Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Bone ; 187: 117179, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38960298

RESUMEN

X-linked Hypophosphatemia (XLH) is the most common type of inherited rickets. Although the clinical features are well characterized, bone structure, mineralization, and biomechanical properties are poorly known. Our aim was to analyze bone properties in the appendicular and axial skeleton of adults with XLH. In this observational case-control study, each affected patient (N = 14; 9 females; age 50 ± 15 years) was matched by sex, age and body mass index to a minimum of two healthy controls (N = 34). Dual-energy X-ray Absorptiometry (DXA) analyses revealed that areal bone mineral density (aBMD) was higher in XLH patients at the lumbar spine (Z score mean difference = +2.47 SD, P value = 1.4 × 10-3). Trabecular Bone Score was also higher at the lumbar spine (P value = 1.0 × 10-4). High Resolution peripheral Quantitative Computed Tomography (HRpQCT) demonstrated that bone cross-sectional area was larger at the distal radius (P value = 6 × 10-3). Total and trabecular volumetric BMD were lower at both sites. Trabecular bone volume fraction was also lower with fewer trabecular numbers at both sites. However, bone strength evaluated by micro-finite element analyzes revealed unaffected bone stiffness and maximum failure load. Evaluation of bone mineralization with aBMD by DXA at the distal radius correlated with vBMD by HRpQCT measurements at both sites. PTH levels were inversely correlated with trabecular vBMD and BV/TV at the tibia. We then followed a subset of nine patients (median follow-up of 4 years) and reassessed HRpQCT. At the tibia, we observed a greater decrease than expected from an age and sex standardized normal population in total and cortical vBMD as well as a trabecularization of the cortical compartment. In conclusion, in adult patients with XLH, bone mineral density is high at the axial skeleton but low at the appendicular skeleton. With time, microarchitectural alterations worsen. We propose that noninvasive evaluation methods of bone mineralization such as DXA including the radius should be part of the management of XLH patients. Larger studies are needed to evaluate the clinical significance of BMD changes in XLH patients under conventional or targeted therapies.


Asunto(s)
Absorciometría de Fotón , Densidad Ósea , Raquitismo Hipofosfatémico Familiar , Humanos , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/patología , Raquitismo Hipofosfatémico Familiar/fisiopatología , Femenino , Masculino , Persona de Mediana Edad , Proyectos Piloto , Adulto , Estudios de Casos y Controles , Estudios Longitudinales , Tomografía Computarizada por Rayos X , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Hueso Esponjoso/fisiopatología
2.
Eur J Med Genet ; 70: 104958, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950880

RESUMEN

BACKGROUND AND OBJECTIVE: X-linked hypophosphatemic rickets (XLH) is due to loss-of-function mutations in the phosphate-regulating endopeptidase homologue on the X chromosome (PHEX) that lead to increased fibroblast growth factor 23 (FGF23) production. FGF23 excess causes renal phosphate wasting and insufficient 1,25-dihydroxyvitamin D (1,25(OH)2D) synthesis with reduced intestinal phosphate absorption, ultimately resulting in chronic hypophosphatemia. Children with XLH show typical skeletal lesions of rickets, deformities of the lower limbs, stunted growth with disproportionate short stature, bone pain, and physical dysfunctions. Burosumab, a fully human IgG1 monoclonal antibody that binds to FGF23 to inhibit its activity, is more effective to improve the biochemical and clinical signs of XLH than conventional treatment with phosphate supplements and vitamin D active metabolites. Data on adolescents with XLH during the transition period to young adulthood are few. In this prospective case series, we aimed to assess safety and efficacy of burosumab in adolescents with XLH who discontinued long-term conventional therapy. METHODS: Five Caucasian adolescents (4 males, 1 female; mean age 15.4 ± 1.5 years) with XLH were recruited and switched from conventional treatment to burosumab (0.8-1.2 mg/kg, s. c. QW2). Burosumab was continued for 12-48 months and, once discontinued, patients were followed-up for 6-12 months. In all patients, serum calcium, phosphate, alkaline phosphatase (ALP), parathyroid hormone (PTH), and 1,25(OH)2D levels, and renal tubular reabsorption of phosphate (TmP/GFR) values were assessed at entry and during burosumab. Intact FGF23 plasma levels were measured at entry. Patient-reported outcomes (PROs) were assessed at entry and every 3-6 months to evaluate the impact of low extremity pain, stiffness, and difficulties performing daily activities. RESULTS: At entry, all patients showed hypophosphatemia, increased intact FGF23 levels, reduced TmP/GFR, insufficient 1,25(OH)2D levels, and in four out of five increased ALP levels. Two patients had radiological signs of rickets. During burosumab, all patients showed a significant increase in serum phosphate and 1,25(OH)2D levels, and in TmP/GFR values (P < 0.05 - P < 0.0001). Serum ALP levels significantly declined (P < 0.05) to normal values. No changes of serum calcium and PTH levels (PNS) were found during burosumab. PROs significantly improved (P < 0.02 - P < 0.0001) in all patients. Four patients discontinued burosumab when they turned 18 or 19, whereas one continued the treatment since he was still younger than 18 during the study period. Four patients who suspended burosumab showed a rapid decline in serum phosphate and 1,25(OH)2D levels and in TmP/GFR values; serum ALP levels increased, and PROs progressively worsened with a significant reduction in quality of life. These consequences were not observed in the patient who continued burosumab treatment. DISCUSSION: Our data showed that conventional treatment improved only in part the signs and symptoms of XLH. Burosumab was well tolerated and was effective in improving phosphate metabolism, bone health, and PROs. All the benefits of burosumab were lost after its discontinuation. These results suggested that continuing burosumab is required to achieve and maintain the clinical benefits of the treatment during the transition to young adulthood in patients with XLH.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Raquitismo Hipofosfatémico Familiar , Factor-23 de Crecimiento de Fibroblastos , Fosfatos , Calidad de Vida , Humanos , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Adolescente , Masculino , Fosfatos/sangre , Anticuerpos Monoclonales Humanizados/uso terapéutico , Femenino , Niño , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/sangre
3.
J Bone Miner Res ; 39(8): 1162-1173, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38836497

RESUMEN

X-linked hypophosphatemia (XLH) is caused by mutations in PHEX, leading to rickets and osteomalacia. Adults affected with XLH develop a mineralization of the bone-tendon attachment site (enthesis), called enthesopathy, which causes significant pain and impaired movement. Entheses in mice with XLH (Hyp) have enhanced bone morphogenetic protein (BMP) and Indian hedgehog (IHH) signaling. Treatment of Hyp mice with the BMP signaling blocker palovarotene attenuated BMP/IHH signaling in Hyp entheses, thus indicating that BMP signaling plays a pathogenic role in enthesopathy development and that IHH signaling is activated by BMP signaling in entheses. It was previously shown that mRNA expression of growth/differentiation factor 5 (Gdf5) is enhanced in Hyp entheses at P14. Thus, to determine a role for GDF5 in enthesopathy development, Gdf5 was deleted globally in Hyp mice and conditionally in Scx + cells of Hyp mice. In both murine models, BMP/IHH signaling was similarly decreased in Hyp entheses, leading to decreased enthesopathy. BMP/IHH signaling remained unaffected in WT entheses with decreased Gdf5 expression. Moreover, deletion of Gdf5 in Hyp entheses starting at P30, after enthesopathy has developed, partially reversed enthesopathy. Taken together, these results demonstrate that while GDF5 is not essential for modulating BMP/IHH signaling in WT entheses, inappropriate GDF5 activity in Scx + cells contributes to XLH enthesopathy development. As such, inhibition of GDF5 signaling may be beneficial for the treatment of XLH enthesopathy.


X-linked hypophosphatemia (XLH) is a rare bone disorder that leads to short stature and poorly mineralized bones. As adults, patients with XLH often develop a mineralization of the bone-tendon attachment site, called enthesopathy, which results in significant pain. We previously showed that Achilles bone-tendon attachment sites (entheses) in mice with XLH (Hyp) have an enthesopathy characterized by increased bone morphogenetic protein (BMP) signaling. In the current studies, we show that treating Hyp mice with the BMP signaling inhibitor palovarotene prevents enthesopathy, demonstrating that the increased BMP signaling in Hyp entheses leads to enthesopathy development. We also reported that gene expression of Gdf5, which activates BMP signaling, is enhanced in Hyp entheses. Therefore, to determine if the enhanced Gdf5 expression leads to the increased BMP signaling seen Hyp entheses, Gdf5 was deleted from Hyp mice and also deleted specifically in the entheses of Hyp mice. In both mouse models, enthesopathy development was attenuated, demonstrating that the increased Gdf5 expression in Hyp entheses plays a role in enthesopathy development. These data indicate that blocking GDF5 and BMP signaling may prevent enthesopathy in patients with XLH.


Asunto(s)
Entesopatía , Raquitismo Hipofosfatémico Familiar , Factor 5 de Diferenciación de Crecimiento , Animales , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Modelos Animales de Enfermedad , Entesopatía/genética , Entesopatía/metabolismo , Entesopatía/patología , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Raquitismo Hipofosfatémico Familiar/patología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Transducción de Señal
4.
J Bone Miner Res ; 39(7): 967-979, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847469

RESUMEN

Vitamin D-dependent rickets (VDDR) is a group of genetic disorders characterized by early-onset rickets due to deficiency of active vitamin D or a failure to respond to activated vitamin D. VDDR is divided into several subtypes according to the corresponding causative genes. Here we described a new type of autosomal dominant VDDR in a Chinese pedigree. The proband and his mother had severe bone malformations, dentin abnormalities, and lower serum 25 hydroxyvitamin D3 (25[OH]D3) and phosphate levels. The proband slightly responded to a high dose of vitamin D3 instead of a daily low dose of vitamin D3. Whole-exome sequencing, bioinformatic analysis, PCR, and Sanger sequencing identified a nonsense mutation in CYP4A22 (c.900delG). The overexpressed wild-type CYP4A22 mainly localized in endoplasmic reticulum and Golgi apparatus, and synthesized 25(OH)D3 in HepG2 cells. The overexpressed CYP4A22 mutant increased the expression of CYP2R1 and produced little 25(OH)D3 with vitamin D3 supplementation, which was reduced by CYP2R1 siRNA treatment. We concluded that CYP4A22 functions as a new kind of 25-hydroxylases for vitamin D3. Loss-of-function mutations in CYP4A22 lead to a new type of VDDR type 1 (VDDR1C). CYP2R1 and CYP4A22 may have some genetic compensation responding to nonsense-mediated mRNA decay effect of each other.


A nonsense mutation in CYP4A22 was found in a Chinese pedigree with vitamin D­dependent rickets and low serum phosphate. CYP4A22 localizes in endoplasmic reticulum and Golgi apparatus, and processes 25-hydroxylase activity in liver cells. CYP4A22 loss-of-function reduces the synthesis of 25(OH)D3 and causes genetic compensation of CYP2R1.


Asunto(s)
Linaje , Humanos , Masculino , Femenino , Mutación con Pérdida de Función , Células Hep G2 , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Familia 2 del Citocromo P450
5.
Stem Cell Res ; 77: 103439, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761687

RESUMEN

Hypophosphatemic vitamin D-resistant rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. In this report, the SMUSHi005-A human induced pluripotent stem cell (hiPSC) line was successfully established from the PBMCs of a female patient carrying the PHEX mutation with c.1586-1586+1 delAG. The iPSC line has been confirmed to have a normal karyotype. The displayed cells clearly exhibit characteristics similar to embryonic stem cells, expressing pluripotency markers and demonstrating the ability to differentiate into three germ layers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mutación , Endopeptidasa Neutra Reguladora de Fosfato PHEX , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Femenino , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Línea Celular , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Diferenciación Celular , Raquitismo Hipofosfatémico/genética , Vitamina D/análogos & derivados
6.
Int J Oral Sci ; 15(1): 53, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38052774

RESUMEN

Elevated fibroblast growth factor 23 (FGF23) in X-linked hypophosphatemia (XLH) results in rickets and phosphate wasting, manifesting by severe bone and dental abnormalities. Burosumab, a FGF23-neutralizing antibody, an alternative to conventional treatment (phosphorus and active vitamin D analogs), showed significant improvement in the long bone phenotype. Here, we examined whether FGF23 antibody (FGF23-mAb) also improved the dentoalveolar features associated with XLH. Four-week-old male Hyp mice were injected weekly with 4 or 16 mg·kg-1 of FGF23-mAb for 2 months and compared to wild-type (WT) and vehicle (PBS) treated Hyp mice (n = 3-7 mice). Micro-CT analyses showed that both doses of FGF23-mAb restored dentin/cementum volume and corrected the enlarged pulp volume in Hyp mice, the higher concentration resulting in a rescue similar to WT levels. FGF23-mAb treatment also improved alveolar bone volume fraction and mineral density compared to vehicle-treated ones. Histology revealed improved mineralization of the dentoalveolar tissues, with a decreased amount of osteoid, predentin and cementoid. Better periodontal ligament attachment was also observed, evidenced by restoration of the acellular cementum. These preclinical data were consistent with the retrospective analysis of two patients with XLH showing that burosumab treatment improved oral features. Taken together, our data show that the dentoalveolar tissues are greatly improved by FGF23-mAb treatment, heralding its benefit in clinics for dental abnormalities.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Humanos , Masculino , Ratones , Animales , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/metabolismo , Raquitismo Hipofosfatémico Familiar/patología , Factor-23 de Crecimiento de Fibroblastos , Estudios Retrospectivos , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Huesos/metabolismo , Fosfatos/metabolismo , Fosfatos/uso terapéutico
7.
Bone ; 174: 116818, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295663

RESUMEN

The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including µCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.


Asunto(s)
Tendón Calcáneo , Calcinosis , Entesopatía , Raquitismo Hipofosfatémico Familiar , Ratones , Animales , Raquitismo Hipofosfatémico Familiar/patología , Tendón Calcáneo/diagnóstico por imagen , Tendón Calcáneo/patología , Entesopatía/diagnóstico por imagen , Entesopatía/patología , Calcinosis/patología , Fibrocartílago/patología , Minerales
8.
Bone ; 172: 116763, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37059315

RESUMEN

X-linked hypophosphatemia is the most common cause of inherited rickets, due to inactivating variants of PHEX. More than 800 variants have been described to date and one which consists of a single base change in the 3' untranslated region (UTR) (c.*231A>G) is reported as prevalent in North America. Recently an exon 13-15 duplication has been found to occur in concert with the c.*231A>G variant, and thus it is unclear whether the pathogenicity is solely a function of the UTR variant. We present a family with XLH who harbors the exon 13-15 duplication but does not carry the 3'UTR variant, providing evidence that the duplication itself is the pathogenic variant when these two variants are found in cis.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Enfermedades Genéticas Ligadas al Cromosoma X , Hipofosfatemia , Humanos , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Exones/genética , Regiones no Traducidas 3' , Hipofosfatemia/genética , Mutación
9.
Sci Rep ; 13(1): 85, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596813

RESUMEN

Biallelic pathogenic variants in the SLC34A3 gene, encoding for the NPT2c cotransporter, cause Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH). However, the associated phenotype is highly variable. In addition, mice deleted for Slc34a3 exhibit a different phenotype compared to humans, without urinary phosphate leakage. The mechanisms by which SLC34A3 variants disrupt phosphate/calcium metabolism are un-completely understood. In this study we explored these mechanisms in vitro using SLC34A3 variants identified in patients with urinary phosphate leakage. We analyzed the consequences of these variants on NPT2c function and the link with the phenotype of the patients. We studied 20 patients with recurrent nephrolithiasis and low serum phosphate concentration harboring variants in the SLC34A3 gene. Half of the patients carried homozygous or composite heterozygous variants. Three patients had in addition variants in SLC34A1 and SLC9A3R1 genes. All these patients benefited from a precise analysis of their phenotype. We generated 13 of these mutants by site-directed mutagenesis. Then we carried out transient transfections of these mutants in HEK cells and measured their phosphate uptake capacity under different conditions. Among the 20 patients included, 3 had not only mutations in NPT2c but also in NPT2a or NHERF1 genes. Phosphate uptake was decreased in 8 NPT2c mutants studied and normal for 5. Four variants were initially categorized as variants of uncertain significance. Expression of the corresponding mutants showed that one did not modify phosphate transport, two reduced it moderately and one abolished it. Co-transfection of the NPT2c mutants with the wild-type plasmid of NPT2c or NPT2a did not reveal dominant negative effect of the mutants on NPT2c-mediated phosphate transport. A detailed analysis of patient phenotypes did not find a link between the severity of the disorder and the level of phosphate transport impairment. NPT2c mutations classified as ACMG3 identified in patients with renal phosphate leak should be characterized by in vitro study to check if they alter NPT2c-mediated phosphate transport since phosphate uptake capacity may not be affected. In addition, research for mutations in NHERF1 and NPT2a genes should always be associated to NPT2c sequencing.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc , Animales , Humanos , Ratones , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Riñón/metabolismo , Mutación , Fenotipo , Fosfatos/metabolismo
10.
Orthop Traumatol Surg Res ; 109(3): 103529, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36565743

RESUMEN

INTRODUCTION: X-linked hypophosphatemic (XLH) rickets causes significant bone deformities in the lower limbs resulting from a bone mineralization defect. According to Frost's Mechanostat theory, compensatory modeling of the bones takes place during increased mechanical loads. In addition, mechanical stimuli modulate the differentiation of mesenchymal stem cells; common precursors to bone marrow adipocytes and osteoblasts. HYPOTHESIS: Bone deformities of the lower limbs lead to increased femoral bone mass and decreased fatty infiltration of the bone marrow (FIBM) in children with XLH rickets compared to a control group. PATIENTS AND METHODS: Eleven children (10.3years [6-17]) with XLH rickets and 22 healthy children (10.2years [5-15.5]) underwent lower limb Magnetic Resonance Imaging. A calculation of FIBM was performed at the mid-femur, as well as a calculation of the total bone cross-sectional area (CSA), the cortical CSA, the anteroposterior and mediolateral axes of the femur, bone marrow and the thickness of the femoral cortices. RESULTS: Total bone CSA, total cortical CSA and bone marrow CSA were higher in the XLH group than in the control group (p<0.05). The mid-lateral diameters of the femur and bone marrow were more elongated than those of the control group (p<0.001). Only the anterior cortex was thinned in the XLH group (p=0.001), while there was no difference with the control group for the posterior, medial and lateral cortices. The total percentage of FIBM was 72.81% [±3.95] and 77.4% [±5.52] for the XLH and control groups respectively (p<0.001). DISCUSSION: The increase in bone mass in the XLH population reflects an adaptation of bone tissue to the bone deformities present in this pathology. The decrease in FIBM indicates a lower risk of osteoporosis in the XLH population and may constitute a new monitoring parameter in this pathology. LEVEL OF STUDY: III; Case-control study.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Niño , Humanos , Raquitismo Hipofosfatémico Familiar/patología , Médula Ósea/patología , Estudios de Casos y Controles , Huesos , Densidad Ósea
11.
Calcif Tissue Int ; 111(6): 641-645, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35916905

RESUMEN

X-linked hypophosphatemic rickets (XLH) and m.3243A>G mitochondrial disease share several clinical findings, including short stature, hearing impairment (HI), nephropathy, and hypertension. Here, we report on a case with the rare coincidence of these two genetic conditions. In early childhood, the patient presented with hypophosphatemia and bone deformities and was clinically diagnosed with XLH. This was genetically verified in adulthood with the identification of a de novo pathogenic deletion in phosphate-regulating endopeptidase homolog X-linked (PHEX). In addition, the patient developed HI and hypertension and when his mother was diagnosed with m.3243A>G, subsequent genetic testing confirmed the patient to carry the same variant. Over the next two decades, the patient developed progressive renal impairment however without nephrocalcinosis known to associate with XLH which could indicate an m.3243A>G-related kidney disease. Parallel with the progression of renal impairment, the patient developed hyperphosphatemia and secondary hyperparathyroidism. In conclusion, this case represents a complex clinical phenotype with the reversal of hypo- to hyperphosphatemia in XLH potentially mediated by the development of an m.3243A>G-associated nephropathy.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Enfermedades Genéticas Ligadas al Cromosoma X , Hiperfosfatemia , Hipertensión , Enfermedades Mitocondriales , Insuficiencia Renal , Raquitismo Hipofosfatémico , Preescolar , Humanos , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Hiperfosfatemia/complicaciones , Insuficiencia Renal/complicaciones , Enfermedades Mitocondriales/complicaciones , Hipertensión/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación
12.
Front Endocrinol (Lausanne) ; 13: 862022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663328

RESUMEN

Background: Vitamin D-dependent rickets type 1A (VDDR1A) rickets is an uncommon kind of rickets that affects both boys and girls. Children with mutations are normal at birth and present at around 6 months to 2 years of age with symptoms. When suspected, genetic testing is required to confirm the diagnosis. Case Presentation: This is a case report of VDDR1A in a 4-year-old boy who presented with delayed growth, inability to stand, and rachitic bone deformities. The diagnosis was reached by anthropometric measurement, bone profile, and radiological studies, then confirmed by genetic testing, which revealed a homozygous pathogenic variant in the CYP27B1 gene. He was treated with Vitamin-D (alfacalcidol) and oral calcium. Conclusion: VDDR1A is caused by a mutation in the CYP27B1 gene, which impairs the 1 hydroxylase enzyme, which compromises vitamin-D production.


Asunto(s)
25-Hidroxivitamina D3 1-alfa-Hidroxilasa , Raquitismo Hipofosfatémico Familiar , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Niño , Preescolar , Raquitismo Hipofosfatémico Familiar/patología , Femenino , Humanos , Recién Nacido , Masculino , Mutación , Vitamina D/uso terapéutico , Vitaminas
13.
Cell Death Dis ; 13(6): 518, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654784

RESUMEN

X-linked hypophosphatemic rickets (XLH) is characterized by increased circulating fibroblast growth factor 23 (FGF23) concentration caused by PHEX (NM_000444.5) mutations. Renal tubular resorption of phosphate is impaired, resulting in rickets and impaired bone mineralization. By phenotypic-genetic linkage analysis, two PHEX pathogenic mutations were found in two XLH families: c.433 G > T, p.Glu145* in exon 4 and c.2245 T > C, p.Trp749Arg in exon 22. Immunofluorescence showed that the localization of p.Glu145* and p.Trp749Arg mutant and secretory PHEX (secPHEX) changed, with decreased expression. In a HEK293T cell model co-transfected with PHEX, secPHEX, and FGF23, wild-type PHEX, secPHEX, and FGF23 proteins were distributed in the cell membrane or endoplasmic reticulum, while the mutant was located in the nuclear membrane and cytoplasm. qPCR of p.Glu145* revealed decreased PHEX and secPHEX mRNA expression in cells, with no difference in mRNA expression of p.Trp749Arg. Both mutations decreased intracellular PHEX endopeptidase activity. Western blot analysis showed decrease in mutant and secPHEX protein expression and no FGF23 protein expression in single-transfected PHEX and secPHEX cells. In cells co-transfected with FGF23, PHEX and secPHEX mutation promoted FGF23 expression. Dual-luciferase reporter gene was used to detect the effect of PHEX on FGF23 promoter. The dual-luciferase reporter gene showed that after PHEX overexpression, the activity of mutant firefly luciferase was significantly higher than that of wild type. The regulatory mechanism between PHEX and FGF23 is still unclear, but we found that PHEX is a direct transcriptional inhibitor of FGF23 and affects the expression of FGF23. This study verified the pathogenicity of the two variants and revealed the possible regulatory mechanism between PHEX and FGF23.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/patología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Mutación/genética , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Endopeptidasa Neutra Reguladora de Fosfato PHEX/metabolismo , ARN Mensajero
14.
Osteoporos Int ; 33(7): 1601-1611, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35435480

RESUMEN

We assessed lower-limb geometry in adults with X-linked hypophosphatemia (XLH) and controls. We found large differences in multiple measures including femoral and tibial torsion, bowing and cross-sectional area and acetabular version and coverage which may contribute to clinical problems such as osteoarthritis, fractures and altered gait common in XLH. PURPOSE: Individuals with X-linked hypophosphatemia (XLH) are at risk of lower-limb deformities and early onset of osteoarthritis. These two factors may be linked, as altered biomechanics is a risk factor for osteoarthritis. This exploratory evaluation aims at providing clues and concepts for this association to facilitate future larger-scale and longitudinal studies on that aspect. METHODS: For this observational study, 13 patients with XLH, aged 18-65 years (6 female), were compared with sex-, age- and weight-matched healthy individuals at a single German research centre. Femoral and hip joint geometry, including femoral and tibial torsion and femoral and tibial shaft bowing, bone cross-sectional area (CSA) and acetabular version and coverage were measured from magnetic resonance imaging (MRI) scans. RESULTS: Total femoral torsion was 29° lower in individuals with XLH than in controls (p < 0.001), mainly resulting from lower intertrochanteric torsion (ITT) (p < 0.001). Femoral lateral and frontal bowing, tibial frontal bowing, mechanical axis, femoral mechanical-anatomical angle, acetabular version and acetabular coverage were all greater and tibial torsion lower in individuals with XLH as compared to controls (all p < 0.05). Greater femoral total and marrow cavity CSA, greater tibial marrow cavity CSA and lower cortical CSA were observed in XLH (all p < 0.05). DISCUSSION: We observed large differences in clinically relevant measures of tibia and particularly femur bone geometry in individuals with XLH compared to controls. These differences may plausibly contribute to clinical manifestations of XLH such as early-onset osteoarthritis, pseudofractures and altered gait and therefore should be considered when planning corrective surgeries.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Osteoartritis , Adulto , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/patología , Femenino , Fémur/patología , Humanos , Extremidad Inferior , Tibia/diagnóstico por imagen , Tibia/patología
15.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055123

RESUMEN

X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets, is caused by inactivating mutations of the phosphate-regulating endopeptidase gene (PHEX). XLH is mainly characterized by short stature, bone deformities and rickets, while in hypophosphatemia, normal or low vitamin D levels and low renal phosphate reabsorption are the principal biochemical aspects. The cause of growth impairment in patients with XLH is not completely understood yet, thus making the study of the growth plate (GP) alterations necessary. New treatment strategies targeting FGF23 have shown promising results in normalizing the growth velocity and improving the skeletal effects of XLH patients. However, further studies are necessary to evaluate how this treatment affects the GP as well as its long-term effects and the impact on adult height.


Asunto(s)
Raquitismo Hipofosfatémico Familiar/patología , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Placa de Crecimiento/patología , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Calcitriol/farmacología , Calcitriol/uso terapéutico , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/genética , Factor-23 de Crecimiento de Fibroblastos/efectos de los fármacos , Hormona del Crecimiento/farmacología , Hormona del Crecimiento/uso terapéutico , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/crecimiento & desarrollo , Humanos , Regulación hacia Arriba
16.
Bone ; 154: 116201, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537437

RESUMEN

X-linked hypophosphatemia (XLH) is caused by a loss-of-function mutation in the phosphate regulating gene with homology to endopeptidase located on the X chromosome (PHEX). Loss of functional PHEX results in elevated fibroblast growth factor 23 (FGF23), impaired phosphate reabsorption, and inhibited skeletal mineralization. Sclerostin, a protein produced primarily by osteocytes, suppresses bone formation by antagonizing canonical Wnt-signaling and is reported to be elevated in XLH patients. Our previous study reported that a monoclonal antibody to sclerostin (Scl-Ab) decreases FGF23 and increases phosphate and bone mass in growing Hyp mice (XLH murine model). In the current study, we investigated the efficacy of Scl-Ab in treating XLH pathophysiology in adult Hyp mice that are past the period of rapid skeletal growth (12 and 20-weeks old). We hypothesized that Scl-Ab would not only increase bone formation, bone strength and bone mass, but would also normalize phosphate regulating hormones, FGF23, parathyroid hormone (PTH), and vitamin 1,25(OH)2D. Scl-Ab treatment increased cortical area, trabecular bone volume fraction, trabecular bone formation rate, and the bending moment in both sexes of both age groups. Scl-Ab treatment suppressed circulating levels of intact FGF23 and c-term FGF23 in treated male and female wild-type and Hyp mice of both age groups and improved both vitamin 1,25(OH)2D and PTH. Scl-Ab treated Hyp mice also showed evidence of increased renal expression of the sodium-phosphate co-transporter, NPT2a, specifically in the female Hyp mice. Our study suggests that Scl-Ab treatment can improve several skeletal and metabolic pathologies associated with XLH, further establishes the role of sclerostin in the regulation of FGF23 and provides evidence that Scl-Ab can improve phosphate regulation by targeting the bone-renal axis.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Animales , Densidad Ósea , Raquitismo Hipofosfatémico Familiar/patología , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Osteogénesis , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Hormona Paratiroidea , Fosfatos
17.
Front Endocrinol (Lausanne) ; 12: 754084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646241

RESUMEN

Background: X-linked hypophosphatemia (XLH) is a rare genetic disorder characterized by lower limb deformity, gait and joint problems, and pain. Hence, quality of life is substantially impaired. This study aimed to assess lower limb deformity, specific radiographic changes, and gait deviations among adolescents and adults with XLH. Design: Data on laboratory examination and gait analysis results were analyzed retrospectively. Deformities, osteoarthritis, pseudofractures, and enthesopathies on lower limb radiographs were investigated. Gait analysis findings were compared between the XLH group and the control group comprising healthy adults. Patients and Controls: Radiographic outcomes were assessed retrospectively in 43 patients with XLH (28 female, 15 male). Gait analysis data was available in 29 patients with confirmed XLH and compared to a healthy reference cohort (n=76). Results: Patients with XLH had a lower gait quality compared to healthy controls (Gait deviation index GDI 65.9% +/- 16.2). About 48.3% of the study population presented with a greater lateral trunk lean, commonly referred to as waddling gait. A higher BMI and mechanical axis deviation of the lower limbs were associated with lower gait scores and greater lateral trunk lean. Patients with radiologic signs of enthesopathies had a lower GDI. Conclusions: This study showed for the first time that lower limb deformity, BMI, and typical features of XLH such as enthesopathies negatively affected gait quality among adolescents and adults with XLH.


Asunto(s)
Raquitismo Hipofosfatémico Familiar/fisiopatología , Marcha , Extremidad Inferior/fisiopatología , Adolescente , Adulto , Anciano , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/patología , Raquitismo Hipofosfatémico Familiar/cirugía , Femenino , Humanos , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/patología , Masculino , Persona de Mediana Edad , Radiografía , Estudios Retrospectivos , Adulto Joven
18.
J Pediatr Endocrinol Metab ; 34(12): 1505-1513, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34492747

RESUMEN

BACKGROUND: Vitamin D dependent rickets type 1 (VDDR1) is a rare disease due to pathogenic variants in 1-α hydroxylase gene. We describe our experience with systematic review of world literature to describe phenotype and genotype. METHODS: Seven patients from six unrelated families with genetically proven VDDR1 from our cohort and 165 probands from systematic review were analyzed retrospectively. The clinical features, biochemistry, genetics, management, and long-term outcome were retrieved. RESULTS: In our cohort, the median age at presentation and diagnosis was 11(4-18) and 40(30-240) months. The delayed diagnoses were due to misdiagnoses as renal tubular acidosis and hypophosphatemic rickets. Four had hypocalcemic seizures in infancy whereas all had rickets by 2 years. All patients had biochemical response to calcitriol, however two patients diagnosed post-puberty had persistent deformity. Genetic analysis revealed two novel (p.Met260Arg, p.Arg453Leu) and a recurring variant (p.Phe443Profs*24). Systematic review showed that seizures as most common presentation in infancy, whereas delayed motor milestones and deformities after infancy. Diagnosis was delayed in 27 patients. Patients with unsatisfactory response despite compliance were >12 years at treatment initiation. Inappropriately normal 1,25(OH)2D may be present, however suppressed ratio of 1,25(OH)2 D/25(OH)D may provide a clue to diagnosis. Various region specific and hot-spot recurrent variants are described. Patients with truncating variants had higher daily calcitriol requirement and greatly suppressed ratio of 1,25(OH)2D/25(OH)D. CONCLUSION: Delayed diagnosis may lead to permanent short stature and deformities. Truncating variants tend to have severe disease as compared to non-truncating variants. Diagnostic accuracy of 1,25(OH)2 D/25(OH)D ratio needs further validation.


Asunto(s)
Biomarcadores/sangre , Raquitismo Hipofosfatémico Familiar/patología , Vitamina D/sangre , Adolescente , Adulto , Niño , Preescolar , Raquitismo Hipofosfatémico Familiar/sangre , Raquitismo Hipofosfatémico Familiar/etiología , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Lactante , Masculino , Fenotipo , Pronóstico , Estudios Retrospectivos , Adulto Joven
19.
J Pediatr Endocrinol Metab ; 34(12): 1573-1584, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34525271

RESUMEN

OBJECTIVES: Hereditary hypophosphatemic rickets (HR) is conventionally treated with phosphate and calcitriol. Exploring genotype and phenotypic spectrum of X-linked hypophosphatemic rickets (XLHR), focusing on short-term, long-term, and pubertal impact of conventional treatment was aimed. METHODS: Sixteen patients from 12 unrelated families with HR were analyzed for phosphate regulating endopeptidase homolog X-linked (PHEX) mutation. Initially Sanger sequencing analysis was performed. If PHEX mutation was not detected, multiplex ligation-dependent probe amplification (MLPA) was performed. If molecular defect was detected, first-degree relatives were analyzed. Thirteen patients (81%) and five first-degree relatives with XLHR were evaluated for genotype-phenotype or gender-phenotype correlation. Clinical characteristics and response to conventional treatment were determined retrospectively. RESULTS: Nine different PHEX mutations were identified; four splice-site, three point mutations, and two single exon deletions. Four were novel mutations. Despite conventional treatment, median adult height was lower than median height on admission (-3.8 and -2.3 SDS, respectively), metabolic and radiographic recovery were not achieved, adherence was low (30%). Although mean adult height was better in compliant patients than noncompliants (-2.6 vs. -3.7 SDS, respectively), they were still short. Correlation between phenotype and genotype or gender could not be shown. Median phosphate decreased significantly throughout puberty (p=0.014). Median pubertal height was lower than prepubertal height (-4.4 vs. -3.6 SDS; respectively), pubertal growth spurt was not observed. Among five patients with a follow-up longer than five years, three had nephrocalcinosis (60%), two had hyperparathyroidism (40%), 4/6 (33%) required correction osteotomy. CONCLUSIONS: Conventional treatment appears to have limited effect on metabolic, clinical and radiographic recovery in XLHR. Metabolic control and growth worsened during puberty. Although, long-term adverse effects are yet to be seen, introduction of burosumab as first-line treatment may be an alternative after infancy.


Asunto(s)
Calcitriol/uso terapéutico , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Trastornos del Crecimiento/prevención & control , Enfermedades Metabólicas/prevención & control , Mutación , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Fosfatos/uso terapéutico , Adulto , Hormonas y Agentes Reguladores de Calcio/uso terapéutico , Niño , Preescolar , Raquitismo Hipofosfatémico Familiar/patología , Femenino , Estudios de Seguimiento , Trastornos del Crecimiento/patología , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Metabólicas/patología , Persona de Mediana Edad , Linaje , Pronóstico , Estudios Retrospectivos , Adulto Joven
20.
Int J Biol Sci ; 17(10): 2430-2448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326685

RESUMEN

Bone-forming osteoblasts have been a cornerstone of bone biology for more than a century. Most research toward bone biology and bone diseases center on osteoblasts. Overlooked are the 90% of bone cells, called osteocytes. This study aims to test the hypothesis that osteocytes but not osteoblasts directly build mineralized bone structures, and that defects in osteocytes lead to the onset of hypophosphatemia rickets. The hypothesis was tested by developing and modifying multiple imaging techniques, including both in vivo and in vitro models plus two types of hypophosphatemia rickets models (Dmp1-null and Hyp, Phex mutation mice), and Dmp1-Cre induced high level of ß-catenin models. Our key findings were that osteocytes (not osteoblasts) build bone similar to the construction of a high-rise building, with a wire mesh frame (i.e., osteocyte dendrites) and cement (mineral matrices secreted from osteocytes), which is a lengthy and slow process whose mineralization direction is from the inside toward the outside. When osteoblasts fail to differentiate into osteocytes but remain highly active in Dmp-1-null or Hyp mice, aberrant and poor bone mineralization occurs, caused by a sharp increase in Wnt-ß-catenin signaling. Further, the constitutive expression of ß-catenin in osteocytes recaptures a similar osteomalacia phenotype as shown in Dmp1 null or Hyp mice. Thus, we conclude that osteocytes directly build bone, and osteoblasts with a short life span serve as a precursor to osteocytes, which challenges the existing dogma.


Asunto(s)
Calcificación Fisiológica/fisiología , Raquitismo Hipofosfatémico Familiar/metabolismo , Osteoblastos/metabolismo , Osteocitos/metabolismo , beta Catenina/metabolismo , Factores de Edad , Animales , Densidad Ósea , Huesos/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Raquitismo Hipofosfatémico Familiar/sangre , Raquitismo Hipofosfatémico Familiar/patología , Fémur/trasplante , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/ultraestructura , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Tibia/trasplante , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA