RESUMEN
Triggering receptor expressed on myeloid cells 2 (TREM2) plays an essential role in microglia activation and is being investigated as a potential therapeutic target for modulation of microglia in several neurological diseases. In this study, we present the development and preclinical evaluation of 64Cu-labeled antibody-based PET radiotracers as tools for non-invasive assessment of TREM2 expression. Furthermore, we tested the potential of an antibody transport vehicle (ATV) that binds human transferrin receptor to facilitate transcytosis of TREM2 antibody-based radiotracers to the CNS and improve target engagement. Methods: A TREM2 antibody with an engineered transport vehicle (ATV:4D9) and without (4D9) were covalently modified with pNCS-benzyl-NODAGA and labeled with copper-64. Potency, stability, and specificity were assessed in vitro followed by in vivo PET imaging at the early 2 h, intermediate 20 h, and late imaging time points 40 h post-injection using a human transferrin receptor (hTfR) expressing model for amyloidogenesis (5xFAD;TfRmu/hu) or wild-type mice (WT;TfRmu/hu), and hTfR negative controls. Organs of interest were isolated to determine biodistribution by ex vivo autoradiography. Cell sorting after in vivo tracer injection was used to demonstrate cellular specificity for microglia and to validate TREM2 PET results in an independent mouse model for amyloidogenesis (AppSAA;TfRmu/hu). For translation to human imaging, a human TREM2 antibody (14D3) was radiolabeled and used for in vitro autoradiography on human brain sections. Results: The 64Cu-labeled antibodies were obtained in high radiochemical purity (RCP), radiochemical yield (RCY), and specific activity. Antibody modification did not impact TREM2 binding. ATV:4D9 binding proved to be specific, and the tracer stability was maintained over 48 h. The uptake of [64Cu]Cu-NODAGA-ATV:4D9 in the brains of hTfR expressing mice was up to 4.6-fold higher than [64Cu]Cu-NODAGA-4D9 in mice without hTfR. TREM2 PET revealed elevated uptake in the cortex of 5xFAD mice compared to wild-type, which was validated by autoradiography. PET-to-biodistribution correlation revealed that elevated radiotracer uptake in brains of 5xFAD;TfRmu/hu mice was driven by microglia-rich cortical and hippocampal brain regions. Radiolabeled ATV:4D9 was selectively enriched in microglia and cellular uptake explained PET signal enhancement in AppSAA;TfRmu/hu mice. Human autoradiography showed elevated TREM2 tracer binding in the cortex of patients with Alzheimer's disease. Conclusion: [64Cu]Cu-NODAGA-ATV:4D9 has potential for non-invasive assessment of TREM2 as a surrogate marker for microglia activation in vivo. ATV engineering for hTfR binding and transcytosis overcomes the blood-brain barrier restriction for antibody-based PET radiotracers. TREM2 PET might be a versatile tool for many applications beyond Alzheimer's disease, such as glioma and chronic inflammatory diseases.
Asunto(s)
Enfermedad de Alzheimer , Radioisótopos de Cobre , Glicoproteínas de Membrana , Microglía , Tomografía de Emisión de Positrones , Receptores Inmunológicos , Animales , Microglía/metabolismo , Tomografía de Emisión de Positrones/métodos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Humanos , Radiofármacos/farmacocinética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Receptores de Transferrina/inmunología , Receptores de Transferrina/metabolismo , Anticuerpos/inmunología , Anticuerpos/metabolismo , Compuestos Heterocíclicos con 1 Anillo/química , Ratones Endogámicos C57BL , Distribución Tisular , AcetatosRESUMEN
BACKGROUND: Immune checkpoint inhibitor (ICI) usage has resulted in immune-related adverse events in patients with cancer, such as accelerated atherosclerosis. Of immune cells involved in atherosclerosis, the role of CCR2+ (CC motif chemokine receptor 2-positive) proinflammatory macrophages is well documented. However, there is no noninvasive approach to determine the changes of these cells in vivo following ICI treatment and explore the underlying mechanisms of immune-related adverse events. Herein, we aim to use a CCR2 (CC motif chemokine receptor 2)-targeted radiotracer and positron emission tomography (PET) to assess the aggravated inflammatory response caused by ICI treatment in mouse atherosclerosis models and explore the mechanism of immune-related adverse events. METHODS: Apoe-/- mice and Ldlr-/- mice were treated with an ICI, anti-PD1 (programmed cell death protein 1) antibody, and compared with those injected with either isotype control IgG or saline. The radiotracer 64Cu-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-ECL1i (extracellular loop 1 inverso) was used for PET imaging of CCR2+ macrophages. Atherosclerotic arteries were collected for molecular characterization. RESULTS: CCR2 PET revealed significantly higher radiotracer uptake in both Apoe-/- and Ldlr-/- mice treated with anti-PD1 compared with the control groups. The increased expression of CCR2+ cells in Apoe-/- and Ldlr-/- mice was confirmed by immunostaining and flow cytometry. Single-cell RNA sequencing revealed elevated expression of CCR2 in myeloid cells. Mechanistically, IFNγ (interferon gamma) was essential for aggravated inflammation and atherosclerotic plaque progression following anti-PD1 treatment. CONCLUSIONS: Accelerated atherosclerotic plaque inflammation triggered by anti-PD1 treatment can be noninvasively detected by 64Cu-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-ECL1i (extracellular loop 1 inverso) PET. Aggravated plaque inflammation is time- and dose-dependent and predominately mediated by IFNγ signaling. This study warrants further investigation of CCR2 PET as a noninvasive approach to visualize atherosclerotic plaque inflammation and explore the underlying mechanism following ICI treatment.
Asunto(s)
Aterosclerosis , Inhibidores de Puntos de Control Inmunológico , Inflamación , Receptor de Muerte Celular Programada 1 , Receptores CCR2 , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Ratones , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores CCR2/antagonistas & inhibidores , Inflamación/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Ratones Noqueados para ApoE , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Receptores de LDL/genética , Receptores de LDL/deficiencia , Receptores de LDL/metabolismo , Ratones Endogámicos C57BL , Interferón gamma/metabolismo , Placa Aterosclerótica , Modelos Animales de Enfermedad , Ratones Noqueados , Radiofármacos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de CobreRESUMEN
In this work, we develop recombinant human cationic ferritin (rHCF) as a contrast agent to detect glomeruli in the kidney using positron emission tomography (PET). We first expressed recombinant human ferritin (rHF) in E. coli and then functionalized and radiolabeled it with Copper-64 (64Cu) to form 64Cu-rHCF. Intravenously injected 64Cu-rHCF bound to kidney glomeruli and was detected by PET. A subchronic toxicity study after an intravenous injection of rHCF revealed no significant toxicity. The development of rHCF is an important step toward the potential clinical translation of CF to detect the nephron number in humans.
