Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
BMC Genomics ; 25(1): 624, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902601

RESUMEN

Radish exhibits significant variation in color, particularly in sprouts, leaves, petals, fleshy roots, and other tissues, displaying a range of hues such as green, white, red, purple, and black. Although extensive research has been conducted on the color variation of radish, the underlying mechanism behind the variation in radish flower color remains unclear. To date, there is a lack of comprehensive research investigating the variation mechanism of radish sprouts, leaves, fleshy roots, and flower organs. This study aims to address this gap by utilizing transcriptome sequencing to acquire transcriptome data for white and purple radish flowers. Additionally, the published transcriptome data of sprouts, leaves, and fleshy roots were incorporated to conduct a systematic analysis of the regulatory mechanisms underlying anthocyanin biosynthesis in these four radish tissues. The comparative transcriptome analysis revealed differential expression of the anthocyanin biosynthetic pathway genes DFR, UGT78D2, TT12 and CPC in the four radish tissues. Additionally, the WGCNA results identified RsDFR.9c and RsUGT78D2.2c as hub genes responsible for regulating anthocyanin biosynthesis. By integrating the findings from the comparative transcriptome analysis, WGCNA, and anthocyanin biosynthetic pathway-related gene expression patterns, it is hypothesized that genes RsDFR.9c and RsUGT78D2.2c may serve as pivotal regulators of anthocyanins in the four radish tissues. Furthermore, the tissue-specific expression of the four copies of RsPAP1 is deemed crucial in governing anthocyanin synthesis and accumulation. Our results provide new insights into the molecular mechanism of anthocyanin biosynthesis and accumulation in different tissues of radish.


Asunto(s)
Antocianinas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raphanus , Raphanus/genética , Raphanus/metabolismo , Antocianinas/biosíntesis , Antocianinas/genética , Transcriptoma , Vías Biosintéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo
2.
Sci Rep ; 14(1): 13616, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871988

RESUMEN

Due to the high solubility of Cd in water, it is considered a potential toxin which can cause cancer in humans. In plants, it is associated with the development of oxidative stress due to the generation of reactive oxygen species. To overcome this issue, the roles of different plant hormones are vital. Strigolactones, one of such natural plant hormones, show promise in alleviating cadmium toxicity by mitigating its harmful effects. Acidified biochar (AB) can also effectively mitigate cadmium toxicity via ion adsorption and pH buffering. However, the combined effects of strigolactone and AB still need in-depth investigations in the context of existing literature. This study aimed to assess the individual and combined impacts of SLs (0 and 25 µM) and AB (0 and 0.75% w/w) on radish growth under Cd toxicity, i.e., 0 and 20 mg Cd/kg soil. Using a fully randomized design (CRD), each treatment was administered in four replicates. In comparison to the control under 20 mg Cd/kg soil contamination, the results showed that 25 µM strigolactone + 0.75% AB significantly improved the following: radish shoot length (~ 17%), root length (~ 47%), plant fresh weight (~ 28%), plant dry weight (~ 96%), chlorophyll a (~ 43%), chlorophyll b (~ 31%), and total chlorophyll (~ 37%). It was also noted that 0.75% AB was more pronounced in decreasing antioxidant activities than 25 µM strigolactone under 20 mg Cd/ kg soil toxicity. However, performing 25 µM strigolactone + 0.75% AB was far better than the sole application of 25 µM strigolactone and 0.75% AB in decreasing antioxidant activities in radish plants. In conclusion, by regulating antioxidant activities, 25 µM strigolactone + 0.75% AB can increase radish growth in cadmium-contaminated soils.


Asunto(s)
Carbón Orgánico , Lactonas , Raphanus , Contaminantes del Suelo , Raphanus/efectos de los fármacos , Raphanus/crecimiento & desarrollo , Raphanus/metabolismo , Lactonas/farmacología , Lactonas/metabolismo , Contaminantes del Suelo/toxicidad , Carbón Orgánico/química , Cadmio/toxicidad , Antioxidantes/metabolismo , Antioxidantes/farmacología , Metales Pesados/toxicidad , Estrés Oxidativo/efectos de los fármacos , Clorofila/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Compuestos Heterocíclicos con 3 Anillos
3.
J Environ Radioact ; 276: 107442, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703691

