RESUMEN
PURPOSE: To study the morphological and histological characteristics of the fibrous capsule formed around a novel biodegradable glaucoma drainage device (GDD) implant made of oxidized regenerated cellulose (ORC) after 1 and 3 months of its implantation. METHODS: It was a prospective, interventional, preclinical experimental study using New Zealand white rabbits. All animals underwent GDD implantation with a novel biodegradable device. The device's body was made of ORC and attached to a silicone tube, connecting the body to the anterior chamber. Histopathology (hematoxylin and eosin/Masson's trichrome staining) and immunohistochemistry (Alpha-Smooth Muscle Actin expression) characteristics of the bleb formed around the novel device were noted at 1 and 3 months. RESULTS: One month post implantation, the biodegradable material produced a significant foreign body type of reaction evidenced by the exuberant infiltration by macrophages, lymphocytes, and multinucleated giant cells. The granulomatous response subsided by 3 months with disorganized collagen deposition on Masson's trichrome staining. The silicone tube was an internal control, and histopathology demonstrated well-organized collagen deposition around it at 3 months. Immunohistochemistry for α-smooth muscle actin also demonstrated more myofibroblast transformation at the site of the tube than the biodegradable implant. CONCLUSIONS: Our results indicate that the tissue response around a biodegradable GDD was different from the response to conventional devices. A diffuse, loose vascularized mesh was observed to develop, which may be more compatible with sustained IOP control over a longer period, in contrast to the usual thick and dense capsule formed around the non-biodegradable devices.
Asunto(s)
Implantes Absorbibles , Modelos Animales de Enfermedad , Implantes de Drenaje de Glaucoma , Glaucoma , Presión Intraocular , Animales , Conejos , Proyectos Piloto , Glaucoma/cirugía , Glaucoma/metabolismo , Glaucoma/fisiopatología , Presión Intraocular/fisiología , Estudios Prospectivos , Diseño de Prótesis , Reacción a Cuerpo Extraño/metabolismo , Reacción a Cuerpo Extraño/etiologíaRESUMEN
Phosphorescence-based oxygen-sensing hydrogels are a promising platform technology for an upcoming generation of insertable biosensors that are smaller, softer, and potentially more biocompatible than earlier designs. However, much remains unknown about their long-term performance and biocompatibility in vivo. In this paper, we design and evaluate a range of hydrogel sensors that contain oxygen-sensitive phosphors stabilized by micro- and nanocarrier systems. These devices demonstrated consistently good performance and biocompatibility in young adult rats for over three months. This study thoroughly establishes the biocompatibility and long-term suitability of phosphorescence lifetime sensors in vivo, providing the groundwork for expansion of this platform technology into a family of small, unobtrusive biosensors for a range of clinically relevant metabolites.
Asunto(s)
Materiales Biocompatibles , Técnicas Biosensibles , Hidrogeles , Ensayo de Materiales , Nanocompuestos , Oxígeno , Oxígeno/metabolismo , Oxígeno/química , Animales , Hidrogeles/química , Materiales Biocompatibles/química , Nanocompuestos/química , Ratas , Tamaño de la Partícula , Reacción a Cuerpo Extraño/metabolismo , Mediciones Luminiscentes , Ratas Sprague-DawleyRESUMEN
Soft implantable devices are crucial to optimizing form and function for many patients. However, periprosthetic capsule fibrosis is one of the major challenges limiting the use of implants. Currently, little is understood about how spatial and temporal factors influence capsule physiology and how the local capsule environment affects the implant structure. In this work, we analyzed breast implant capsule specimens with staining, immunohistochemistry, and real-time polymerase chain reaction to investigate spatiotemporal differences in inflammation and fibrosis. We demonstrated that in comparison to the anterior capsule against the convex surface of breast implants, the posterior capsule against the flat surface of the breast implant displays several features of a dysregulated foreign body reaction including increased capsule thickness, abnormal extracellular remodeling, and infiltration of macrophages. Furthermore, the expression of pro-inflammatory cytokines increased in the posterior capsule across the lifespan of the device, but not in the anterior capsule. We also analyzed the surface oxidation of breast explant samples with XPS analysis. No significant differences in surface oxidation were identified either spatially or temporally. Collectively, our results support spatiotemporal heterogeneity in inflammation and fibrosis within the breast implant capsule. These findings presented here provide a more detailed picture of the complexity of the foreign body reaction surrounding implants destined for human use and could lead to key research avenues and clinical applications to treat periprosthetic fibrosis and improve device longevity.
Asunto(s)
Implantes de Mama , Fibrosis , Reacción a Cuerpo Extraño , Propiedades de Superficie , Implantes de Mama/efectos adversos , Humanos , Reacción a Cuerpo Extraño/patología , Reacción a Cuerpo Extraño/metabolismo , Reacción a Cuerpo Extraño/inmunología , Femenino , Siliconas/química , Geles de Silicona/efectos adversos , Citocinas/metabolismo , Inflamación/patología , Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunologíaRESUMEN
Implanted medical devices, from artificial heart valves and arthroscopic joints to implantable sensors, often induce a foreign body response (FBR), a form of chronic inflammation resulting from the inflammatory reaction to a persistent foreign stimulus. The FBR is characterized by a subset of multinucleated giant cells (MGCs) formed by macrophage fusion, the foreign body giant cells (FBGCs), accompanied by inflammatory cytokines, matrix deposition, and eventually deleterious fibrotic implant encapsulation. Despite efforts to improve biocompatibility, implant-induced FBR persists, compromising the utility of devices and making efforts to control the FBR imperative for long-term function. Controlling macrophage fusion in FBGC formation presents a logical target to prevent implant failure, but the actual contribution of FBGCs to FBR-induced damage is controversial. CD13 is a molecular scaffold, and in vitro induction of CD13KO bone marrow progenitors generates many more MGCs than the wild type, suggesting that CD13 regulates macrophage fusion. In the mesh implant model of FBR, CD13KO mice produced significantly more peri-implant FBGCs with enhanced TGF-ß expression and increased collagen deposition versus the wild type. Prior to fusion, increased protrusion and microprotrusion formation accompanies hyperfusion in the absence of CD13. Expression of fusogenic proteins driving cell-cell fusion was aberrantly sustained at high levels in CD13KO MGCs, which we show is due to a novel CD13 function, to our knowledge, regulating ubiquitin/proteasomal protein degradation. We propose CD13 as a physiologic brake limiting aberrant macrophage fusion and the FBR, and it may be a novel therapeutic target to improve the success of implanted medical devices. Furthermore, our data directly implicate FBGCs in the detrimental fibrosis that characterizes the FBR.
Asunto(s)
Cuerpos Extraños , Reacción a Cuerpo Extraño , Ratones , Animales , Reacción a Cuerpo Extraño/inducido químicamente , Reacción a Cuerpo Extraño/metabolismo , Células Gigantes de Cuerpo Extraño/metabolismo , Inflamación/metabolismo , Cuerpos Extraños/metabolismo , Prótesis e Implantes/efectos adversos , UbiquitinaciónRESUMEN
Beyond its actions on the nervous system, amitriptyline (AM) has been shown to lower inflammatory, angiogenic, and fibrogenic markers in a few pathological conditions in human and in experimental animal models. However, its effects on foreign body reaction (FBR), a complex adverse healing process, after biomedical material implantation are not known. We have evaluated the effects of AM on the angiogenic and fibrogenic components on a model of implant-induced FBR. Sponge disks were implanted subcutaneously in C57BL/6 mice, that were treated daily with oral administration of AM (5 mg/kg) for seven consecutive days in two protocols: treatment was started on the day of surgery and the implants were removed on the seventh day after implantation and treatment started 7 days after implantation and the implants removed 14 after implantation. None of the angiogenic (vessels, Vascular endothelial growth factor (VEGF), and interleukin-1ß (IL-1ß) or fibrogenic parameters (collagen, TGF-ß, and fibrous capsule) and giant cell numbers analyzed were attenuated by AM in 7-day-old implants. However, AM was able to downregulate angiogenesis and FBR in 14-day-old implants. The effects of AM described here expands its range of actions as a potential agent capable of attenuating fibroproliferative processes that may impair functionality of implantable devices.
Asunto(s)
Amitriptilina , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Humanos , Amitriptilina/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ratones Endogámicos C57BL , Reacción a Cuerpo Extraño/inducido químicamente , Reacción a Cuerpo Extraño/metabolismo , Reacción a Cuerpo Extraño/patología , Colágeno/metabolismoRESUMEN
The use of implantable biomaterials to replace physiological and anatomical functions has been widely investigated in the clinic. However, the selection of biomaterials is crucial for long-term function, and the implantation of certain biomaterials can cause inflammatory and fibrotic processes, triggering a foreign body reaction that leads to loss of function and consequent need for removal. Specifically, the Wnt signaling pathway controls the healing process of the human body, and its dysregulation can result in inflammation and fibrosis, such as in peritoneal fibrosis. Here, we assessed the effects of daily oral administration of a Wnt pathway inhibitor complex (CD:LGK974) to reduce the inflammatory, fibrotic, and angiogenic processes caused by intraperitoneal implants. CD:LGK974 significantly reduced the infiltration of immune cells and release of inflammatory cytokines in the implant region compared to the control groups. Furthermore, CD:LGK974 inhibited collagen deposition and reduced the expression of pro-fibrotic α-SMA and TGF-ß1, confirming fibrosis reduction. Finally, the CD:LGK974 complex decreased VEGF levels and both the number and area of blood vessels formed, suggesting decreased angiogenesis. This work introduces a potential new application of the Wnt inhibitor complex to reduce peritoneal fibrosis and the rejection of implants at the intraperitoneal site, possibly allowing for longer-term functionality of existing clinical biomaterials.
Asunto(s)
Fibrosis Peritoneal , Humanos , Fibrosis Peritoneal/complicaciones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/etiología , Reacción a Cuerpo Extraño/etiología , Reacción a Cuerpo Extraño/metabolismo , Cicatrización de HeridasRESUMEN
Implants are widely used in medical applications and yet macrophage-mediated foreign body reactions caused by implants severely impact their therapeutic effects. Although the extensive use of multiple surface modifications has been introduced to provide some mitigation of fibrosis, little is known about how macrophages recognize the stiffness of the implant and thus influence cell behaviors. Here, we demonstrated that macrophage stiffness sensing leads to differential inflammatory activation, resulting in different degrees of fibrosis. The potential mechanism for macrophage stiffness sensing in the early adhesion stages tends to involve cell membrane deformations on substrates with different stiffnesses. Combining theory and experiments, we show that macrophages exert traction stress on the substrate through adhesion and altered membrane curvature, leading to the uneven distribution of the curvature-sensing protein Baiap2, resulting in cytoskeleton remodeling and inflammation inhibition. This study introduces a physical model feedback mechanism for early cellular stiffness sensing based on cell membrane deformation, offering perspectives for future material design and targeted therapies.
Asunto(s)
Reacción a Cuerpo Extraño , Macrófagos , Humanos , Macrófagos/metabolismo , Reacción a Cuerpo Extraño/metabolismo , Reacción a Cuerpo Extraño/patología , Inflamación/metabolismo , Membrana Celular , FibrosisRESUMEN
Although macrophageâepithelioid cell (EPC)âgiant cell (GC) differentiation is acknowledged in foreign body reaction (FBR), the exact molecular features remain elusive. To discover the molecular profiles of EPC and GC, we analyzed mouse sponge and silk FBRs by integrating single-cell RNA sequencing and spatial sequencing, which identified seven cell types, including macrophages and fibroblasts. Macrophages comprised three subsets with a trajectory from M2-like cell to EPC to GC. They were different in many aspects, including cytokine, extracellular matrix organization/degradation, epithelial modules, and glycolysis that were consistent in both sponge and silk FBRs. EPCs exhibited epithelial modules and extracellular matrix organization, and GCs showed glycolysis, extracellular matrix degradation, and cell fusion signatures. Cellular interactions in GCs and M2-like cells were predicted to be higher than that in EPCs. High expression of inflammation or fusion-related (GPNMB, matrix metalloproteinase 12 gene MMP12, DCSTAMP) and glycolysis-related (PGAM1, ALDOA) genes was identified in GCs of human/mouse tissues, suggesting them as GC-specific markers. Our study identified unique signatures of EPCs and GCs in FBR. Importantly, GCs showed strong glycolysis signatures and cellular interactions, suggesting their activation in FBR. Our data on EPC and GC refinement and GC-specific markers enable the understanding of FBR and help to explore preventive and therapeutic management strategies for skin FBRs.
Asunto(s)
Reacción a Cuerpo Extraño , Células Gigantes , Animales , Humanos , Ratones , Reacción a Cuerpo Extraño/genética , Reacción a Cuerpo Extraño/metabolismo , Células Gigantes/metabolismo , Análisis de Secuencia de ARN , SedaRESUMEN
IL-22 is a unique cytokine that is upregulated in many chronic inflammatory diseases, including asthma, and modulates tissue responses during inflammation. However, the role of IL-22 in the resolution of inflammation and how this contributes to lung repair processes are largely unknown. Here, we tested the hypothesis that IL-22 signaling is critical in inflammation resolution after repetitive exposure to agricultural dust. Using an established mouse model of organic dust extract-induced lung inflammation, we found that IL-22 knockout mice have an enhanced response to agricultural dust as evidenced by an exacerbated increase in infiltrating immune cells and lung pathology as compared to wild-type controls. We further identified that, in response to dust, IL-22 is expressed in airway epithelium and in Ym1+ macrophages found within the parenchyma in response to dust. The increase in IL-22 expression was accompanied by increases in IL-22 receptor IL-22R1 within the lung epithelium. In addition, we found that alveolar macrophages in vivo as well as THP-1 cells in vitro express IL-22, and this expression is modulated by dust exposure. Furthermore, subcellular localization of IL-22 appears to be in the Golgi of resting THP1 human monocytes, and treatment with dust extracts is associated with IL-22 release into the cytosolic compartment from the Golgi reservoirs during dust extract exposure. Taken together, we have identified a significant role for macrophage-mediated IL-22 signaling that is activated in dust-induced lung inflammation in mice.
Asunto(s)
Polvo , Reacción a Cuerpo Extraño , Interleucinas , Neumonía , Agricultura , Animales , Reacción a Cuerpo Extraño/metabolismo , Inflamación/metabolismo , Interleucinas/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/metabolismo , Interleucina-22RESUMEN
Implantation of biomedical/synthetic devices to replace and/or repair biological tissues very often induces an adverse healing response (scarce angiogenesis, excessive collagen deposition) which is detrimental to implant functionality and integration to host tissue. Interleukin-33/ST2 axis (IL-33/ST2) has been shown to modulate angiogenic and remodeling processes in several types of injuries. However, its effects on these processes after implantation of synthetic matrix have not been reported. Using synthetic matrix of polyether-polyurethane implanted subcutaneously in mice lacking ST2 receptor (ST2/KO), we characterized neovascularization and matrix remodeling in the fibrovascular tissue induced by the implants. Tissue accumulation was increased inside and around the implants in KO implants relative to the wild type (WT). More intense proliferative activity, using CDC 47 marker, was observed in KO implants compared with that of WT implants. Angiogenesis, using two endothelial cell markers, Von Willebrand Factor (VWF) and vascular endothelial cell VE cadherin and hemoglobin content, increased in implants of KO mice relative to control WT. Remodeling of the newly formed fibrovascular tissue (soluble collagen and PicroSirius Red-stained histological sections) showed predominance of type 1 collagen in ST2-KO implants versus type 3 in control implants. The number of positive cells for caspase-3, apoptotic marker, decreased in ST2 group. Our findings evidenced a role of IL-33/ST2 axis in restraining blood vessel formation and regulating the pattern of matrix remodeling in the fibrovascular tissue induced by synthetic implants. Intervention in this cytokine complex holds potential to accelerate integration of biomaterial and host tissue by improving blood supply and matrix remodeling.
Asunto(s)
Matriz Extracelular/metabolismo , Reacción a Cuerpo Extraño/metabolismo , Mediadores de Inflamación/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/deficiencia , Interleucina-33/metabolismo , Neovascularización Fisiológica , Tejido Subcutáneo/metabolismo , Cicatrización de Heridas , Animales , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Fibrosis , Reacción a Cuerpo Extraño/etiología , Reacción a Cuerpo Extraño/genética , Reacción a Cuerpo Extraño/patología , Eliminación de Gen , Proteína 1 Similar al Receptor de Interleucina-1/genética , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Polietilenglicoles , Poliuretanos , Transducción de Señal , Tejido Subcutáneo/patología , Tapones Quirúrgicos de Gaza , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Body implants and implantable medical devices have dramatically improved and prolonged the life of countless patients. However, our body repair mechanisms have evolved to isolate, reject, or destroy any object that is recognized as foreign to the organism and inevitably mounts a foreign body reaction (FBR). Depending on its severity and chronicity, the FBR can impair implant performance or create severe clinical complications that will require surgical removal and/or replacement of the faulty device. The number of review articles discussing the FBR seems to be proportional to the number of different implant materials and clinical applications and one wonders, what else is there to tell? We will here take the position of a fibrosis researcher (which, coincidentally, we are) to elaborate similarities and differences between the FBR, normal wound healing, and chronic healing conditions that result in the development of peri-implant fibrosis. After giving credit to macrophages in the inflammatory phase of the FBR, we will mainly focus on the activation of fibroblastic cells into matrix-producing and highly contractile myofibroblasts. While fibrosis has been discussed to be a consequence of the disturbed and chronic inflammatory milieu in the FBR, direct activation of myofibroblasts at the implant surface is less commonly considered. Thus, we will provide a perspective how physical properties of the implant surface control myofibroblast actions and accumulation of stiff scar tissue. Because formation of scar tissue at the surface and around implant materials is a major reason for device failure and extraction surgeries, providing implant surfaces with myofibroblast-suppressing features is a first step to enhance implant acceptance and functional lifetime. Alternative therapeutic targets are elements of the myofibroblast mechanotransduction and contractile machinery and we will end with a brief overview on such targets that are considered for the treatment of other organ fibroses.
Asunto(s)
Fibroblastos/trasplante , Reacción a Cuerpo Extraño/inmunología , Miofibroblastos/citología , Prótesis e Implantes , Reacción a Cuerpo Extraño/metabolismo , Humanos , Macrófagos/metabolismo , Mecanotransducción Celular/inmunología , Miofibroblastos/inmunologíaRESUMEN
BACKGROUND: Peri-miniscrew implant is a temporary assistant armamentarium for the treatment of severe malocclusion and complex tooth movement, the inflammation around it is the main reason for the failure of orthodontic treatment due to the implant loosening and falling out. Inflammation around the peri-miniscrew implant is associated with the release of pro-inflammatory cytokines. These pro-inflammatory cytokines, in turn, recruit immune cells (such as macrophages, dendritic cells, T cells, and B cells), which can produce and release inflammatory biomarkers, regulate the interaction between immune cells, periodontal ligament cells, osteoblasts, and so on. However, there is currently no effective clinical treatment plan to prevent inflammation around implants. PURPOSE: To investigate the potentially essential factors in the inflammatory response around the peri-miniscrew implant and explore the signaling pathways involved. METHODS: Here, we review the studies focused on inflammatory biomarkers (Interleukins, tumor necrosis factor-α (TNF-α), receptor activator of NF-κB ligand (RANKL), matrix metalloproteinases (MMPs), and cellular adhesion molecules (CAMs)) in peri-miniscrew implant crevicular fluid (PMICF), as well as inflammatory signaling pathways (Wnt5a, JNK, Erk1/2, NF-κBp65 and TAB/TAK) in periodontal cells from 1998 to 2020. RESULTS: A literature search revealed TLR-2, TLR-4, LOX-1, and BMPs are involved in regulating ILs (IL-1ß, IL-6, IL-8, and IL-17), TNF-α, RANKL, MMP-2, MMP-9 expression via JNK, Erk1/2, Wnt5a, NF-κBp65, OPN, and TAB/TAK signaling pathways. Among them, IL-1ß and IL-6 are the critical inflammation factors in the signaling pathways inducing the inflammatory reaction surrounding implants. Besides, CAM-1 was also regulated by MMP-9 and IL-17. CONCLUSION: There are considerable potential factors involving regulating inflammatory biomarkers on downstream signaling pathways in peri-minisrew implant crevicular fluid. CLINICAL SIGNIFICANCE: This review provides the substantiation of these cell factors and signaling pathways around peri-miniscrew implants, proposes more practical clinical therapeutic ideas and schemes for improving the stability and clinical efficacy of peri-miniscrew implants.
Asunto(s)
Tornillos Óseos/efectos adversos , Reacción a Cuerpo Extraño/metabolismo , Líquido del Surco Gingival/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Aparatos Ortodóncicos/efectos adversos , Periimplantitis/metabolismo , Técnicas de Movimiento Dental/instrumentación , Animales , Reacción a Cuerpo Extraño/inmunología , Reacción a Cuerpo Extraño/patología , Líquido del Surco Gingival/inmunología , Humanos , Inflamación/inmunología , Inflamación/patología , Periimplantitis/inmunología , Periimplantitis/patología , Transducción de Señal , Resultado del TratamientoRESUMEN
BACKGROUND: The incidence of incisional hernia is with up to 30% one of the frequent long-term complication after laparotomy. After establishing minimal invasive operations, the laparoscopic intraperitoneal onlay mesh technique (lap. IPOM) was first described in 1993. Little is known about the foreign body reaction of IPOM-meshes, which covered a defect of the parietal peritoneum. This is becoming more important, since IPOM procedure with peritoneal-sac resection and hernia port closing (IPOM plus) is more frequently used. METHODS: In 18 female minipigs, two out of three Polyvinylidene-fluoride (PVDF) -meshes (I: standard IPOM; II: IPOM with modified structure [bigger pores]; III: IPOM with the same structure as IPOM II + degradable hydrogel-coating) were placed in a laparoscopic IPOM procedure. Before mesh placement, a 2x2cm peritoneal defect was created. After 30 days, animals were euthanized, adhesions were evaluated by re-laparoscopy and mesh samples were explanted for histological and immunohistochemichal investigations. RESULTS: All animals recovered after implantation and had no complications during the follow-up period. Analysing foreign body reaction, the IPOM II mesh had a significant smaller inner granuloma, compared to the other meshes (IPOM II: 8.4 µm ± 1.3 vs. IPOM I 9.1 µm ± 1.3, p < 0.001). The degradable hydrogel coating does not prevent adhesions measured by Diamond score (p = 0.46). A peritoneal defect covered by a standard or modified IPOM mesh was a significant factor for increasing foreign body granuloma, the amount of CD3+ lymphocytes, CD68+ macrophages and decrease of pore size. CONCLUSION: A peritoneal defect covered by IPOM prostheses leads to an increased foreign body reaction compared to intact peritoneum. Whenever feasible, a peritoneal defect should be closed accurately before placing an IPOM-mesh to avoid an excessive foreign body reaction and therefore inferior biomaterial properties of the prosthesis.
Asunto(s)
Materiales Biocompatibles/química , Polímeros de Fluorocarbono/química , Reacción a Cuerpo Extraño/etiología , Peritoneo/cirugía , Polivinilos/química , Mallas Quirúrgicas/efectos adversos , Adherencias Tisulares/etiología , Animales , Materiales Biocompatibles/metabolismo , Femenino , Polímeros de Fluorocarbono/metabolismo , Estudios de Seguimiento , Reacción a Cuerpo Extraño/metabolismo , Herniorrafia , Humanos , Laparoscopía , Polivinilos/metabolismo , Porosidad , Complicaciones Posoperatorias , Implantación de Prótesis , Propiedades de Superficie , Porcinos , Porcinos Enanos , Adherencias Tisulares/metabolismoRESUMEN
A 47-year-old white man presented with a 14-month history of an asymptomatic 2-cm, slow-growing nodular lesion on his left shin that arose in the background of a black tattoo. An excisional biopsy followed by histological examination revealed a prominent lymphohistiocytic infiltrate, with many large, foamy histiocytic cells containing intact inflammatory cells within their cytoplasm, findings consistent with emperipolesis, a feature typical of Rosai-Dorfman disease (RDD). By immunohistochemistry, S-100 (a marker that is positive in almost all cases of RDD) was negative, arguing against the diagnosis of RDD. In addition, prominent black tattoo pigment was seen in many areas, expanding the differential diagnosis to include an unusual reactive lymphohistiocytic response to the tattoo mimicking RDD. Histologically, RDD shows many plasma cells, neutrophils, lymphocytes, and histiocytes with abundant foamy cytoplasm that contains intact lymphocytes and other cells, a phenomenon described as emperipolesis. A wide variety of cutaneous reactions to tattoos have been described, including tenderness, burning pain, inflammation, and pruritus. However, histologic features suggestive of RDD as a reaction to tattoo pigment have not been previously described and should therefore also be considered as a potential rare reaction pattern to tattoos.
Asunto(s)
Reacción a Cuerpo Extraño/patología , Histiocitosis Sinusal/patología , Tinta , Piel/patología , Tatuaje/efectos adversos , Biomarcadores/análisis , Biopsia , Diagnóstico Diferencial , Reacción a Cuerpo Extraño/inducido químicamente , Reacción a Cuerpo Extraño/metabolismo , Histiocitosis Sinusal/etiología , Histiocitosis Sinusal/metabolismo , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Proteínas S100/análisis , Piel/químicaRESUMEN
The damaging effects of obesity extend to multiple pre-existing tissue/organs. However, the influence of this condition on key components (inflammation and angiogenesis) of fibrovascular connective proliferating tissue, essential in repair processes, has been neglected. Our objective in this study was to investigate whether obesity would influence inflammatory-angiogenesis induced by synthetic matrix of polyether-polyurethane implanted subcutaneously in high-fat-fed obese C57/BL6 mice. Fourteen days after implantation, the inflammatory and angiogenic components of the newly formed tissue intra-implant were evaluated. The pro-inflammatory enzyme activities, myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG), the levels of TNF-α, CXCL1/KC and CCL2 and NF-κB transcription factor were examined. Angiogenesis was determined by morphometric analysis of implant blood vessels, intra-implant levels of hemoglobin content, VEGF levels, and western blot for VEGFR2. All inflammatory and angiogenic markers were increased in the implants of obese mice compared with their non-obese counterparts. Similarly, activation of the NF-κB pathway and phosphorylation of VEGFR2 were higher in implants of obese mice (1.60 ± 0.28 Np65/Cp65; 0.96 ± 0.08 p-VEGFR2/VEGFR2-T) compared with implants of non-obese animals (1.40 ± 0.14; 0.49 ± 0.08). These observations suggest that obesity exerts critical role in sponge-induced inflammatory-angiogenesis, possibly by activating fibrovascular components in the inflamed microenvironment. Thus, this pathological condition causes damage not only to pre-existing tissues/organs but also to newly formed proliferating fibrovascular tissue. This is relevant to the development of therapeutic approaches to improve healing processes in patients with obesity.
Asunto(s)
Materiales Biocompatibles , Reacción a Cuerpo Extraño/etiología , Mediadores de Inflamación/metabolismo , Inflamación/etiología , Neovascularización Fisiológica , Obesidad/complicaciones , Polietilenglicoles , Poliuretanos , Cicatrización de Heridas , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Reacción a Cuerpo Extraño/metabolismo , Reacción a Cuerpo Extraño/patología , Reacción a Cuerpo Extraño/fisiopatología , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Chronic electroencephalography (EEG) is a widely used tool for monitoring cortical electrical activity in experimental animals. Although chronic implants allow for high-quality, long-term recordings in preclinical studies, the electrodes are foreign objects and might therefore be expected to induce a local inflammatory response. We here analyzed the effects of chronic cranial electrode implantation on glymphatic fluid transport and in provoking structural changes in the meninges and cerebral cortex of male and female mice. Immunohistochemical analysis of brain tissue and dura revealed reactive gliosis in the cortex underlying the electrodes and extensive meningeal lymphangiogenesis in the surrounding dura. Meningeal lymphangiogenesis was also evident in mice prepared with the commonly used chronic cranial window. Glymphatic influx of a CSF tracer was significantly enhanced at 30 d postsurgery in both awake and ketamine-xylazine anesthetized mice with electrodes, supporting the concept that glymphatic influx and intracranial lymphatic drainage are interconnected. Altogether, the experimental results provide clear evidence that chronic implantation of EEG electrodes is associated with significant changes in the brain's fluid transport system. Future studies involving EEG recordings and chronic cranial windows must consider the physiological consequences of cranial implants, which include glial scarring, meningeal lymphangiogenesis, and increased glymphatic activity.SIGNIFICANCE STATEMENT This study shows that implantation of extradural electrodes provokes meningeal lymphangiogenesis, enhanced glymphatic influx of CSF, and reactive gliosis. The analysis based on CSF tracer injection in combination with immunohistochemistry showed that chronically implanted electroencephalography electrodes were surrounded by lymphatic sprouts originating from lymphatic vasculature along the dural sinuses and the middle meningeal artery. Likewise, chronic cranial windows provoked lymphatic sprouting. Tracer influx assessed in coronal slices was increased in agreement with previous reports identifying a close association between glymphatic activity and the meningeal lymphatic vasculature. Lymphangiogenesis in the meninges and altered glymphatic fluid transport after electrode implantation have not previously been described and adds new insights to the foreign body response of the CNS.
Asunto(s)
Duramadre/metabolismo , Electrodos Implantados/efectos adversos , Reacción a Cuerpo Extraño/etiología , Gliosis/etiología , Sistema Glinfático/fisiología , Linfangiogénesis , Animales , Astrocitos/fisiología , Corteza Cerebral/patología , Líquido Cefalorraquídeo/fisiología , Duramadre/patología , Electroencefalografía/instrumentación , Femenino , Reacción a Cuerpo Extraño/metabolismo , Gliosis/metabolismo , Gliosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Técnica de Ventana Cutánea , Fases del Sueño/fisiologíaRESUMEN
Biodegradable aliphatic polyesters, especially polylactide (PLA), polyglycolide (PGA), and their copolymer poly(lactide-co-glycolide) (PLGA), are the most representative and widely used synthetic polymers in the field of tissue engineering and regenerative medicine. However, these polyesters often give rise to aseptic inflammation because of their acidic degradation products after implantation. Here, unidirectional shell-core structured fibers of chitosan/poly(lactide-co-glycolide) (i.e., CTS/PLGA) with acid-neutralizing capability were developed for addressing the noted issue by coating the PLGA fiber surfaces with a layer of the alkaline chitosan by coaxial electrospinning. Our results showed that during a period of 8-week degradation, the shell-layer of chitosan with its unique alkaline nature for acid-neutralization obviously hindered the pH decrease as a result of the degradation of PLGA-core. In a mocked acidic environment testing of the human dermal fibroblasts, chitosan-enabled acidity neutralization could significantly reduce in vitro the secretion of inflammatory factors and downregulate the expression of related inflammatory genes. Thereafter, biocompatibility assessment in vitro showed that the CTS/PLGA fibers had poorer cell adhesion capacity than the PLGA fibers but were cytocompatible and promoted cell migration and secretion of collagen. Moreover, subcutaneous embedding for two and four weeks in vivo revealed that the CTS/PLGA fibers significantly reduced the recruitment of inflammatory cells and the formation of foreign body giant cells (FBGCs). This study thereby demonstrated the evident acid-neutralizing effect of the chitosan-coating layer on alleviating the inflammatory responses caused by the acidic degradation products of the PLGA-core. Our highly aligned CTS/PLGA fibers, as a kind of quasi "pH-neutral fibers" with the acid-neutralizing capability, could be potentially applied for engineering those architecturally anisotropic tissues (e.g., tendon/ligament) toward improved efficacy of regeneration. STATEMENT OF SIGNIFICANCE: It is well known that acidic degradation products from representative aliphatic polyesters (e.g., PLA, PGA, and PLGA) give rise to the problem of aseptic inflammation. Various alkaline components acting as neutralizing agents have been used to address the noted issue. However, rather less attention has been paid to engineer these polyesters into a fibrous form with acid-neutralizing functionality. The present study proposes the concept of "pH-neutral fibers" and develops shell-core structured unidirectional fibers of chitosan/poly(lactide-co-glycolide) with acid-neutralizing capability for ameliorating inflammatory responses caused by the acidic degradation products of PLGA. It provides a comprehensive study encompassing fiber characterization and in vitro and in vivo evaluation, which would pave the way for developing sophisticated pH-neutral fibers for functional tissue regeneration.
Asunto(s)
Péptidos Catiónicos Antimicrobianos , Quitosano , Materiales Biocompatibles Revestidos , Ensayo de Materiales , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacocinética , Péptidos Catiónicos Antimicrobianos/farmacología , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacocinética , Materiales Biocompatibles Revestidos/farmacología , Reacción a Cuerpo Extraño/inducido químicamente , Reacción a Cuerpo Extraño/metabolismo , Reacción a Cuerpo Extraño/patología , Humanos , Concentración de Iones de Hidrógeno , RatasRESUMEN
Strategies to enhance, inhibit, or qualitatively modulate immune responses are important for diverse biomedical applications such as vaccine adjuvant, drug delivery, immunotherapy, cell transplant, tissue engineering, and regenerative medicine. However, the clinical efficiency of these biomaterial systems is affected by the limited understanding of their interaction with complex host microenvironments, for example, excessive foreign body reaction and immunotoxicity. Biomaterials and biomedical devices implanted in the body may induce a highly complicated and orchestrated series of host responses. As macrophages are among the first cells to infiltrate and respond to implanted biomaterials, the macrophage-mediated host response to biomaterials has been well studied. Dendritic cells (DCs) are the most potent antigen-presenting cells that activate naive T cells and bridge innate and adaptive immunity. The potential interaction of DCs with biomaterials appears to be critical for exerting the function of biomaterials and has become an important, developing area of investigation. Herein, we summarize the effects of the physicochemical properties of biomaterials on the immune function of DCs together with their receptors and signaling pathways. This review might provide a complete understanding of the interaction of DCs with biomaterials and serve as a reference for the design and selection of biomaterials with particular effects on targeted cells. STATEMENT OF SIGNIFICANCE: Biomaterials implanted in the body are increasingly applied in clinical practice. The performance of these implanted biomaterials is largely dependent on their interaction with the host immune system. As antigen-presenting cells, dendritic cells (DCs) directly interact with biomaterials through pattern recognition receptors (PRRs) recognizing "biomaterial-associated molecular patterns" and generate a battery of immune responses. In this review, the physicochemical properties of biomaterials that regulate the immune function of DCs together with their receptors and signaling pathways of biomaterial-DC interactions are summarized and discussed. We believe that knowledge of the interplay of DC and biomaterials may spur clinical translation by guiding the design and selection of biomaterials with particular effects on targeted cell for tissue engineering, vaccine delivery, and cancer therapy.
Asunto(s)
Materiales Biocompatibles/química , Células Dendríticas/citología , Transducción de Señal , Inmunidad Adaptativa , Animales , Células de la Médula Ósea/citología , Trasplante de Células , Reacción a Cuerpo Extraño/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Medicina Regenerativa , Propiedades de Superficie , Ingeniería de TejidosRESUMEN
The presence of biomaterials and devices implanted into soft tissue is associated with development of a foreign body response (FBR), a chronic inflammatory condition that can ultimately lead to implant failure, which may cause harm to or death of the patient. Development of FBR includes activation of macrophages at the tissue-implant interface, generation of destructive foreign body giant cells (FBGCs), and generation of fibrous tissue that encapsulates the implant. However, the mechanisms underlying the FBR remain poorly understood, as neither the materials composing the implants nor their chemical properties can explain triggering of the FBR. Herein, we report that genetic ablation of transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable mechanosensitive cation channel in the transient receptor potential vanilloid family, protects TRPV4 knockout mice from FBR-related events. The mice showed diminished collagen deposition along with reduced macrophage accumulation and FBGC formation compared with wild-type mice in a s.c. implantation model. Analysis of macrophage markers in spleen tissues and peritoneal cavity showed that the TRPV4 deficiency did not impair basal macrophage maturation. Furthermore, genetic deficiency or pharmacologic antagonism of TRPV4 blocked cytokine-induced FBGC formation, which was restored by lentivirus-mediated TRPV4 reintroduction. Taken together, these results suggest an important, previously unknown, role for TRPV4 in FBR.
Asunto(s)
Señalización del Calcio , Reacción a Cuerpo Extraño/metabolismo , Células Gigantes de Cuerpo Extraño/metabolismo , Macrófagos Peritoneales/metabolismo , Mecanotransducción Celular , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Reacción a Cuerpo Extraño/genética , Reacción a Cuerpo Extraño/patología , Células Gigantes de Cuerpo Extraño/patología , Macrófagos Peritoneales/patología , Ratones , Ratones Noqueados , Canales Catiónicos TRPV/genéticaRESUMEN
Masses near the angle of the mandible containing extracellular matrix or mucin on cytology raise concern for various benign and malignant parotid gland neoplasms. Here a 76-year-old female with a history of cosmetic hyaluronic acid (HA) filler injections presented with a painless 6 mm left sided facial mass. Injection of hyaluronidase into the mass had failed to cause regression, raising concern for a neoplastic process. Fine-needle aspiration (FNA) showed amorphous, mucinous/extracellular matrix-like material in a background of numerous histiocytes and occasional multinucleated giant cells, consistent with a foreign body giant cell reaction to HA. This uncommon reaction to HA filler creates previously unrecognized diagnostic pitfalls because of its resemblance on FNA to the extracellular matrix or mucin found in many salivary neoplasms.