Asunto(s)
Materiales Biocompatibles , Medios de Contraste , Radioisótopos de Cobre , Glomérulos Renales , Ensayo de Materiales , Tomografía de Emisión de Positrones , Proteínas Recombinantes , Humanos , Medios de Contraste/química , Radioisótopos de Cobre/química , Proteínas Recombinantes/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Glomérulos Renales/metabolismo , Glomérulos Renales/diagnóstico por imagen , Ferritinas/química , Ferritinas/metabolismo , Tamaño de la Partícula , RatonesRESUMEN
Somatostatin type 2 receptor (SSTR2) radionuclide therapy using ß- particle-emitting radioligands has entered clinical practice for the treatment of neuroendocrine neoplasms (NENs). Despite the initial success of [177Lu]LuDOTA-TATE, theranostic SSTR2 radioligands require improved pharmacokinetics and enhanced compatibility with alternative radionuclides. Consequently, this study evaluates the pharmacokinetic effects of the albumin-binding domain cLAB4 on theranostic performance of copper67-labeled NODAGA-TATE variants in an SSTR2-positive mouse pheochromocytoma (MPC) model. Methods: Binding, uptake, and release of radioligands as well as growth-inhibiting effects were characterized in cells grown as monolayers and spheroids. Tissue pharmacokinetics, absorbed tumor doses, and projected human organ doses were determined from quantitative SPECT imaging in a subcutaneous tumor allograft mouse model. Treatment effects on tumor growth, leukocyte numbers, and renal albumin excretion were assessed. Results: Both copper64- and copper67-labeled versions of NODAGA-TATE and NODAGA-cLAB4TATE showed similar SSTR2 binding affinity, but faster release from tumor cells compared to the clinical reference [177Lu]LuDOTA-TATE. The bifunctional SSTR2/albumin-binding radioligand [67Cu]CuNODAGA-cLAB4TATE showed both an improved uptake and prolonged residence time in tumors resulting in equivalent treatment efficacy to [177Lu]LuDOTA-TATE. Absorbed doses were well tolerated in terms of leukocyte counts and kidney function. Conclusion: This preclinical study demonstrates therapeutic efficacy of [67Cu]CuNODAGA-cLAB4TATE in SSTR2-positive tumors. As an intrinsic radionuclide theranostic agent, the radioligand provides stable radiocopper complexes and high sensitivity in SPECT imaging for prospective determination and monitoring of therapeutic doses in vivo. Beyond that, copper64- and copper61-labeled versions offer possibilities for pre- and post-therapeutic PET. Therefore, NODAGA-cLAB4-TATE has the potential to advance clinical use of radiocopper in SSTR2-targeted cancer theranostics.
Asunto(s)
Radioisótopos de Cobre , Compuestos Heterocíclicos con 1 Anillo , Radiofármacos , Receptores de Somatostatina , Animales , Receptores de Somatostatina/metabolismo , Ratones , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Radiofármacos/uso terapéutico , Humanos , Albúminas , Línea Celular Tumoral , Feocromocitoma/radioterapia , Feocromocitoma/diagnóstico por imagen , Feocromocitoma/metabolismo , Acetatos/química , Nanomedicina Teranóstica/métodos , Distribución Tisular , Femenino , Modelos Animales de EnfermedadRESUMEN
64Cu is gaining recognition not only for its diagnostic capabilities in nuclear medical imaging but also for its therapeutic and theranostic potential. The simultaneous ß- and Auger emissions of 64Cu can be utilized to induce a therapeutic effect on cancerous lesions. The finding of the exceptional biodistribution characteristics of the radionuclide 64Cu, when administered as basic copper ions, has highlighted its potential therapeutic application in cancer treatment. Preclinical and clinical research on the effectiveness of [64Cu]CuCl2 as a theranostic radiopharmaceutical has commenced only in the past decade. Current clinical studies are increasingly demonstrating the high specificity and uptake of [64Cu]Cu2+ by malignant tissues during early cancer progression, indicating its potential for early cancer diagnosis across various organs. This short review aims to present the latest preclinical studies involving [64Cu]CuCl2, offering valuable insights for researchers planning new in vitro and in vivo studies to explore the theranostic potential of [64Cu]Cu2+.
Asunto(s)
Radioisótopos de Cobre , Cobre , Neoplasias , Radiofármacos , Nanomedicina Teranóstica , Humanos , Radioisótopos de Cobre/química , Cobre/química , Animales , Radiofármacos/química , Radiofármacos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Distribución TisularRESUMEN
Occult nodal spread and metastatic disease require longstanding imaging and biochemical assessments for thyroid cancer, a disease that has a propensity for diffuse, small-volume disease. We have developed a 64Cu-labeled platelet-derived growth factor receptor α (PDGFRA) antibody for immuno-PET of PDGFRA in metastatic papillary thyroid cancer (PTC). The present work describes the discovery of small cyclic PDGFRA-targeting peptides, their binding features, and radiolabeling with positron emitter gallium-68 (68Ga) for in vitro and in vivo characterization in thyroid cancer models. Phage-display technology with two separate libraries and seven different cell lines was used through three rounds of biopanning as well as flow cytometry and comparative analysis with recombinant protein to select specific peptide sequences. Phenotypic binding analysis was completed by using phosphorylation and cell migration assays. In vitro protein binding was analyzed with thermophoresis and flow cytometry using the fluorescent-labeled PDGFRA peptide. Peptide candidates were modified with the NOTA chelator for radiolabeling with 68Ga. In vitro cell uptake was studied in various thyroid cancer cell lines. In vivo studies of 68Ga-labeled peptides included metabolic stability and PET imaging. From the original library (1013 compounds), five different peptide groups were identified based on biopanning experiments with and without the α subunit of PDGFR, leading to â¼50 peptides. Subsequent phenotypic screening revealed two core peptide sequences (CP16 and CP18) that demonstrated significant changes in the level of PDGFRA phosphorylation and cell migration. Alanine scan sublibraries were created from these two lead peptide sequences, and peptides were radiolabeled using 68Ga-GaCl3 at pH 4.5, resulting in RCP > 95% within 34-40 min, including SPE purification. Cyclic peptide CP18.5 showed the strongest effects on cell migration, flow cytometry, and binding by visual interference color assay. 68Ga-labeled PDGFRA-targeting peptides showed elevated cell and tumor uptake in models of thyroid cancer, with 68Ga-NOTA-CP18.5 being the lead candidate. However, metabolic stability in vivo was compromised for 68Ga-NOTA-CP18.5 vs 68Ga-NOTA-CP18 but without impacting tumor uptake or clearance profiles. First-generation radiolabeled cyclic peptides have been developed as novel radiotracers, particularly 68Ga-NOTA-CP18.5, for the molecular imaging of PDGFRA in thyroid cancer.
Asunto(s)
Radioisótopos de Galio , Imagen Molecular , Péptidos Cíclicos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Humanos , Animales , Línea Celular Tumoral , Ratones , Péptidos Cíclicos/química , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Radioisótopos de Galio/química , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/metabolismo , Radiofármacos/química , Radiofármacos/farmacocinética , Cáncer Papilar Tiroideo/diagnóstico por imagen , Cáncer Papilar Tiroideo/metabolismo , Movimiento Celular , Radioisótopos de Cobre/química , Ratones Desnudos , FemeninoRESUMEN
There is a critical need to non-invasively assess the PD-L1 expression in tumors as a predictive biomarker for determining the efficacy of anti-PD-1/PD-L1 immunotherapies. Non-invasive imaging modality like positron emission tomography (PET) can be a powerful tool to assess the PD-L1 expression in the whole body including multiple metastases as a patient selection criterion for the anti-PD-1/PD-L1 immunotherapy. In this study, we synthesized B11-nanobody, B11-scFv and B11-diabody fragments from the full-length anti-PD-L1 B11 IgG. Out of the three antibody fragments, B11-diabody showed higher nM affinity towards PD-L1 antigen as compared to B11-scFv and B11-nanobody. All three antibody fragments were successfully radiolabeled with 64Cu, a PET radioisotope. For radiolabeling, the antibody fragments were first conjugated with p-SCN-Bn-NOTA followed by chelation with 64Cu. All three radiolabeled antibody fragments were found to be stable in mouse and human sera for up to 24 h. Additionally, all three [64Cu]Cu-NOTA-B11-antibody fragments were evaluated in PD-L1 negative and human PD-L1 expressing cancer cells and subcutaneous tumor models. Based on the results, [64Cu]Cu-NOTA-B11-diabody has potential to be used as a PET imaging probe for assessing PD-L1 expression in tumors as early as 4 h post-injection, allowing faster assessment compared to the full length IgG based PET imaging probe.
Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Animales , Humanos , Femenino , Ratones , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Melanoma/diagnóstico por imagen , Melanoma/inmunología , Melanoma/metabolismo , Anticuerpos de Cadena Única/inmunología , Radioisótopos de Cobre , Fragmentos de Inmunoglobulinas/inmunologíaRESUMEN
Despite a high detection rate of 68Ga-prostate-specific membrane antigen (PSMA) PET/CT in biochemical recurrence (BCR) of prostate cancer, a significant proportion of men have negative 68Ga-PSMA-11 PET/CT results. Gastrin-releasing peptide receptor, targeted by the copper-chelated bombesin analog 64Cu-sarcophagine-bombesin (SAR-BBN) PET/CT, is also overexpressed in prostate cancer. In this prospective imaging study, we investigate the detection rate of 64Cu-SAR-BBN PET/CT in patients with BCR and negative or equivocal 68Ga-PSMA-11 PET/CT results. Methods: Men with confirmed adenocarcinoma of the prostate, prior definitive therapy, and BCR (defined as a prostate-specific antigen [PSA] level > 0.2 ng/mL) with negative or equivocal 68Ga-PSMA-11 PET/CT results within 3 mo were eligible for enrollment. 64Cu-SAR-BBN PET/CT scans were acquired at 1 and 3 h after administration of 200 MBq of 64Cu-SAR-BBN, with further delayed imaging undertaken optionally at 24 h. PSA (ng/mL) was determined at baseline. All PET (PSMA and bombesin) scans were assessed visually. Images were read with masking of the clinical results by 2 experienced nuclear medicine specialists, with a third reader in cases of discordance. Accuracy was defined using a standard of truth that included biopsy confirmation, confirmatory imaging, or response to targeted treatment. Results: Twenty-five patients were enrolled. Prior definitive therapy was radical prostatectomy (n = 24, 96%) or radiotherapy (n = 1, 4%). The median time since definitive therapy was 7 y (interquartile range [IQR], 4-11 y), and the Gleason score was 7 or less (n = 15, 60%), 8 (n = 3, 12%), or 9 (n = 7, 28%). The median PSA was 0.69 ng/mL (IQR, 0.28-2.45 ng/mL). Baseline PSMA PET scans were negative in 19 patients (76%) and equivocal in 6 (24%). 64Cu-SAR-BBN PET-avid disease was identified in 44% (11/25): 12% (3/25) with local recurrence, 20% (5/25) with pelvic node metastases, and 12% (3/25) with distant metastases. The κ-score between readers was 0.49 (95% CI, 0.16-0.82). Patients were followed up for a median of 10 mo (IQR, 9-12 mo). Bombesin PET/CT results were true-positive in 5 of 25 patients (20%), false-positive in 2 of 25 (8%), false-negative in 7 of 25 (28%), and unverified in 11 of 25 (44%). Conclusion: 64Cu-SAR-BBN PET/CT demonstrated sites of disease recurrence in 44% of BCR cases with negative or equivocal 68Ga-PSMA-11 PET/CT results. Further evaluation to confirm diagnostic benefit is warranted.
Asunto(s)
Bombesina , Radioisótopos de Cobre , Ácido Edético , Isótopos de Galio , Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Bombesina/análogos & derivados , Bombesina/química , Anciano , Ácido Edético/análogos & derivados , Ácido Edético/química , Persona de Mediana Edad , Oligopéptidos/química , Recurrencia , Anciano de 80 o más Años , Recurrencia Local de Neoplasia/diagnóstico por imagen , Estudios ProspectivosRESUMEN
Molecular imaging of muscle-invasive bladder cancer (MBC) is restricted to its locoregional and distant metastases, since most radiopharmaceuticals have a urinary excretion that limits the visualization of the primary tumor. 64CuCl2 , a positron-emitting radiotracer with nearly exclusive biliary elimination, could be well suited to exploring urinary tract neoplasms. In this study, we evaluated the feasibility of 64CuCl2-based staging of patients with MBC; furthermore, we compared the diagnostic capability of this method with those of the current gold standards, that is, contrast-enhanced CT (ceCT) and 18F-FDG PET/CT. Methods: We prospectively enrolled patients referred to our institution for pathology-confirmed MBC staging/restaging between September 2021 and January 2023. All patients underwent ceCT, 18F-FDG, and 64CuCl2 PET/CT within 2 wk. Patient-based analysis and lesion-based analysis were performed for all of the potentially affected districts (overall, bladder wall, lymph nodes, skeleton, liver, lung, and pelvic soft tissue). Results: Forty-two patients (9 women) were enrolled. Thirty-six (86%) had evidence of disease, with a total of 353 disease sites. On patient-based analysis, ceCT and 64CuCl2 PET/CT showed higher sensitivity than 18F-FDG PET/CT in detecting the primary tumor (P < 0.001); moreover, 64CuCl2 PET/CT was slightly more sensitive than 18F-FDG PET/CT in disclosing soft-tissue lesions (P < 0.05). Both PET methods were more specific and accurate than ceCT in classifying nodal lesions (P < 0.05). On lesion-based analysis, 64CuCl2 PET/CT outperformed 18F-FDG PET/CT and ceCT in detecting disease localizations overall (P < 0.001), in the lymph nodes (P < 0.01), in the skeleton (P < 0.001), and in the soft tissue (P < 0.05). Conclusion: 64CuCl2 PET/CT appears to be a sensitive modality for staging/restaging of MBC and might represent a "one-stop shop" diagnostic method in these scenarios.
Asunto(s)
Fluorodesoxiglucosa F18 , Invasividad Neoplásica , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Vejiga Urinaria , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Invasividad Neoplásica/diagnóstico por imagen , Radioisótopos de Cobre , Medios de Contraste , Anciano de 80 o más Años , Tomografía Computarizada por Rayos XRESUMEN
The demand for PET tracers that target prostate-specific membrane antigen (PSMA) continues to increase. Meeting this demand with approved 68Ga- and 18F-labeled PSMA tracers is challenging outside of major urban centers. This is because the short physical half-life of these radionuclides makes it necessary to produce them near their sites of usage. To overcome this challenge, we propose cyclotron-produced 61Cu for labeling PSMA PET tracers. 61Cu can be produced on a large scale, and its 3.33-h half-life allows shipping over considerably longer distances than possible for 68Ga and 18F. Production of true theranostic twins using 61Cu and the ß--emitter 67Cu is also feasible. Methods: PSMA-I&T (DOTAGA-(l-y)fk(sub-KuE)) and its derivative in which the DOTAGA chelator was replaced by NODAGA (NODAGA-(l-y)fk(sub-KuE)), herein reported as DOTAGA-PSMA-I&T and NODAGA-PSMA-I&T, respectively, were labeled with 61Cu and compared with [68Ga]Ga-DOTAGA-PSMA-I&T, [68Ga]Ga-NODAGA-PSMA-I&T, [68Ga]Ga-PSMA-11, and [18F]PSMA-1007. In vitro (lipophilicity, affinity, cellular uptake, and distribution) and in vivo (PET/CT, biodistribution, and stability) studies were performed in LNCaP cells and xenografts. Human dosimetry estimates were calculated for [61Cu]Cu-NODAGA-PSMA-I&T. First-in-human imaging with [61Cu]Cu-NODAGA-PSMA-I&T was performed in a patient with metastatic prostate cancer. Results: [61Cu]Cu-DOTAGA-PSMA-I&T and [61Cu]Cu-NODAGA-PSMA-I&T were synthesized with radiochemical purity of more than 97%, at an apparent molar activity of 24 MBq/nmol, without purification after labeling. In vitro, natural Cu (natCu)-DOTAGA-PSMA-I&T and natCu-NODAGA-PSMA-I&T showed high affinity for PSMA (inhibitory concentration of 50%, 11.2 ± 2.3 and 9.3 ± 1.8 nM, respectively), although lower than the reference natGa-PSMA-11 (inhibitory concentration of 50%, 2.4 ± 0.4 nM). Their cellular uptake and distribution were comparable to those of [68Ga]Ga-PSMA-11. In vivo, [61Cu]Cu-NODAGA-PSMA-I&T showed significantly lower uptake in nontargeted tissues than [61Cu]Cu-DOTAGA-PSMA-I&T and higher tumor uptake (14.0 ± 5.0 percentage injected activity per gram of tissue [%IA/g]) than [61Cu]Cu-DOTAGA-PSMA-I&T (6.06 ± 0.25 %IA/g, P = 0.0059), [68Ga]Ga-PSMA-11 (10.2 ± 1.5 %IA/g, P = 0.0972), and [18F]PSMA-1007 (9.70 ± 2.57 %IA/g, P = 0.080) at 1 h after injection. Tumor uptake was also higher for [61Cu]Cu-NODAGA-PSMA-I&T at 4 h after injection (10.7 ± 3.3 %IA/g) than for [61Cu]Cu-DOTAGA-PSMA-I&T (4.88 ± 0.63 %IA/g, P = 0.0014) and [18F]PSMA-1007 (6.28 ± 2.19 %IA/g, P = 0.0145). Tumor-to-nontumor ratios of [61Cu]Cu-NODAGA-PSMA-I&T were superior to those of [61Cu]Cu-DOTAGA-PSMA-I&T and comparable to those of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 at 1 h after injection and increased significantly between 1 and 4 h after injection in most cases. Human dosimetry estimates for [61Cu]Cu-NODAGA-PSMA-I&T were similar to the ones reported for 18F-PSMA ligands. First-in-human imaging demonstrated multifocal osseous and hepatic metastases. Conclusion: [61Cu]Cu-NODAGA-PSMA-I&T is a promising PSMA radiotracer that compares favorably with [68Ga]Ga-PSMA-11 and [18F]PSMA-1007, while allowing delayed imaging.
Asunto(s)
Antígenos de Superficie , Radioisótopos de Cobre , Glutamato Carboxipeptidasa II , Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Tomografía de Emisión de Positrones/métodos , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Animales , Trazadores Radiactivos , Ratones , Línea Celular Tumoral , Radiofármacos/farmacocinética , Radiofármacos/química , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Marcaje IsotópicoRESUMEN
BACKGROUND: Prostate cancer affects 1 in 6 men, and it is the secondleading cause of cancer-related death in American men. Surgery is one of the main treatment modalities for prostate cancer, but it often results in incomplete resection margins or complete resection that leads to nerve damage and undesirable side effects. In the present work, we have developed a new bimodal tracer, NODAGA-sCy7.5 PSMAi (prostate-specific membrane antigen inhibitor), labeled with the true matched theranostic pair 64Cu/67Cu and a near-infrared fluorescent dye. This agent could potentially be used for concomitant PET imaging, optical surgical navigation, and targeted radiopharmaceutical therapy. METHODS: A prostate-specific membrane antigen (PSMA)-targeting urea derivative was conjugated to NODAGA for copper radiolabeling and to the near-infrared fluorophore sulfo-Cy7.5 (sCy7.5). Binding studies were performed in PSMA-positive PC-3 PIP cells, as well as uptake and internalization assays in PC-3 PIP cells and PSMA-negative PC-3 wild type cells. Biodistribution studies of the 64Cu-labeled compound were performed in PC-3 PIP- and PC-3 tumor-bearing mice, and 67Cu biodistributions of the agent were obtained in PC-3 PIP tumor-carrying mice. PET imaging and fluorescence imaging were also performed, using the same molar doses, in the two mouse models. RESULTS: The PSMA conjugate bound with high affinity to PSMA-positive prostate cancer cells, as opposed to cells that were PSMA-negative. Uptake and internalization were rapid and PSMA-mediated in PC-3 PIP cells, while only minimal non-specific uptake was observed in PC-3 cells. Biodistribution studies showed specific uptake in PC-3 PIP tumors, while accumulation in PC-3 tumor-bearing mice was low. Furthermore, tumor uptake of the 67Cu-labeled agent in the PC-3 PIP model was statistically equivalent to that of 64Cu. PET and fluorescence imaging at 0.5 nmol per mouse also demonstrated that PC-3 PIP tumors could be clearly detected, while PC-3 tumors showed no tumor accumulation. CONCLUSIONS: NODAGA-sCy7.5-PSMAi was specific and selective in detecting PSMA-positive, as opposed to PSMA-negative, tumors in mouse models of prostate cancer. This bioconjugate could potentially be used for PET staging with 64Cu, targeted radiopharmaceutical therapy with 67Cu, and/or image-guided surgery with sCy7.5.
Asunto(s)
Antígenos de Superficie , Radioisótopos de Cobre , Glutamato Carboxipeptidasa II , Masculino , Animales , Ratones , Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Distribución Tisular , Línea Celular Tumoral , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Nanomedicina Teranóstica/métodos , Compuestos Heterocíclicos con 1 Anillo/química , Colorantes Fluorescentes/química , Medicina de Precisión/métodos , AcetatosRESUMEN
Because of the blood-brain barrier (BBB), successful drug delivery to the brain has long been a key objective for the medical community, calling for pioneering technologies to overcome this challenge. Convection-enhanced delivery (CED), a form of direct intraparenchymal microinfusion, shows promise but requires optimal infusate design and real-time distribution monitoring. The size of the infused substances appears to be especially critical, with current knowledge being limited. Herein, we examined the intracranial administration of polyethylene glycol (PEG)-coated nanoparticles (NPs) of various sizes using CED in groups of healthy minipigs (n = 3). We employed stealth liposomes (LIPs, 130 nm) and two gold nanoparticle designs (AuNPs) of different diameters (8 and 40 nm). All were labeled with copper-64 for quantitative and real-time monitoring of the infusion via positron emission tomography (PET). NPs were infused via two catheters inserted bilaterally in the putaminal regions of the animals. Our results suggest CED with NPs holds promise for precise brain drug delivery, with larger LIPs exhibiting superior distribution volumes and intracranial retention over smaller AuNPs. PET imaging alongside CED enabled dynamic visualization of the process, target coverage, timely detection of suboptimal infusion, and quantification of distribution volumes and concentration gradients. These findings may augment the therapeutic efficacy of the delivery procedure while mitigating unwarranted side effects associated with nonvisually monitored delivery approaches. This is of vital importance, especially for chronic intermittent infusions through implanted catheters, as this information enables informed decisions for modulating targeted infusion volumes on a catheter-by-catheter, patient-by-patient basis.
Asunto(s)
Encéfalo , Oro , Nanopartículas del Metal , Tamaño de la Partícula , Polietilenglicoles , Porcinos Enanos , Animales , Porcinos , Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos , Tomografía de Emisión de Positrones , Liposomas/química , Convección , Barrera Hematoencefálica/metabolismo , Radioisótopos de Cobre/química , Nanopartículas/químicaRESUMEN
The development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors. Methods: We synthesized a series of neurotensin antagonists bearing MA linkers and metal chelators. The MA unit is hypothesized to establish a strong interaction with the cell membrane, and the addition of a second chelator may enhance water solubility, consequently reducing liver uptake. Small-animal PET/CT imaging of [64Cu]Cu-DOTA-SR-3MA, [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, [64Cu]Cu-NT-CB-DOTA, and [64Cu]Cu-NT-Sarcage was acquired at 1, 4, 24, and 48 h after injection using H1299 tumor models. [55Co]Co-NT-CB-NOTA was also tested in HT29 (high NTSR-1 expression) and Caco2 (low NTSR-1 expression) colorectal adenocarcinoma tumor models. Saturation binding assay and internalization of [55Co]Co-NT-CB-NOTA were used to test tracer specificity and internalization in HT29 cells. Results: In vivo PET imaging with [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, and [55Co]Co-NT-CB-NOTA revealed high tumor uptake, high tumor-to-background contrast, and sustained tumor retention (≤48 h after injection) in NTSR-1-positive tumors. Tumor uptake of [64Cu]Cu-NT-CB-NOTA remained at 76.9% at 48 h after injection compared with uptake 1 h after injection in H1299 tumor models, and [55Co]Co-NT-CB-NOTA was retained at 60.2% at 24 h compared with uptake 1 h after injection in HT29 tumor models. [64Cu]Cu-NT-Sarcage also showed high tumor uptake with low background and high tumor retention 48 h after injection Conclusion: Tumor uptake and pharmacokinetic properties of NTSR-1-targeting radiopharmaceuticals were greatly improved when attached with different nitrogen-containing macrocyclic moieties. The study results suggest that NT-CB-NOTA labeled with either 64Cu/67Cu, 55Co/58mCo, or 68Ga (effect of 177Lu in tumor to be determined in future studies) and NT-Sarcage labeled with 64Cu/67Cu or 55Co/58mCo may be excellent diagnostic and therapeutic radiopharmaceuticals targeting NTSR-1-positive cancers. Also, the introduction of MA units to other ligands is warranted in future studies to test the generality of this approach.
Asunto(s)
Radioisótopos de Cobre , Radioisótopos de Galio , Compuestos Macrocíclicos , Radiofármacos , Receptores de Neurotensina , Receptores de Neurotensina/metabolismo , Receptores de Neurotensina/antagonistas & inhibidores , Animales , Ratones , Radiofármacos/farmacocinética , Radiofármacos/química , Distribución Tisular , Humanos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacocinética , Marcaje Isotópico , Línea Celular Tumoral , Aminas/química , Medicina de Precisión , Radioquímica , Técnicas de Química Sintética , Tomografía Computarizada por Tomografía de Emisión de PositronesRESUMEN
Doxorubicin (DOX) is a common and highly effective chemotherapeutic. However, its use is limited by cardiotoxic effects and the lack of methods to detect these at early time points. In the present study, we evaluated if [64Cu]Cu-NODAGA-E[(cRGDyK)]2 positron emission tomography-computed tomography ([64Cu]Cu-RGD PET/CT) could detect cardiotoxicity in a rat model of DOX-induced heart failure. Male Lewis rats were divided into two groups and treated with either a cumulative dose of 15 mg/kg of DOX or left untreated. Cardiac anatomy and function were assessed using magnetic resonance imaging at baseline and in week 8. [64Cu]Cu-RGD PET/CT scans were performed in week 4. DOX treatment led to a decline in pump function as well as an increase in cardiac and thymic uptake of [64Cu]Cu-RGD. In addition, DOX altered cardiac gene expression, led to infiltration of immune cells, reduced endothelial content, and increased interstitial fibrosis. Furthermore, concentrations of inflammatory plasma proteins were increased in the DOX group. In conclusion, DOX treatment resulted in the development of cardiotoxicity and heart failure, which could be detected using [64Cu]Cu-RGD PET/CT at early time points. [64Cu]Cu-RGD uptake in the myocardial septum and thymus predicted a low left ventricular ejection fraction in week 8.
Asunto(s)
Radioisótopos de Cobre , Modelos Animales de Enfermedad , Doxorrubicina , Insuficiencia Cardíaca , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas Endogámicas Lew , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Ratas , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/diagnóstico por imagen , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Compuestos Heterocíclicos con 1 Anillo , Cardiotoxicidad/etiología , Acetatos/química , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Corazón/efectos de los fármacos , Corazón/diagnóstico por imagen , RadiofármacosRESUMEN
Nanoparticles have emerged as promising theranostic tools for biomedical applications, notably in the treatment of cancers. However, to fully exploit their potential, a thorough understanding of their biodistribution is imperative. In this context, we prepared radioactive [64Cu]-exchanged faujasite nanosized zeolite ([64Cu]-FAU) to conduct positron emission tomography (PET) imaging tracking in preclinical glioblastoma models. In vivo results revealed a rapid and gradual accumulation over time of intravenously injected [64Cu]-FAU zeolite nanocrystals within the brain tumor, while no uptake in the healthy brain was observed. Although a specific tumor targeting was observed in the brain, the kinetics of uptake into tumor tissue was found to be dependent on the glioblastoma model. Indeed, our results showed a rapid uptake in U87-MG model while in U251-MG glioblastoma model tumor uptake was gradual over the time. Interestingly, a [64Cu] activity, decreasing over time, was also observed in organs of elimination such as kidney and liver without showing a difference in activity between both glioblastoma models. Ex vivo analyses confirmed the presence of zeolite nanocrystals in brain tumor with detection of both Si and Al elements originated from them. This radiolabelling strategy, performed for the first time using nanozeolites, enables precise tracking through PET imaging and confirms their accumulation within the glioblastoma. These findings further bolster the potential use of zeolite nanocrystals as valuable theranostic tools.
Asunto(s)
Neoplasias Encefálicas , Radioisótopos de Cobre , Glioblastoma , Nanopartículas , Tomografía de Emisión de Positrones , Zeolitas , Animales , Zeolitas/química , Radioisótopos de Cobre/química , Humanos , Distribución Tisular , Ratones , Línea Celular Tumoral , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Glioblastoma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Nanopartículas/química , Ratones DesnudosRESUMEN
BACKGROUND: The aim of the present study was to develop a novel 64Cu-labeled cyclic peptide ([64Cu]Cu-FAP-NOX) that targets fibroblast activation protein (FAP) and may offer advantages in terms of image contrast, imaging time window, and low uptake in normal tissues. METHODS: The novel cyclic peptide featuring with a N-oxalyl modified tail was constructed and conjugated to NOTA for 64Cu labeling. Biochemical and cellular assays were performed with A549.hFAP cells. The performance of [64Cu]Cu-FAP-NOX was compared to that of two established tracers ([64Cu]Cu-FAPI-04 and [68Ga]Ga-FAP-2286) and three different NOTA-conjugates in HEK-293T.hFAP xenograft mice using micro-PET imaging. Ex vivo biodistribution studies were performed to confirm the FAP specificity and to validate the PET data. Furthermore, a first-in-human study of this novel tracer was conducted on one patient with lung cancer. RESULTS: Compared to [64Cu]Cu-FAPI-04, [64Cu]Cu-FAP-NOX demonstrated faster and higher rates of cellular uptake and internalization in A549.hFAP cells, but lower rates of cellular efflux. All six radiotracers were rapidly taken up by the tumor within the first 4 h post-injection. However, [64Cu]Cu-FAP-NOX had more intense tumor accumulation and slower washout from the target. The ratios of the tumor to normal tissue (including kidneys and muscles) increased significantly over time, with [64Cu]Cu-FAP-NOX reaching the highest ratio among all tracers. In the patient, [64Cu]Cu-FAP-NOX PET showed a comparable result to FDG PET in the primary malignant lesion while exhibiting higher uptake in pleural metastases, consistent with elevated FAP expression as confirmed by immunohistochemistry. CONCLUSION: [64Cu]Cu-FAP-NOX is a promising FAP-targeted tracer with a highly flexible imaging time window, as evidenced by preclinical evaluation encompassing biodistribution and micro-PET studies, along with a successful patient application. Furthermore, [64Cu]Cu-FAP-NOX showed enhanced image contrast and favorable pharmacokinetic properties for FAP PET imaging, warranting translation into large cohort studies.
Asunto(s)
Radioisótopos de Cobre , Péptidos Cíclicos , Tomografía de Emisión de Positrones , Humanos , Animales , Ratones , Péptidos Cíclicos/farmacocinética , Péptidos Cíclicos/química , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Células HEK293 , Endopeptidasas , Proteínas de la Membrana/metabolismo , Gelatinasas/metabolismo , Células A549 , Factores de Tiempo , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Radiofármacos/farmacocinética , Radiofármacos/químicaRESUMEN
Until the recent years, substances containing radioactive 61Cu were strongly considered as potential positron-emitting radiopharmaceuticals for use in positron emission tomography (PET) applications; however, due to their suitably long half-life, and generator-independent and cost-effective production, they seem to be economically viable for human imaging. Since malignant melanoma (MM) is a major public health problem, its early diagnosis is a crucial contributor to long-term survival, which can be achieved using radiolabeled α-melanocyte-stimulating hormone analog NAPamide derivatives. Here, we report on the physicochemical features of a new CB-15aneN5-based Cu(II) complex ([Cu(KFTGdiac)]-) and the ex vivo and in vivo characterization of its NAPamide conjugate. The rigid chelate possesses prompt complex formation and suitable inertness (t1/2 = 18.4 min in 5.0 M HCl at 50 °C), as well as excellent features in the diagnosis of B16-F10 melanoma tumors (T/M(SUVs) (in vivo): 12.7, %ID/g: 6.6 ± 0.3, T/M (ex vivo): 22).
Asunto(s)
Radioisótopos de Cobre , Melanoma Experimental , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Radioisótopos de Cobre/química , Tomografía de Emisión de Positrones/métodos , Ratones , Radiofármacos/química , Radiofármacos/síntesis química , Melanoma Experimental/diagnóstico por imagen , Melanoma/diagnóstico por imagen , Ratones Endogámicos C57BL , Humanos , Línea Celular Tumoral , Distribución Tisular , Complejos de Coordinación/química , Complejos de Coordinación/síntesis químicaRESUMEN
INTRODUCTION: Reactive oxygen species (ROS) are attractive targets for clinical PET imaging. In this study, we hypothesized that PET imaging of ROS would be possible by using chelating ligands (L) that form stable complexes with copper (I) but not with copper (II), based on metabolic trapping. Namely, when [64Cu][CuI(L)2]+ is oxidized by ROS, the oxidized complex will release [64Cu]Cu2+. Then, the released [64Cu]Cu2+ will be trapped inside the cell, resulting in PET signal depending on the redox potential of ROS. To examine the potential of this novel molecular design for ROS imaging, we synthesized copper (I) complexes with bicinchoninic acid (BCA) disodium salt and bathocuproinedisulfonic acid (BCS) disodium salt and evaluated their reactivity with several kinds of ROS. In addition, the cellular uptake of [64Cu][CuI(BCS)2]3- and the stability of [64Cu][CuI(BCS)2]3- in a biological condition were also evaluated. METHODS: [64Cu]Cu2+ was reduced to [64Cu]Cu+ by ascorbic acid and coordinated with BCA and BCS in the acetate buffer to synthesize [64Cu][CuI(BCA)2]3- and [64Cu][CuI(BCS)2]3-. The radiochemical yields were determined by thin-layer chromatography (TLC). After [64Cu][CuI(BCS)2]3- was incubated with hydroxyl radical, lipid peroxide, superoxide, and hydrogen peroxide, the percentage of released [64Cu]Cu2+ from the parent complex was evaluated by TLC. HT-1080 human fibrosarcoma cells were treated with 0.1 % Dimethyl sulfoxide (control), imidazole ketone erastin (IKE), or IKE + ferrostatin-1 (Fer-1). Then, the uptake of [64Cu][CuI(BCS)2]3- to HT-1080 cells in each group was evaluated as %Dose/mg protein. Lastly, [64Cu][CuI(BCS)2]3- was incubated in human plasma, and its intact ratio was determined by TLC. RESULTS: The radiochemical yield of [64Cu][CuI(BCS)2]3- (86 ± 1 %) was higher than that of [64Cu][CuI(BCA)2]3- (44 ± 3 %). [64Cu][CuI(BCA)2]3- was unstable and partially decomposed on TLC. After [64Cu][CuI(BCS)2]3- was reacted with hydroxyl radical, lipid peroxide, and superoxide, 67 ± 2 %, 44 ± 13 %, and 22 ± 3 % of total radioactivity was detected as [64Cu]Cu2+, respectively. On the other hand, the reaction with hydrogen peroxide did not significantly increase the ratio of [64Cu]Cu2+ (4 ± 1 %). These results suggest that [64Cu][CuI(BCS)2]3- could be used for detecting high-redox-potential ROS such as hydroxyl radical and lipid peroxide with high selectivity. The cellular uptake values of [64Cu][CuI(BCS)2]3- in the control, IKE, and Fer-1 group were 42 ± 2, 54 ± 2, and 47 ± 5 %Dose/mg protein (n = 3), respectively, suggesting the ROS specific uptake of [64Cu][CuI(BCS)2]3-. On the other hand, the intact ratio after the incubation of [64Cu][CuI(BCS)2]3- in human plasma was 9 ± 5 %. CONCLUSION: PET imaging of ROS would be possible by using a copper (I) selective ligand, based on metabolic trapping. Although improvement of the membrane permeability and the stability of copper (I) complexes is required, the present results pave the way for the development of novel 64Cu-labeled complexes for PET imaging of ROS.
Asunto(s)
Cobre , Tomografía de Emisión de Positrones , Especies Reactivas de Oxígeno , Cobre/química , Especies Reactivas de Oxígeno/metabolismo , Ligandos , Tomografía de Emisión de Positrones/métodos , Humanos , Línea Celular Tumoral , Radioisótopos de Cobre , Transporte Biológico , RadioquímicaRESUMEN
Heat shock protein 90 (HSP90) plays a crucial role in cancer cell growth and metastasis by stabilizing overexpressed signaling proteins. Inhibiting HSP90 has emerged as a promising anti-cancer strategy. In this study, we aimed to develop and characterize a HSP90-targeted molecular imaging probe, [64Cu]Cu-DOTA-BDA-GM, based on a specific HSP90 inhibitor, geldanamycin (GM), for PET imaging of cancers. GM is modified at the C-17 position with 1,4-butane-diamine (BDA) and linked to 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for 64Cu radiolabeling. We evaluated the probe's specific binding to HSP90-expressing cells using Chinese hamster ovary (CHO) cells and breast cancer cells including MDA-MB-231, MDA-MB-435S, MCF7, and KR-BR-3 cell lines. A competition study with non-radioactive GM-BDA yielded an IC50 value of 1.35 ± 0.14 nM, underscoring the probe's affinity for HSP90. In xenograft models of MDA-MB-231 breast cancer, [64Cu]Cu-DOTA-BDA-GM showcased targeted tumor localization, with significant radioactivity observed up to 18 h post-injection. Blocking studies using unlabeled GM-BDA and treatment with the anticancer drug Vorinostat (SAHA), which can affect the expression and activity of numerous proteins, such as HSPs, confirmed the specificity and sensitivity of the probe in cancer targeting. Additionally, PET/CT imaging in a lung metastasis mouse model revealed increased lung uptake of [64Cu]Cu-DOTA-BDA-GM in metastatic sites, significantly higher than in non-metastatic lungs, illustrating the probe's ability to detect metastatic breast cancer. In conclusion, [64Cu]Cu-DOTA-BDA-GM represents a sensitive and specific approach for identifying HSP90 expression in breast cancer and metastases, offering promising implications for clinical diagnosis and monitoring.
Asunto(s)
Benzoquinonas , Neoplasias de la Mama , Radioisótopos de Cobre , Proteínas HSP90 de Choque Térmico , Lactamas Macrocíclicas , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Lactamas Macrocíclicas/síntesis química , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacología , Humanos , Ratones , Femenino , Benzoquinonas/química , Marcaje Isotópico , Línea Celular Tumoral , Distribución Tisular , Técnicas de Química Sintética , Regulación Neoplásica de la Expresión Génica , Radioquímica , Tomografía de Emisión de Positrones/métodos , CricetulusRESUMEN
PURPOSE: Accumulating evidence suggests that neurotensin (NTS) and neurotensin receptors (NTSRs) play key roles in lung cancer progression by triggering multiple oncogenic signaling pathways. This study aims to develop Cu-labeled neurotensin receptor 1 (NTSR1)-targeting agents with the potential for both imaging and therapeutic applications. METHOD: A series of neurotensin receptor antagonists (NRAs) with variable propylamine (PA) linker length and different chelators were synthesized, including [64Cu]Cu-CB-TE2A-iPA-NRA ([64Cu]Cu-4a-c, i = 1, 2, 3), [64Cu]Cu-NOTA-2PA-NRA ([64Cu]Cu-4d), [64Cu]Cu-DOTA-2PA-NRA ([64Cu]Cu-4e, also known as [64Cu]Cu-3BP-227), and [64Cu]Cu-DOTA-VS-2PA-NRA ([64Cu]Cu-4f). The series of small animal PET/CT were conducted in H1299 lung cancer model. The expression profile of NTSR1 was also confirmed by IHC using patient tissue samples. RESULTS: For most of the compounds studied, PET/CT showed prominent tumor uptake and high tumor-to-background contrast, but the tumor retention was strongly influenced by the chelators used. For previously reported 4e, [64Cu]Cu-labeled derivative showed initial high tumor uptake accompanied by rapid tumor washout at 24 h. The newly developed [64Cu]Cu-4d and [64Cu]Cu-4f demonstrated good tumor uptake and tumor-to-background contrast at early time points, but were less promising in tumor retention. In contrast, our lead compound [64Cu]Cu-4b demonstrated 9.57 ± 1.35, 9.44 ± 2.38 and 9.72 ± 4.89%ID/g tumor uptake at 4, 24, and 48 h p.i., respectively. Moderate liver uptake (11.97 ± 3.85, 9.80 ± 3.63, and 7.72 ± 4.68%ID/g at 4, 24, and 48 h p.i.) was observed with low uptake in most other organs. The PA linker was found to have a significant effect on drug distribution. Compared to [64Cu]Cu-4b, [64Cu]Cu-4a had a lower background, including a greatly reduced liver uptake, while the tumor uptake was only moderately reduced. Meanwhile, [64Cu]Cu-4c showed increased uptake in both the tumor and the liver. The clinical relevance of NTSR1 was also demonstrated by the elevated tumor expression in patient tissue samples. CONCLUSIONS: Through the side-by-side comparison, [64Cu]Cu-4b was identified as the lead agent for further evaluation based on its high and sustained tumor uptake and moderate liver uptake. It can not only be used to efficiently detect NTSR1 expression in lung cancer (for diagnosis, patient screening, and treatment monitoring), but also has the great potential to treat NTSR-positive lesions once chelating to the beta emitter 67Cu.