RESUMEN

Long-term field experiments have been carried out in the Chornobyl Exclusion zone to determine parameters describing technetium (99Tc) transfer into five food plants (Lettuce, Radish, Wheat, Bean, and Potato) from four types of soil, namely Podzoluvisol, Greyzem, Phaeozem, and Chernozem. Technetium was added to the soils under field conditions in a pertechnetate form. In the first two years, soil type had little effect on Tc uptake by plants. In the first and second years after contamination, the concentration ratios (CR), defined as 99Tc activity concentration in the crop (dry weight) divided by that in the soil (dry weight), for radish roots and lettuce leaves ranged from 60 to 210. For potato tubers, the CR was d 0.4-2.3, i.e., two orders of magnitude lower than for radish and lettuce, and for summer wheat grain it was lower at 0.6 ± 0.1. After 8-9 years, root uptake of 99Tc by wheat decreased by 3-7 fold (CR from 0.016 ± 0.005 to 0.12 ± 0.034) and only 13-22 % of the total 99Tc added remained in the upper 20 cm soil layers. The time taken for half of the added 99Tc to be removed from the 20-cm arable soil layer due to vertical migration and transfer to plants was short at c. 2-3 years.


Asunto(s)
Productos Agrícolas , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Tecnecio , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/metabolismo , Tecnecio/química , Monitoreo de Radiación/métodos , Productos Agrícolas/metabolismo , Raphanus/metabolismo , Lactuca/metabolismo , Triticum/metabolismo , Solanum tuberosum/metabolismo
4.
Int J Biol Macromol ; 271(Pt 1): 132627, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797290

RESUMEN

Melanins are dark-brown to black-colored biomacromolecules which have been thoroughly studied in animals and microorganisms. However, the biochemical and molecular basis of plant melanins are poorly understood. We first characterized melanin from the black radish (Raphanus sativus var. niger) 'HLB' through spectroscopic techniques. p-Coumaric acid was identified as the main precursor of radish melanin. Moreover, a joint analysis of transcriptome and coexpression network was performed for the two radish accessions with black and white cortexes, 'HLB' and '55'. A set of R2R3-type RsMYBs and enzyme-coding genes exhibited a coexpression pattern, and were strongly correlated with melanin formation in radish. Transient overexpression of two phenol oxidases RsLAC7 (laccase 7) or RsPOD22-1 (peroxidase 22-1) resulted in a deeper brown color around the infiltration sites and a significant increase in the total phenol content. Furthermore, co-injection of the transcriptional activator RsMYB48/RsMYB97 with RsLAC7 and/or RsPOD22-1, markedly increased the yield of black extracts. Spectroscopic analyses revealed that these extracts are similar to the melanin found in 'HLB'. Our findings advance the understanding of structural information and the transcriptional regulatory mechanism underlying melanin formation in radish.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Melaninas , Monofenol Monooxigenasa , Raphanus , Raphanus/genética , Raphanus/metabolismo , Melaninas/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Ácidos Cumáricos/metabolismo
5.
Sci Rep ; 14(1): 10414, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710735

RESUMEN

Streptomyces bacteria are notable for producing chemically diverse specialized metabolites that exhibit various bioactivities and mediate interactions with different organisms. Streptomyces sp. 11-1-2 is a plant pathogen that produces nigericin and geldanamycin, both of which display toxic effects against various plants. Here, the 'One Strain Many Compounds' approach was used to characterize the metabolic potential of Streptomyces sp. 11-1-2. Organic extracts were prepared from 11-1-2 cultures grown on six different agar media, and the extracts were tested in antimicrobial and plant bioassays and were subjected to untargeted metabolomics and molecular networking. Most extracts displayed strong bioactivity against Gram-positive bacteria and yeast, and they exhibited phytotoxic activity against potato tuber tissue and radish seedlings. Several known specialized metabolites, including musacin D, galbonolide B, guanidylfungin A, meridamycins and elaiophylin, were predicted to be present in the extracts along with closely related compounds with unknown structure and bioactivity. Targeted detection confirmed the presence of elaiophylin in the extracts, and bioassays using pure elaiophylin revealed that it enhances the phytotoxic effects of geldanamycin and nigericin on potato tuber tissue. Overall, this study reveals novel insights into the specialized metabolites that may mediate interactions between Streptomyces sp. 11-1-2 and other bacteria and eukaryotic organisms.


Asunto(s)
Metaboloma , Streptomyces , Streptomyces/metabolismo , Raphanus/efectos de los fármacos , Raphanus/metabolismo , Raphanus/microbiología , Enfermedades de las Plantas/microbiología , Metabolómica , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Antibacterianos/farmacología
6.
Chemosphere ; 359: 142298, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729438

RESUMEN

Japanese radish (Raphanus sativus var. longipinnatus) plants grown under laboratory conditions were individually exposed to the same doses of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, ATR) or its main degradation products: either 2-amino-4-chloro-6-isopropylamino-1,3,5-triazine (DEA) or 2-amino-4-chloro-6-ethylamino-1,3,5-triazine (DIA) or desethyl-desisopropyl-atrazine (DEDIA) or 4-(ethylamino)-2-hydroxy-6-(isopropylamino)-1,3,5-triazine (HA), respectively. One week after treatment in plants exposed to ATR, DIA, and DEA, their concentrations were 7.8 µg/g, 9.7 µg/g, and 14.5 µg/g, respectively, while those treated with DEDIA and HA did not contain these compounds. These results were correlated with plant amino acid profile obtained by suspect screening analysis and metabolomic "fingerprint" based on non-target analysis, obtained by liquid chromatography coupled with QTRAP triple quadrupole mass spectrometer. In all cases, both ATR and its by-products were found to interfere with the plant's amino acid profile and modify its metabolic "fingerprint". Therefore, we proved that the non-target metabolomics approach is an effective tool for investigating the hidden effects of pesticides and their transformation products, which is particularly important as these compounds may reduce the quality of edible plants.


Asunto(s)
Atrazina , Herbicidas , Metabolómica , Raphanus , Atrazina/toxicidad , Raphanus/efectos de los fármacos , Raphanus/metabolismo , Herbicidas/toxicidad , Triazinas/toxicidad
7.
Theor Appl Genet ; 137(6): 133, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753199

RESUMEN

KEY MESSAGE: This study found that three paralogous R2R3-MYB transcription factors exhibit functional divergence among different subspecies and cultivated types in radish. Cultivated radish taproots exhibit a wide range of color variations due to unique anthocyanin accumulation patterns in various tissues. This study investigated the universal principles of taproot color regulation that developed during domestication of different subspecies and cultivated types. The key candidate genes RsMYB1 and RsMYB2, which control anthocyanin accumulation in radish taproots, were identified using bulked segregant analysis in two genetic populations. We introduced the RsMYB1-RsF3'H-RsMYB1Met genetic model to elucidate the complex and unstable genetic regulation of taproot flesh color in Xinlimei radish. Furthermore, we analyzed the expression patterns of three R2R3-MYB transcription factors in lines with different taproot colors and investigated the relationship between RsMYB haplotypes and anthocyanin accumulation in a natural population of 56 germplasms. The results revealed that three paralogous RsMYBs underwent functional divergence during radish domestication, with RsMYB1 regulating the red flesh of Xinlimei radish, and RsMYB2 and RsMYB3 regulating the red skin of East Asian big long radish (R. sativus var. hortensis) and European small radish (R. sativus var. sativus), respectively. Moreover, RsMYB1-H1, RsMYB2-H10, and RsMYB3-H6 were identified as the primary haplotypes exerting regulatory functions on anthocyanin synthesis. These findings provide an understanding of the genetic mechanisms regulating anthocyanin synthesis in radish and offer a potential strategy for early prediction of color variations in breeding programs.


Asunto(s)
Antocianinas , Pigmentación , Proteínas de Plantas , Raphanus , Factores de Transcripción , Raphanus/genética , Raphanus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Antocianinas/biosíntesis , Pigmentación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haplotipos , Regulación de la Expresión Génica de las Plantas , Epigénesis Genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Fenotipo
8.
Plant Physiol Biochem ; 210: 108563, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554535

RESUMEN

The purpose of this study was to investigate the effects of root biomass during the later stage of growth on fatty acid composition and lipid peroxidation, and to clarify the physiological mechanisms by which these differences affect internal browning (IB) development in radish roots. Therefore, we controlled the enlargement of roots by changing the thinning period and generated plots composed of roots with different biomass in the latter half of growth. The earlier the radish seedlings were thinned, the more vigorous the root growth from an earlier stage was achieved. Earlier thinning caused IB from the early stage of root maturation, and IB severity progressed with subsequent age progression; however, IB damage did not occur when root size during the later growth stage was kept small by later thinning. Higher levels of hydrogen peroxide, peroxidase activity, NADPH-dependent reactive oxygen species (ROS) burst-related genes, and carbonyl compounds were detected in earlier-thinned large-sized roots compared to later-thinned small-sized ones. Compared with the latter small-sized roots, the former large-sized roots had a lower ratio of linoleic acid (18:2) and a higher ratio of α-linolenic acid (α-18:3). Furthermore, in earlier-thinned large-sized roots, higher levels of phospholipase- and/or lipoxygenase-related genes were detected compared to later-thinned small-sized ones. These facts suggest the possibility that root biomass in the later stage of growth affects the desaturation of membrane fatty acids, ROS concentration, and activity of fatty acid degrading enzymes, and controls the occurrence of IB injury through membrane oxidative degradation.


Asunto(s)
Biomasa , Raíces de Plantas , Raphanus , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raphanus/crecimiento & desarrollo , Raphanus/metabolismo , Ácidos Grasos/metabolismo , Peroxidación de Lípido , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción de Maillard , Ácido Linoleico/metabolismo , Ácido alfa-Linolénico/metabolismo
9.
J Ethnopharmacol ; 325: 117851, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336182

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Raphanus sativus L. is a well-known medicinal plant with traditional therapeutic applications in various common ailments including inflammation and asthma. AIMS OF THE STUDY: This study aimed to evaluate the chemical composition and anti-asthmatic potential of the hydro-methanolic extract of the leaves of R. sativus L. (Rs.Cr) using various in vitro and in vivo investigations. MATERIALS AND METHODS: The Rs.Cr was subjected to preliminary phytochemical analysis and HPLC profiling. The safety was assessed through oral acute toxicity tests in mice. The antiasthmatic effect of the extract was studied using milk-induced leukocytosis and ovalbumin (OVA)-induced allergic asthma models established in mice. While mast cell degranulation and passive paw anaphylaxis models were established in rats. Moreover, effect of the extract was studied on various oxidative and inflammatory makers. The antioxidant effect of the extract was also studied by in vitro DPPH method. RESULTS: The HPLC profiling of Rs.Cr showed the presence of important polyphenols in a considerable quantity. In toxicity evaluation, Rs.Cr showed no sign of morbidity or mortality with LD50 < 2000 mg/kg. The extract revealed significant mast cell disruption in a dose-dependent manner compared to the intoxicated group. Similarly, treatment with Rs.Cr and dexamethasone significantly (p < 0.001) reduced paw edema volume. Subcutaneous injection of milk at a dose of 4 mL/kg, after 24 h of its administration, showed an increase in the leukocyte count in the intoxicated group. Similarly, mice treated with dexamethasone and Rs.Cr respectively showed a significant decrease in leukocytes and eosinophils count in the ovalbumin-induced allergic asthma model. The extract presented a significant (p˂0.001) alleviative effect on the levels of SOD and GSH, MDA, IL-4, IL-5, and IL-13 in a dose-dependent manner as compared to the intoxicated group. Furthermore, the histological evaluation also revealed a notable decrease in inflammatory and goblet cell count with reduced mucus production. CONCLUSION: The current study highlights mechanism-based novel insights into the anti-asthmatic potential of R. sativus that also strongly supports its traditional use in asthma.


Asunto(s)
Antiasmáticos , Asma , Raphanus , Ratas , Ratones , Animales , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Raphanus/química , Raphanus/metabolismo , Ovalbúmina , Líquido del Lavado Bronquioalveolar , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C
10.
J Sci Food Agric ; 104(9): 5010-5020, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38314949

RESUMEN

BACKGROUND: Cruciferous vegetable sprout has been highlighted as a promising functional material rich in bioactive compounds called isothiocyanates (ITCs) and it can be grown in very short periods in controlled indoor farms. However, because ITCs content depends on multiple factors such as cultivar, germination time and myrosinase activity, those variables need to be controlled during germination or extraction to produce functional materials enriched in ITCs. Sulforaphene (SFEN), an ITC found primarily in radishes (Raphanus sativus L.), exerts beneficial effects on obesity. However, the optimal germination and extraction conditions for radish sprout (RSP) to increase SFEN content remain unascertained, and the extract's anti-obesity effect has yet to be evaluated. RESULTS: The present study found that the SFEN content was highest in purple radish sprout (PRSP) among the six cultivars investigated. Optimal SFEN content occurred after 2 days of PRSP germination (2 days PRSP). To maximize the dry matter yield, total ITCs and SFEN contents in RSP extract, we found the optimal conditions for extracting PRSP [27.5 °C, 60 min, 1:75.52 solute/solvent (w/v), no ascorbic acid] using response surface methodology. Consistent with high SFEN content, 2 days PRSP extract significantly outperformed 3 days or 4 days PRSP extract in inhibiting lipid accumulation in 3T3-L1 cells. Moreover, 2 days PRSP extract suppressed adipogenesis and lipogenesis-related protein expression. CONCLUSION: Regarding the cultivar, germination time and extraction conditions, optimally produced PRSP extract contains high SFEN content and exerts anti-obesity effects. Thus, we suggest PRSP extract as a potent functional material for obesity prevention. © 2024 Society of Chemical Industry.


Asunto(s)
Germinación , Isotiocianatos , Extractos Vegetales , Raphanus , Raphanus/química , Raphanus/crecimiento & desarrollo , Raphanus/metabolismo , Germinación/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Isotiocianatos/farmacología , Isotiocianatos/aislamiento & purificación , Isotiocianatos/química , Isotiocianatos/análisis , Ratones , Animales , Células 3T3-L1 , Sulfóxidos
11.
BMC Plant Biol ; 24(1): 2, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163888

RESUMEN

The 70 kD heat shock proteins (HSP70s) represent a class of molecular chaperones that are widely distributed in all kingdoms of life, which play important biological roles in plant growth, development, and stress resistance. However, this family has not been systematically characterized in radish (Raphanus sativus L.). In this study, we identified 34 RsHSP70 genes unevenly distributed within nine chromosomes of R. sativus. Phylogenetic and multiple sequence alignment analyses classified the RsHSP70 proteins into six distinct groups (Group A-F). The characteristics of gene structures, motif distributions, and corresponding cellular compartments were more similar in closely linked groups. Duplication analysis revealed that segmental duplication was the major driving force for the expansion of RsHSP70s in radish, particularly in Group C. Synteny analysis identified eight paralogs (Rs-Rs) in the radish genome and 19 orthologs (Rs-At) between radish and Arabidopsis, and 23 orthologs (Rs-Br) between radish and Chinese cabbage. RNA-seq analysis showed that the expression change of some RsHSP70s were related to responses to heat, drought, cadmium, chilling, and salt stresses and Plasmodiophora brassicae infection, and the expression patterns of these RsHSP70s were significantly different among 14 tissues. Furthermore, we targeted a candidate gene, RsHSP70-23, the product of which is localized in the cytoplasm and involved in the responses to certain abiotic stresses and P. brassicae infection. These findings provide a reference for further molecular studies to improve yield and stress tolerance of radish.


Asunto(s)
Arabidopsis , Raphanus , Raphanus/genética , Raphanus/metabolismo , Filogenia , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Sintenía , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta
12.
Plant Physiol Biochem ; 206: 108281, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38157834

RESUMEN

The study evaluates the impact of two metal oxide nanoparticles: copper oxide (CuO) and zinc oxide (ZnO) on the growth and physiology of Raphanus sativus L. (radish) under salinity stress. Fifteen days old seedlings of R. sativus were subjected to different concentrations of salt stress (0 mM, 150 mM, and 300 mM NaCl) alone and in interaction with 100 mgL-1 metal oxide nanoparticle treatments (CuO and ZnO NPs via foliar spray) for 15 days. The results confirmed the severe effects of salinity stress on the growth and physiology of radish plants by decreasing nutrient uptake, leaf area, and photosystems photochemistry and by increasing proline accumulation, anthocyanin, flavonoids content, and antioxidant enzyme activities which is directly linked to increased oxidative stress. The foliar application of CuO and ZnO NPs alleviated the adverse effects of salt stress on radish plants, as indicated by improving these attributes. Foliar spray of ZnO NPs was found efficient in improving the leaf area, photosynthetic electron transport rate, the PSII quantum yield, proton conductance and mineral content in radish plants under NaCl stress. Besides, ZnO NPs decreased the NaCl-induced oxidative stress by declining proline, anthocyanin, and flavonoids contents and enzymatic activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GOPX). Thus, our study revealed that ZnO NPs are more effective and have beneficial effects over CuO NPs in promoting growth and reducing the adverse effects of NaCl stress in radish plants.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Raphanus , Óxido de Zinc , Óxido de Zinc/farmacología , Raphanus/metabolismo , Cobre/farmacología , Antocianinas , Cloruro de Sodio/farmacología , Fotosíntesis , Antioxidantes/metabolismo , Estrés Salino , Prolina/metabolismo
13.
Plant Physiol Biochem ; 205: 108149, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939545

RESUMEN

Radish (Raphanus sativus L.) is one of the most vital root vegetable crops worldwide. Cadmium (Cd), a non-essential and toxic heavy metal, can dramatically restrict radish taproot quality and safety. Although the Peiotrpic Drug Resistance (PDR) genes play crucial roles in heavy metal accumulation and transport in plants, the systematic identification and functional characterization of RsPDRs remain largely unexplored in radish. Herein, a total of 19 RsPDR genes were identified from the radish genome. A few RsPDRs, including RsPDR1, RsPDR8 and RsPDR12, showed significant differential expression under Cd and lead (Pb) stress in the 'NAU-YH' genotype. Interestingly, the plasma membrane-localized RsPDR8 exhibited significantly up-regulated expression and enhanced promoter activity under Cd exposure. Ectopic expression of RsPDR8 conferred Cd tolerance via reducing Cd accumulation in yeast cells. Moreover, the transient transformation of RsPDR8 revealed that it positively regulated Cd tolerance by promoting ROS scavenging and enhancing membrane permeability in radish. In addition, overexpression of RsPDR8 increased root elongation but deceased Cd accumulation compared with the WT plants in Arabidopsis, demonstrating that it could play a positive role in mediating Cd efflux and tolerance in plants. Together, these results would facilitate deciphering the molecular mechanism underlying RsPDR8-mediated Cd tolerance and detoxification in radish.


Asunto(s)
Arabidopsis , Raphanus , Raphanus/genética , Raphanus/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
14.
Plant Cell Physiol ; 64(12): 1601-1616, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37862259

RESUMEN

Anthocyanin biosynthesis in plants is influenced by a wide range of environmental factors, such as light, temperature and nutrient availability. In this study, we revealed that the potassium-repressed anthocyanin accumulation in radish hypocotyls was associated with altered sugar distribution and sugar signaling pathways rather than changes in oxidative stress status. Sugar-feeding experiments suggested a hexokinase-independent glucose signal acted as a major contributor in regulating anthocyanin biosynthesis, transport and regulatory genes at the transcriptional level. Several R2R3-MYBs were identified as anthocyanin-related MYBs. Phylogenetic and protein sequence analyses suggested that RsMYB75 met the criteria of subgroup 6 MYB activator, while RsMYB39 and RsMYB82 seemed to be a non-canonical MYB anthocyanin activator and repressor, respectively. Through yeast-one-hybrid, dual-luciferase and transient expression assays, we confirmed that RsMYB39 strongly induced the promoter activity of anthocyanin transport-related gene RsGSTF12, while RsMYB82 significantly reduced anthocyanin biosynthesis gene RsANS1 expression. Molecular models are proposed in the discussion, allowing speculation on how these novel RsMYBs may regulate the expression levels of anthocyanin-related structural genes. Together, our data evidenced the strong impacts of potassium on sugar metabolism and signaling and its regulation of anthocyanin accumulation through different sugar signals and R2R3-MYBs in a hierarchical regulatory system.


Asunto(s)
Antocianinas , Raphanus , Factores de Transcripción/metabolismo , Raphanus/genética , Raphanus/metabolismo , Azúcares , Filogenia , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Plant Physiol Biochem ; 204: 108091, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37864927

RESUMEN

Radish (Raphanus sativus) roots exhibit various colors that reflect their anthocyanin compositions and contents. However, the details of the mechanism linking the expression of anthocyanin biosynthesis and their transcriptional regulators to anthocyanin composition in radish roots remained unknown. Here, we characterized the role of the anthocyanin biosynthetic enzyme flavonoid 3'-hydroxylase (RsF3'H), together with the R2R3 MYB transcription factor (TF) RsMYB1 and the basic helix-loop-helix (bHLH) TF TRANSPARENT TESTA 8 (RsTT8), in four radish plants with different root colors: white (W), deep red (DR), dark purple (DP), and dark greyish purple (DGP). The DR plant contained heterozygous for RsF3'H with low expression level and accumulated a large amount of pelargonidin, resulting in deep red color. While, the DP and DGP plants accumulated the cyanidin due to the higher expression level of functional RsF3'H. Notably, RsMYB1 and RsTT8 transcripts were abundant in all pigmented roots, but not in white roots. To investigate the differential expression of RsMYB1 and RsTT8, we compared the sequences of their promoter regions among the four radish plants, revealing variations in the numbers of cis-elements and in promoter architecture. Promoter activation assays demonstrated that variation in the RsMYB1 and RsTT8 promoters may contribute to the expression level of these genes, and RsMYB1 can activate its own expression as well as promote the RsTT8 expression. These results suggested that RsF3'H plays a vital role in anthocyanin composition and the expression level of both RsMYB1 and RsTT8 are crucial determinants for anthocyanin content in radish roots. Overall, these findings provide insight into the molecular basis of anthocyanin composition and level in radish roots.


Asunto(s)
Raphanus , Raphanus/genética , Raphanus/metabolismo , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas
16.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894740

RESUMEN

Taproot cracking, a severe and common physiological disorder, markedly reduces radish yield and commercial value. Calcium-dependent protein kinase (CDPK) plays a pivotal role in various plant developmental processes; however, its function in radish taproot cracking remains largely unknown. Here, 37 RsCDPK gene members were identified from the long-read radish genome "QZ-16". Phylogenetic analysis revealed that the CDPK members in radish, tomato, and Arabidopsis were clustered into four groups. Additionally, synteny analysis identified 13 segmental duplication events in the RsCDPK genes. Analysis of paraffin-embedded sections showed that the density and arrangement of fleshy taproot cortex cells are important factors that affect radish cracking. Transcriptome sequencing of the fleshy taproot cortex revealed 5755 differentially expressed genes (DEGs) (3252 upregulated and 2503 downregulated) between non-cracking radish "HongYun" and cracking radish "505". These DEGs were significantly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interaction KEGG pathways. Furthermore, when comparing the 37 RsCDPK gene family members and RNA-seq DEGs, we identified six RsCDPK genes related to taproot cracking in radish. Soybean hairy root transformation experiments showed that RsCDPK21 significantly and positively regulates root length development. These findings provide valuable insights into the relationship between radish taproot cracking and RsCDPK gene function.


Asunto(s)
Arabidopsis , Raphanus , Raphanus/metabolismo , Filogenia , Genes de Plantas , Sintenía/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Gene ; 887: 147734, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37625557

RESUMEN

Carmine radish (Raphanus sativus L.) is famousforcontaininganaturalredpigment(redradishpigment) that grown in Fuling, Chongqing City, China. MATE (multidrug and toxic compound extrusion), as an integral member of the multidrug efflux transporter family, has various functions in plants. However, noinformationhasbeenavailableaboutcharacteristicsoftheMATEgenefamily in carmine radish. In this study, total of 85 candidate MATE gene family members classifiedinto 4 groups were identified and foundtobewidelyandrandomlydistributedindifferent genome. Synteny analysis revealed that twenty-one segmental and ten tandem duplications acted as important regulators for the expansion of RsMATE genes. The Ka/Ks ratios of RsMATE indicated that RsMATE may have undergone intense purification in the radish genome. Cis-acting element analysis of RsMATE in the promoter region indicated that RsMATE were mainly related to the abiotic stress response and phytohormone. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that RsMATE40-b, RsMATE16-b and RsMATE13-a genes were significantly expressed under ABA (abscisic acid) and NaCl stress treatments respectively. In addition, the expression patterns of fifteen key RsMATE genes were investigated in 'XCB' (Xichangbai) and 'HX' (Hongxin) roots under Cadmium (Cd) stress for different treatment times using qRT-PCR, of those, RsMATE49-b, RsMATE33 and RsMATE26 transcripts were strongly altered at different time points in XCB responsive to Cd stress,compared to HX. This study will provide valuable insights for studying the functional characterization of the MATE gene in carmine radish and other plants.


Asunto(s)
Raphanus , Raphanus/metabolismo , Cadmio/metabolismo , Carmín/metabolismo , Genes de Plantas , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas
18.
Environ Sci Pollut Res Int ; 30(32): 78353-78366, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37268811

RESUMEN

Intercropping leguminous plant species with non-legume crops could be an effective strategy to maintain soil fertility. Additionally, the application of nano-Zn and Fe in trace amounts can substantially improve the bioavailable fraction of Zn and Fe. We studied the effect of foliar application of some nanomaterials on the agronomic, physio-biochemical attributes under a radish/pea intercropping system. The radish and pea were sprayed with different nanomaterials (Zn-Fe nanocomposite, nZnO, and nanobiochar) at 0 and 50 mg L-1 concentrations. Results indicated that the growth parameters of radish were higher in intercropping than in monocropping, while pea growth was inhibited in intercropping compared with monocropping. The shoot and root length, fresh weight, and dry matter of radish were increased by 28-50%, 60-70%, and 50-56% by intercropping than monocropping. Foliar spray of nano-materials further increased the growth traits of intercropped radish, such as shoot and root length, fresh weight, and dry matter, by 7-8%, 27-41%, and 50-60%, respectively. Similarly, pigments such as chlorophyll a, b, and carotenoids and the concentration of free amino acids, soluble sugars, flavonoids, and phenolics were differentially affected by intercropping and nanomaterials. The yield of the non-legume crop was increased by intercropping, whereas the legume crop exhibited significant growth inhibition due to competitive interactions. In conclusion, both intercropping and foliar spray of nanomaterials could be used as a combined approach to benefit plant growth and enhance the bioavailable Fe and Zn fractions of both crops.


Asunto(s)
Fabaceae , Nanoestructuras , Raphanus , Pisum sativum , Raphanus/metabolismo , Clorofila A/metabolismo , Fabaceae/metabolismo , Productos Agrícolas , Verduras
19.
Sci Total Environ ; 892: 164551, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37269997

RESUMEN

The use of urine-derived fertilizers has several economic and environmental advantages. However, there is concern that pharmaceutical residues present in urine could enter the food chain after plant uptake and pose potential risks to human and animal health. A pot experiment was conducted to evaluate the uptake of nine target antiretroviral drugs (ARVDs) by pepper (Capsicum annum), ryegrass (Lolium perenne) and radish (Raphanus sativus) grown in two soils of contrasting texture and organic matter content and fertilized with stored urine, nitrified urine concentrate (NUC), and struvite. Nevirapine was the only ARVD detected in crops grown with NUC and struvite on both soils, but the concentrations were below the limit of quantification. Plants fertilized with stored urine absorbed lamivudine, ritonavir, stavudine, emtricitabine, nevirapine, and didanosine, while abacavir, efavirenz and zidovudine were not detected. The ARVDs detected in the soils after harvest were significantly higher in the soil with high organic matter and clay content. To assess direct human exposure the estimated daily dietary intake (DDI) of ARVDs by consumption of the pepper and radish fertilized with stored urine was compared with the Threshold of Toxicological Concern (TTC) values based on the Cramer classification tree. The calculated DDI values for all ARVDs were about 300-3000 times lower than the TTC values for class III compounds. Therefore, daily consumption of these crops fertilized with stored urine does not pose a health risk to the consumer. Future research is required to assess the impact of ARVD metabolites, which may be more harmful to human health than the parent compounds.


Asunto(s)
Capsicum , Infecciones por VIH , Lolium , Raphanus , Contaminantes del Suelo , Animales , Humanos , Suelo/química , Raphanus/metabolismo , Lolium/metabolismo , Fertilizantes/análisis , Nevirapina/metabolismo , Estruvita , Verduras/metabolismo , Productos Agrícolas/metabolismo , Contaminantes del Suelo/análisis
20.
Environ Pollut ; 333: 122084, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356790

RESUMEN

Heavy metal (HM) contamination is an environmental concern that threatens the agricultural product safety and human health. To address this concern, we developed a novel strategy involving the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium which produces abscisic acid (ABA), and biochar to minimize HM accumulation in the edible parts of vegetable crops. Compared to A. brasilense or biochar alone, the concentrations of Cd, Ni, Pb, and Zn in radish (Raphanus sativus L.), pakchoi (Brassica chinensis L.), and tomato (Lycopersicon esculentum L.) decreased by 18-63% and 14-56%, respectively. Additionally, the synergistic treatment led to a 14-63% decrease in the bioconcentration factor. The biomass of the edible parts of the three crops increased by 65-278% after synergistic treatment, surpassing the effects of single treatments. Furthermore, the synergistic application enhanced the SPAD values by 1-45% compared to single treatments. The MDA concentrations in stressed plants decreased by 16-39% with the bacteria-biochar co-treatment compared to single treatments. Co-treatment also resulted in increased soluble protein and sugar concentrations by 8-174%, and improvements in flavonoids, total phenols, ascorbic acid, and DPPH levels by 2-50%. Pearson correlation analysis and structural equation modeling revealed that the synergistic effect was attributed to the enhanced growth of A. brasilense facilitated by biochar and the improved availability of HMs in soils. Notably, although ABA concentrations were not as high as those achieved with A. brasilense alone, they were maintained at relatively high levels. Overall, the synergistic application of A. brasilense-biochar might have remarkable potential for reducing the accumulation of HMs while promoting growth and improving nutritional and antioxidant qualities in tuberous, leafy, and fruit crops.


Asunto(s)
Metales Pesados , Raphanus , Contaminantes del Suelo , Solanum lycopersicum , Humanos , Raphanus/metabolismo , Ácido Abscísico , Metales Pesados/análisis , Suelo/química , Bacterias/metabolismo , Contaminantes del Suelo/análisis , Cadmio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA