: In this study, the Keio collection of single gene knockout strains of 3901 mutants of E. coli BW25113, together with 14 distinct E. coli strains, was applied to explore the origins of endogenous building blocks and the biogenesis for arthrocolin assemblage. Deficiency in bacterial respiratory and aromatic compound degradation genes ubiX, cydB, sucA and ssuE inhibited the mutant growth fed with toluquinol. Metabolomics of the cultures of 3897 mutants revealed that only disruption of tnaA involving in transforming tryptophan to indole, resulted in absence of arthrocolins. Further media optimization, thermal cell killing and cell free analysis indicated that a non-enzyme reaction was involved in the arthrocolin biosynthesis in E. coli. Evaluation of redox potentials and free radicals suggested that an oxygen-mediated free radical reaction was responsible for arthrocolins formation in E. coli. Regulation of oxygen combined with distinct phenol derivatives as inducer, 31 arylmethyl core containing metabolites including 13 new and 8 biological active, were isolated and characterized. Among them, novel arthrocolins with p-hydroxylbenzene ring from tyrosine were achieved through large scale of aerobic fermentation and elucidated x-ray diffraction analysis. Moreover, most of the known compounds in this study were for the first time synthesized in a microbe instead of chemical synthesis. Through feeding the rat with toluquinol after colonizing the intestines of rat with E. coli, arthrocolins also appeared in the rat blood. CONCLUSION: Our findings provide a mechanistic insight into in vivo synthesis of complex and condensed arthrocolins induced by simple phenols and exploits a quinol based method to generate endogenous aromatic building blocks, as well as a methylidene unit, for the bacteria-facilitated synthesis of multiarylmethanes.


Asunto(s)
Escherichia coli , Oxígeno , Fenoles , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Fenoles/metabolismo , Oxígeno/metabolismo , Radicales Libres/metabolismo , Metano/metabolismo , Animales , Ratas , Indoles/metabolismo
9.
Georgian Med News ; (349): 25-30, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38963196

RESUMEN

Antioxidants are widely used in medicine due to their ability to bind free radicals - active biomolecules that destroy the genetic apparatus of cells and the structure of their membranes, which makes it possible to reduce the intensity of oxidative processes in the body. In a living organism, free radicals are involved in various processes, but their activity is controlled by antioxidants. The purpose of this work was to conduct a series of studies to identify the antioxidant activity of new synthesized compounds of a series of oxalic acid diamides in the brain and liver tissue of white rats in vivo and in vitro experiments, as well as to determine their potential pharmacological properties. The studies were conducted on outbred white male rats, weighing 180-200 g, kept on a normal diet. After autopsy, the brain and liver were isolated, washed with saline, cleared of blood vessels, and homogenized in Tris-HCl buffer (pH-7.4) (in vitro). The research results showed significant antioxidant activity (AOA) of all compounds with varying effectiveness. The most pronounced activity was demonstrated by compound SV-425 in both brain and liver tissues. Compound SV-427 demonstrated the least activity, with levels in brain tissue and liver tissue. In addition, all physicochemical descriptors of the studied compounds comply with Lipinski's rule of five to identify new molecules for the treatment of oxidative stress. From the data obtained, it can be concluded that the studied compounds have antioxidant properties, helping to protect cells from oxidative stress. This is important for the prevention and treatment of diseases associated with increased levels of free radicals.


Asunto(s)
Antioxidantes , Encéfalo , Peroxidación de Lípido , Hígado , Ácido Oxálico , Animales , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Ratas , Antioxidantes/farmacología , Antioxidantes/química , Radicales Libres/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ácido Oxálico/química , Ácido Oxálico/metabolismo , Ácido Oxálico/farmacología , Diamida/farmacología , Diamida/química , Estrés Oxidativo/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos
10.
Bioresour Technol ; 408: 131167, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067708

RESUMEN

Little is known about the synergistic effects of abiotic aging and biodegradation on microplastics (MPs) transformation in the environment. Herein, a hybrid process of MPs degradation was proposed by analyzing the effect of microorganisms and abiotic aging on aging MPs and non-aging MPs degradation during composting. The results showed that composting facilitated the oxidation and depolymerization of aging MPs, and its degradation efficiency was about three times that of non-aging MPs. Further investigation revealed that aging MPs contained higher abundance of plastic-degrading bacteria and enzyme activity than non-aging MPs. In addition, free radicals also influenced the degradation of MPs. However, path model and shielding experiments confirmed that free radicals mainly facilitated the non-aging MPs degradation (contribution was 68.8 %), while aging MPs was easily degraded by microorganisms (contribution was 72.6 %). This study provides promising strategies for scaling up plastic treatment in bioreactors through a hybrid collaboration of biological and abiotic processes.


Asunto(s)
Biodegradación Ambiental , Compostaje , Microplásticos , Microplásticos/metabolismo , Compostaje/métodos , Bacterias/metabolismo , Plásticos/metabolismo , Radicales Libres/metabolismo
11.
Chemosphere ; 361: 142560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851504

RESUMEN

Microplastics (MPs) are ubiquitous environmental contaminants that exert multiple toxicological effects. Current studies have mainly focused on modeled or unaged MPs, which lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging polystyrene (PS) have not been well studied, and the role of EPFRs on the toxic effects of photoaged PS is easily ignored. Photoaging primarily produces EPFRs, followed by an increase in reactive oxygen species (ROS) content and oxidative potential, which alter the physicochemical properties of photoaged PS. The mean lifespan and lipofuscin content were significantly altered after acute exposure to photoaged PS for 45 d (PS-45) and 60 d (PS-60) in Caenorhabditis elegans. Intestinal ROS and gst-4::GFP expression were enhanced, concomitant with the upregulation of associated genes. Treatment with N-acetyl-l-cysteine by radical quenching test significantly decreased EPFRs levels on the aged PS and inhibited the acceleration of the aging and oxidative stress response in nematodes. Pearson's correlation analysis also indicated that the EPFRs levels were significantly associated with these factors. Thus, the EPFRs generated on photoaged PS contribute to the acceleration of aging by oxidative stress. This study provides new insights into the potential toxicity and highlights the need to consider the role of EPFRs in the toxicity assessment of photoaged PS.


Asunto(s)
Caenorhabditis elegans , Longevidad , Microplásticos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Animales , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Longevidad/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Radicales Libres/metabolismo , Poliestirenos/toxicidad , Lipofuscina/metabolismo , Contaminantes Ambientales/toxicidad
12.
PeerJ ; 12: e17490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903886

RESUMEN

Background: Pathogenic bacteria are the cause of most skin diseases, but issues such as resistance and environmental degradation drive the need to research alternative treatments. It is reported that silk cocoon extract possesses antioxidant properties. During silk processing, the degumming of silk cocoons creates a byproduct that contains natural active substances. These substances were found to have inhibitory effects on bacterial growth, DNA synthesis, the pathogenesis of hemolysis, and biofilm formation. Thus, silk cocoon extracts can be used in therapeutic applications for the prevention and treatment of skin pathogenic bacterial infections. Methods: The extract of silk cocoons with pupae (SCP) and silk cocoons without pupae (SCWP) were obtained by boiling with distilled water for 9 h and 12 h, and were compared to silkworm pupae (SP) extract that was boiled for 1 h. The active compounds in the extracts, including gallic acid and quercetin, were determined using high-performance liquid chromatography (HPLC). Furthermore, the total phenolic and flavonoid content in the extracts were investigated using the Folin-Ciocalteu method and the aluminum chloride colorimetric method, respectively. To assess antioxidant activity, the extracts were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Additionally, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of silk extracts and phytochemical compounds were determined against skin pathogenic bacteria. This study assessed the effects of the extracts and phytochemical compounds on growth inhibition, biofilm formation, hemolysis protection, and DNA synthesis of bacteria. Results: The HPLC characterization of the silk extracts showed gallic acid levels to be the highest, especially in SCP (8.638-31.605 mg/g extract) and SP (64.530 mg/g extract); whereas quercetin compound was only detected in SCWP (0.021-0.031 mg/g extract). The total phenolics and flavonoids in silk extracts exhibited antioxidant and antimicrobial activity. Additionally, SCP at 9 h and 12 h revealed the highest anti-bacterial activity, with the lowest MIC and MBC of 50-100 mg/mL against skin pathogenic bacteria including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Cutibacterium acnes and Pseudomonas aeruginosa. Hence, SCP extract and non-sericin compounds containing gallic acid and quercetin exhibited the strongest inhibition of both growth and DNA synthesis on skin pathogenic bacteria. The suppression of bacterial pathogenesis, including preformed and matured biofilms, and hemolysis activity, were also revealed in SCP extract and non-sericin compounds. The results show that the byproduct of silk processing can serve as an alternative source of natural phenolic and flavonoid antioxidants that can be used in therapeutic applications for the prevention and treatment of pathogenic bacterial skin infections.


Asunto(s)
Antibacterianos , Antioxidantes , Bombyx , Seda , Animales , Bombyx/química , Antioxidantes/farmacología , Antioxidantes/química , Seda/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Biopelículas/efectos de los fármacos , Pupa/efectos de los fármacos , Radicales Libres/metabolismo , Pruebas de Sensibilidad Microbiana , Hemólisis/efectos de los fármacos
13.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828917

RESUMEN

Alpha-tocopherol (vitamin E) is an antioxidant that is largely involved in immune defense and enhancing the ability of biological systems to respond to oxidative stress. During the process of free radical scavenging, vitamin C supports the regeneration of vitamin E. Although the functions of antioxidants and their importance have been widely studied, the intricate interplay between antioxidants has yet to be fully elucidated, especially in dogs and cats. As such, the objective of the present study was to determine the effect of a combination of dietary antioxidants on DNA damage and antioxidant status in dogs and cats. Forty adult mixed-breed dogs and 40 adult domestic shorthair cats were randomly assigned to one of four treatment groups per species. Dogs and cats remained in these groups for the 84-d duration of the study. The food differed in antioxidant supplementation with the control food meeting all of the Association of American Feed Control Officials requirements for complete and balanced nutrition, including sufficient vitamin E to exceed the published minimum. The treatment diets were targeted to include either 500, 1,000, or 1,500 IU vitamin E/kg as well as 100 ppm of vitamin C and 1.5 ppm of ß-carotene in the food. The effect of vitamin E supplementation level on serum vitamin E concentration, DNA damage, and total antioxidant power was evaluated. Feeding diets enriched with antioxidants resulted in an increased (P < 0.05) circulating vitamin E concentration, increased (P < 0.05) immune cell protection, reduced (P < 0.05) DNA damage in dogs, and an improved (P < 0.05) antioxidant status. Overall, these data demonstrated that feeding a dry kibble with an antioxidant blend inclusive of vitamin E, vitamin C, and ß-carotene enhanced cell protection and improved antioxidant status in dogs and cats.


Animals have an impressive array of defenses to excessive reactive oxygen species in the body. The antioxidant defense system is complex and sophisticated. vitamin E, vitamin C, and ß-carotene are known to scavenge free radicals that are created during times of oxidative stress. To evaluate the effect of the various antioxidants, dogs and cats were fed one of four diets for 84 d. Diets included a control group that had vitamin E concentrations that exceeded regulatory minimums and four treatment groups that were targeted to include 500, 1,000, or 1,500 IU vitamin E/kg as well as 100 ppm of vitamin C and 1.5 ppm of ß-carotene in the food. To assess the effectiveness of the different vitamin E concentrations provided in the foods, circulating vitamin E, DNA damage, and total antioxidant power were assessed. Results from the parameters assessed showed that dogs and cats benefit from supplementing their diet with a blend of antioxidants targeted to include 100 ppm of vitamin C, 1.5 ppm of ß-carotene, and have varying benefits to increased vitamin E/kg in the food.


Asunto(s)
Alimentación Animal , Antioxidantes , Ácido Ascórbico , Daño del ADN , Dieta , Suplementos Dietéticos , Vitamina E , Animales , Perros , Gatos , Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Masculino , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Femenino , Vitamina E/farmacología , Vitamina E/administración & dosificación , Radicales Libres/metabolismo , Estrés Oxidativo/efectos de los fármacos , beta Caroteno/farmacología , beta Caroteno/administración & dosificación
14.
Neuromolecular Med ; 26(1): 26, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907170

RESUMEN

Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.


Asunto(s)
Depuradores de Radicales Libres , Sulfuro de Hidrógeno , FN-kappa B , Transducción de Señal , Traumatismos de la Médula Espinal , Serina-Treonina Quinasas TOR , Proteínas Quinasas p38 Activadas por Mitógenos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/metabolismo , Animales , Depuradores de Radicales Libres/uso terapéutico , Depuradores de Radicales Libres/farmacología , Transducción de Señal/efectos de los fármacos , Ratas , Ratones , Radicales Libres/metabolismo , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Humanos
15.
J Phys Chem B ; 128(24): 5823-5839, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38848492

RESUMEN

The reaction of benzylsuccinate synthase, the radical-based addition of toluene to a fumarate cosubstrate, is initiated by hydrogen transfer from a conserved cysteine to the nearby glycyl radical in the active center of the enzyme. In this study, we analyze this step by comprehensive computer modeling, predicting (i) the influence of bound substrates or products, (ii) the energy profiles of forward- and backward hydrogen-transfer reactions, (iii) their kinetic constants and potential mechanisms, (iv) enantiospecificity differences, and (v) kinetic isotope effects. Moreover, we support several of the computational predictions experimentally, providing evidence for the predicted H/D-exchange reactions into the product and at the glycyl radical site. Our data indicate that the hydrogen transfer reactions between the active site glycyl and cysteine are principally reversible, but their rates differ strongly depending on their stereochemical orientation, transfer of protium or deuterium, and the presence or absence of substrates or products in the active site. This is particularly evident for the isotope exchange of the remaining protium atom of the glycyl radical to deuterium, which appears dependent on substrate or product binding, explaining why the exchange is observed in some, but not all, glycyl-radical enzymes.


Asunto(s)
Biocatálisis , Cinética , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Dominio Catalítico , Modelos Moleculares , Cisteína/química , Cisteína/metabolismo , Hidrógeno/química , Radicales Libres/química , Radicales Libres/metabolismo , Liasas de Carbono-Carbono
16.
Biomed Khim ; 70(3): 168-175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38940206

RESUMEN

The free radical and cytokine statuses of the cornea during its thermal burn and the possibility of its correction by lactoferrin have been studied in Soviet Chinchilla rabbits. The development of a corneal thermal burn was accompanied by the development of oxidative stress (increased levels of TBA-reactive substances and carbonyl derivatives of proteins, decreased activity of SOD and GPx enzymes) and a pronounced inflammatory reaction with increased levels of TNF-1α, IL-10, TGF-1ß. The use of lactoferrin had a pronounced therapeutic effect, which was manifested by accelerated healing, prevention of the development of complications (corneal perforations), a decrease in the severity of oxidative stress, an increase in the concentrations of TNF-1α (in the early stages), IL-10 (in the later stages), TGF-1ß (throughout the experiment). At the same time, by the end of regeneration more severe corneal opacification was recognized compared to the control group. This may be associated with an increased level of anti-inflammatory cytokines, especially TGF-1ß.


Asunto(s)
Córnea , Lactoferrina , Estrés Oxidativo , Animales , Lactoferrina/farmacología , Conejos , Córnea/metabolismo , Córnea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Citocinas/metabolismo , Quemaduras Oculares/metabolismo , Quemaduras Oculares/tratamiento farmacológico , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/patología , Masculino , Radicales Libres/metabolismo , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/tratamiento farmacológico , Lesiones de la Cornea/patología , Modelos Animales de Enfermedad
17.
Biomater Adv ; 162: 213920, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901063

RESUMEN

Chronic refractory wounds caused by multidrug-resistant (MDR) bacterial and biofilm infections are a substantial threat to human health, which presents a persistent challenge in managing clinical wound care. We here synthesized a composite nanosheet AIPH/AMP/MoS2, which can potentially be used for combined therapy because of the photothermal effect induced by MoS2, its ability to deliver antimicrobial peptides, and its ability to generate alkyl free radicals independent of oxygen. The synthesized nanosheets exhibited 61 % near-infrared (NIR) photothermal conversion efficiency, marked photothermal stability and free radical generating ability. The minimal inhibitory concentrations (MICs) of the composite nanosheets against MDR Escherichia coli (MDR E. coli) and MDR Staphylococcus aureus (MDR S. aureus) were approximately 38 µg/mL and 30 µg/mL, respectively. The composite nanosheets (150 µg/mL) effectively ablated >85 % of the bacterial biofilm under 808-nm NIR irradiation for 6 min. In the wound model experiment, approximately 90 % of the wound healed after the 4-day treatment with the composite nanosheets. The hemolysis experiment, mouse embryonic fibroblast (MEFs) cytotoxicity experiment, and mouse wound healing experiment all unveiled the excellent biocompatibility of the composite nanosheets. According to the transcriptome analysis, the composite nanosheets primarily exerted a synergistic therapeutic effect by disrupting the cellular membrane function of S. aureus and inhibiting quorum sensing mediated by the two-component system. Thus, the synthesized composite nanosheets exhibit remarkable antibacterial and biofilm ablation properties and therefore can be used to improve wound healing in chronic biofilm infections.


Asunto(s)
Biopelículas , Disulfuros , Escherichia coli , Molibdeno , Staphylococcus aureus , Cicatrización de Heridas , Biopelículas/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Disulfuros/química , Disulfuros/farmacología , Molibdeno/química , Molibdeno/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Radicales Libres/química , Radicales Libres/metabolismo , Nanoestructuras/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Calor , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/química
18.
Biomater Adv ; 162: 213927, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917649

RESUMEN

Metals are widely utilized as implant materials for bone fixtures as well as stents. Biodegradable versions of these implants are highly desirable since patients do not have to undergo a second surgery for the materials to be removed. Attractive options for such materials are zinc silver alloys since they also offer the benefit of being antibacterial. However, it is important to investigate the effect of the degradation products of such alloys on the surrounding cells, taking into account silver cytotoxicity. Here we investigated zinc alloyed with 1 % of silver (Zn1Ag) and how differently concentrated extracts (1 %-100 %) of this material impact human umbilical vein endothelial cells (HUVECs). More specifically, we focused on free radical generation and oxidative stress as well as the impact on cell viability. To determine free radical production we used diamond-based quantum sensing as well as conventional fluorescent assays. The viability was assessed by observing cell morphology and the metabolic activity via the MTT assay. We found that 1 % and 10 % extracts are well tolerated by the cells. However, at higher extract concentrations we observed severe impact on cell viability and oxidative stress. We were also able to show that quantum sensing was able to detect significant free radical generation even at the lowest tested concentrations.


Asunto(s)
Aleaciones , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana , Nanodiamantes , Estrés Oxidativo , Zinc , Humanos , Aleaciones/química , Supervivencia Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nanodiamantes/química , Plata/toxicidad , Plata/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Radicales Libres/metabolismo , Ensayo de Materiales/métodos , Implantes Absorbibles/efectos adversos
19.
Nature ; 631(8020): 319-327, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898275

RESUMEN

Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.


Asunto(s)
Técnicas de Química Sintética , Oligosacáridos , Azúcares , Radicales Libres/química , Radicales Libres/metabolismo , Glicosilación/efectos de la radiación , Indicadores y Reactivos/química , Luz , Oligosacáridos/síntesis química , Oligosacáridos/química , Oligosacáridos/metabolismo , Oligosacáridos/efectos de la radiación , Estereoisomerismo , Azúcares/síntesis química , Azúcares/química , Azúcares/metabolismo , Azúcares/efectos de la radiación
20.
ACS Chem Biol ; 19(7): 1525-1532, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38889186

RESUMEN

Copper amine oxidases (CAOs) catalyze the oxidative deamination of primary amines to aldehyde, ammonia, and hydrogen peroxide as products and are widely distributed in bacteria, plants, and eukaryotes. These enzymes initiate the single turnover, post-translational conversion of an active site tyrosine to the redox cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ), subsequently employing TPQ to catalyze steady-state amine oxidation. The mechanisms of TPQ biogenesis and steady-state amine oxidation have been studied extensively, with consensus mechanisms proposed for both reactions. One unresolved issue has been whether the Cu2+ center must undergo formal reduction to Cu1+ in the course of the reaction. Herein, we investigate the properties of the active site of a yeast (Hansenula polymorpha) amine oxidase (HPAO) that has undergone site-specific insertion of a para-aminophenylalanine (pAF) into the position of either the precursor tyrosine to TPQ (Y405) or the two strictly conserved neighboring tyrosines (Y305 and Y407). While our original intention was to interrogate cofactor biogenesis using a precursor unnatural amino acid (UAA) of altered redox potential and pKa, we instead observe an unanticipated reaction assigned to an intramolecular electron transfer from pAF to the active site copper ion. We establish the generality of the observed active site chemistry using exogenously added, aniline-containing substrates under conditions that prevent side chain amine oxidation. The results support previous proposals that the activation of the TPQ precursor occurs in the absence of a formal valence change at the active site copper site. The described reaction of pAFs with the active site redox Cu2+ center of HPAO provides a prototype for either the engineering of the enzymatic oxidation of exogenous anilines or the insertion of site-specific free radical probes within proteins.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Compuestos de Anilina , Cobre , Tirosina , Amina Oxidasa (conteniendo Cobre)/metabolismo , Amina Oxidasa (conteniendo Cobre)/química , Tirosina/metabolismo , Tirosina/química , Tirosina/análogos & derivados , Cobre/química , Cobre/metabolismo , Compuestos de Anilina/química , Compuestos de Anilina/metabolismo , Radicales Libres/metabolismo , Radicales Libres/química , Oxidación-Reducción , Dominio Catalítico , Fenilalanina/metabolismo , Fenilalanina/química , Fenilalanina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA