Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-34826557

RESUMEN

The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.


Asunto(s)
Endocannabinoides/metabolismo , Trastornos Mentales , Estrés Nitrosativo/fisiología , Transducción de Señal , Animales , Encéfalo , Humanos , Inflamación , Trastornos Mentales/metabolismo , Trastornos Mentales/fisiopatología , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología
2.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684760

RESUMEN

The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut-brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.


Asunto(s)
Peso Corporal/fisiología , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Apetito/fisiología , Antagonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/uso terapéutico , Endocannabinoides/uso terapéutico , Humanos , Obesidad/tratamiento farmacológico , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/efectos de los fármacos , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/fisiología , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/fisiología
3.
J Cell Mol Med ; 25(18): 8957-8972, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34414658

RESUMEN

Kidney is one of the most important organs in maintaining the normal life activities. With the high abundance of mitochondria, renal tubular cell plays the vital role in functioning in the reabsorption and secretion of kidney. Reports have shown that mitochondrial dysfunction is of great importance to renal tubular cell senescence and subsequent kidney ageing. However, the underlying mechanisms are not elucidated. Cannabinoid receptor 2 is one of the two receptors responsible for the activation of endocannabinoid system. CB2 is primarily upregulated in renal tubular cells in chronic kidney diseases and mediates fibrogenesis. However, the role of CB2 in tubular mitochondrial dysfunction and kidney ageing has not been clarified. In this study, we found that CB2 was upregulated in kidneys in 24-month-old mice and d-galactose (d-gal)-induced accelerated ageing mice, accompanied by the decrease in mitochondrial mass. Furthermore, gene deletion of CB2 in d-gal-treated mice could greatly inhibit the activation of ß-catenin signalling and restore the mitochondrial integrity and Adenosine triphosphate (ATP) production. In CB2 knockout mice, renal tubular cell senescence and kidney fibrosis were also significantly inhibited. CB2 overexpression or activation by the agonist AM1241 could sufficiently induce the decrease in PGC-1α and a variety of mitochondria-related proteins and trigger cellular senescence in cultured human renal proximal tubular cells. CB2-activated mitochondrial dysfunction and cellular senescence could be blocked by ICG-001, a blocker for ß-catenin signalling. These results show CB2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. The intrinsic mechanism may be related to its activation in ß-catenin signalling.


Asunto(s)
Senescencia Celular , Riñón , Mitocondrias/metabolismo , Receptor Cannabinoide CB2/fisiología , beta Catenina/metabolismo , Animales , Línea Celular , Células Epiteliales , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Insuficiencia Renal Crónica/metabolismo
4.
Shock ; 56(5): 673-681, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625115

RESUMEN

ABSTRACT: Sepsis is defined as a life-threatening organ dysfunction, caused by a dysregulated host response to an infection and can progress to septic shock, which represents a major challenge in critical care with a high mortality rate. Currently, there is no definitive treatment available for the dysregulated immune response in sepsis. Therefore, a better understanding of the pathophysiological mechanisms may be useful for elucidating the molecular basis of sepsis and may contribute to the development of new therapeutic strategies. The endocannabinoid system is an emerging research topic for the modulation of the host immune response under various pathological conditions. Cannabinoid receptors include the cannabinoid type 1 receptor (CB1) and the cannabinoid type 2 receptor (CB2). This review addresses the main functionality of CB1 and CB2 in sepsis, which can contribute to a better understanding about the pathophysiology of sepsis. Specifically, we discuss the role of CB1 in the cardiovascular system which is one of the biological systems that are strongly affected by sepsis and septic shock. We are also reviewing the role of CB2 in sepsis, specially CB2 activation, which exerts anti-inflammatory activities with potential benefit in sepsis.


Asunto(s)
Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Sepsis/etiología , Transducción de Señal/fisiología , Humanos
5.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371336

RESUMEN

There are two well-characterized cannabinoid receptors (CB1R and CB2R and other candidates): the central nervous system (CNS) enriched CB1R and peripheral tissue enriched CB2R with a wide dynamic range of expression levels in different cell types of human tissues. Hepatocytes and neurons express low baseline CB1R and CB2R, respectively, and their cell-type-specific functions are not well defined. Here we report inducible expression of CB1R in the liver by high-fat and high sugar diet and CB2R in cortical neurons by methamphetamine. While there is less controversy about hepatocyte CB1R, the presence of functional neuronal CB2R is still debated to date. We found that neuron CB2R basal expression was higher than that of hepatocyte CB1R by measuring mRNA levels of specific isoform CB2A in neurons isolated by fluorescence-activated cell sorting (FACS) and CB1A in hepatocytes isolated by collagenase perfusion of liver. For in vivo studies, we generated hepatocyte, dopaminergic neuron, and microglia-specific conditional knockout mice (Abl-Cnr1Δ, Dat-Cnr2Δ, and Cx3cr1-Cnr2Δ) of CB1R and CB2R by crossing Cnr1f/f and Cnr2f/f strains to Abl-Cre, Dat-Cre, and Cx3cr1-Cre deleter mouse strains, respectively. Our data reveals that neuron and microglia CB2Rs are involved in the "tetrad" effects of the mixed agonist WIN 55212-2, CB1R selective agonist arachidonyl-2'-chloroethylamide (ACEA), and CB2R selective agonist JWH133. Dat-Cnr2Δ and Cx3cr1-Cnr2Δ mice showed genotypic differences in hypomobility, hypothermia, analgesia, and catalepsy induced by the synthetic cannabinoids. Alcohol conditioned place preference was abolished in DAT-Cnr2Δ mice and remained intact in Cx3cr1-Cnr2Δ mice in comparison to WT mice. These Cre-loxP recombinant mouse lines provide unique approaches in cannabinoid research for dissecting the complex endocannabinoid system that is implicated in many chronic disorders.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cannabinoides/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Microglía/efectos de los fármacos , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/fisiología
6.
Dialogues Clin Neurosci ; 22(3): 207-222, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33162764

RESUMEN

The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.
.


El sistema endocannabinoide (SEC) apareció como un sistema de señalización muy versátil en el sistema nervioso. A pesar de su existencia amplia y ubicua, sus funciones están integradas en el contexto de distintos procesos neuronales y, en última instancia, son bastante bien discernibles y específicas. Esto es notable, y la pregunta sigue siendo ¿cómo puede surgir tal especificidad ? Un jugador clave del SEC es el receptor cannabinoide CB1; se trata de un receptor acoplado a proteína G, que se caracteriza por su complejidad de expresión específica del tipo celular, localización celular y subcelular y por su capacidad para la regulación adaptativa de las cascadas de señalización intracelular. El receptor CB1 participa en diferentes procesos de plasticidad sináptica y celular y en la bioenergética del cerebro de una manera contexto-específica. El receptor CB2 también se ha convertido en un actor importante en varios procesos en neuronas y células inmunes que residen en el cerebro. Las intervenciones farmacológicas dirigidas al SEC siguen siendo un enfoque terapéutico prometedor, dado que tanto los polimorfismos en los componentes del SEC, como los impactos externos (el estrés y las exigencias metabólicas) pueden conducir a una actividad desregulada del SEC y, posteriormente, a posibles trastornos neuropsiquiátricos. Una comprensión profunda de la neurobiología de la señalización de los receptores de cannabinoides ayudará a diseñar intervenciones terapéuticas de manera óptima, minimizando los efectos secundarios no deseados.


Le système endocannabinoïde (SEC) se comporte comme un système de signalisation très polyvalent au sein du système nerveux. Il est surprenant d'observer que ses fonctions, s'intégrant dans un cadre de processus neuronaux distincts, sont finalement très perceptibles et spécifiques malgré son étendue et son caractère ubiquitaire et l'on peut s'interroger sur l'origine d'une telle spécificité. Le récepteur cannabinoïde CB1, couplé à la protéine G, est au centre du SEC : il est caractérisé par sa complexité d'expression spécifique au type cellulaire, sa localisation cellulaire et sous-cellulaire et sa capacité de régulation flexible des cascades de signalisation intracellulaire. Le récepteur CB1 est impliqué dans différents processus de plasticité synaptique et cellulaire et il participe à la bioénergétique du cerveau selon le contexte. Le récepteur CB2 est également un acteur majeur dans plusieurs mécanismes neuronaux et des cellules immunitaires cérébrales. Le SEC pouvant être perturbé par des facteurs extérieurs comme le stress et les troubles métaboliques comme par ses composants polymorphes, générant par conséquent d'éventuels troubles neuropsychiatriques, les traitements médicamenteux le ciblant restent une approche thérapeutique prometteuse. Ces traitements seront d'autant plus efficaces et bien tolérés que nous comprendrons en détail la neurobiologie de la signalisation des récepteurs cannabinoïdes.


Asunto(s)
Endocannabinoides/fisiología , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/fisiología , Animales , Humanos , Neurobiología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/fisiología , Transducción de Señal
7.
Mol Cell Neurosci ; 109: 103566, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049367

RESUMEN

Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/ß-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/ß hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 µm) and long (>30 µm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gßγ inhibitor gallein, and ß-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gßγ, and ß-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.


Asunto(s)
Endocannabinoides/fisiología , Neuritas/ultraestructura , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Citoesqueleto de Actina/ultraestructura , Amidas/farmacología , Apoptosis/efectos de los fármacos , Ácidos Araquidónicos/biosíntesis , Línea Celular Tumoral , Endocannabinoides/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Glicéridos/biosíntesis , Humanos , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/metabolismo , Proteínas de Neoplasias/efectos de los fármacos , Proteínas de Neoplasias/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuroblastoma , Orlistat/farmacología , Oxotremorina/farmacología , Toxina del Pertussis/farmacología , Alcamidas Poliinsaturadas , Piridinas/farmacología , Pirimidinas/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB2/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Transducción de Señal , Xantenos/farmacología
8.
Sci Rep ; 10(1): 15819, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978469

RESUMEN

Recently, there have been increasing indications that the endocannabinoid (eCB) system is involved in vision. Multiple research teams studied the cannabinoid receptor type 2 (CB2R) expression and function in the mouse retina. Here, we examined the consequence of CB2R modulation on visual acuity using genetic and pharmacologic tools. We found that Cnr2 knockout mice show an enhanced visual acuity, CB2R activation decreased visual acuity while CB2R blockade with the inverse agonist AM630 increased it. The inhibition of 2-arachidonylglycerol (2-AG) synthesis and degradation also greatly increased and decreased visual acuity, respectively. No differences were seen when the cannabinoid receptor type 1 (CB1R) was deleted, blocked or activated implying that CB2R exclusively mediates cannabinoid modulation of the visual acuity. We also investigated the role of cannabinoids in retinal function using electroretinography (ERG). We found that modulating 2-AG levels affected many ERG components, such as the a-wave and oscillatory potentials (OPs), suggesting an impact on cones and amacrine cells. Taken together, these results reveal that CB2R modulates visual acuity and that eCBs such as 2-AG can modulate both visual acuity and retinal sensitivity. Finally, these findings establish that CB2R is present in visual areas and regulates vision-related functions.


Asunto(s)
Células Amacrinas/fisiología , Cannabinoides/farmacología , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Retina/fisiología , Agudeza Visual/fisiología , Células Amacrinas/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Retina/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/metabolismo , Agudeza Visual/efectos de los fármacos
9.
J Periodontal Res ; 55(5): 762-783, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32562275

RESUMEN

OBJECTIVE: The aim of this study is to understand the role of cannabinoid type 2 receptor (CB2R) during periodontal inflammation and to identify anti-inflammatory agents for the development of drugs to treat periodontitis (PD). BACKGROUND: Cannabinoid type 2 receptor is found in periodontal tissue at sites of inflammation/infection. Our previous study demonstrated anti-inflammatory responses in human periodontal ligament fibroblasts (hPDLFs) via CB2R ligands. METHODS: Anandamide (AEA), HU-308 (agonist), and SMM-189 (inverse agonist) were tested for effects on IL-1ß-stimulated cytokines, chemokines, and angiogenic and vascular markers expressed by hPDLFs using Mesoscale Discovery V-Plex Kits. Signal transduction pathways (p-c-Jun, p-ERK, p-p-38, p-JNK, p-CREB, and p-NF-kB) were investigated using Cisbio HTRF kits. ACTOne and Tango™ -BLA functional assays were used to measure cyclic AMP (cAMP) and ß-arrestin activity. RESULTS: IL-1ß stimulated hPDLF production of 18/39 analytes, which were downregulated by the CB2R agonist and the inverse agonist. AEA exhibited pro-inflammatory and anti-inflammatory effects. IL-1ß increased phosphoproteins within the first hour except p-JNK. CB2R ligands attenuated p-p38 and p-NFĸB, but a late rise in p-38 was seen with HU-308. As p-ERK levels declined, a significant increase in p-ERK was observed later in the time course by synthetic CB2R ligands. P-JNK was significantly affected by SMM-189 only, while p-CREB was elevated significantly by CB2R ligands at 180 minutes. HU-308 affected both cAMP and ß-arrestin pathway. SMM-189 only stimulated cAMP. CONCLUSION: The findings that CB2R agonist and inverse agonist may potentially regulate inflammation suggest that development of CB2R therapeutics could improve on current treatments for PD and other oral inflammatory pathologies.


Asunto(s)
Cannabinoides , Ligamento Periodontal , Receptor Cannabinoide CB2 , Ácidos Araquidónicos/farmacología , Cannabinoides/farmacología , Células Cultivadas , Endocannabinoides/farmacología , Fibroblastos , Humanos , Inflamación , Interleucina-18/metabolismo , Ligamento Periodontal/metabolismo , Alcamidas Poliinsaturadas/farmacología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/efectos de los fármacos , Receptor Cannabinoide CB2/fisiología
10.
Handb Exp Pharmacol ; 258: 323-353, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32236882

RESUMEN

Since antiquity, Cannabis has provoked enormous intrigue for its potential medicinal properties as well as for its unique pharmacological effects. The elucidation of its major cannabinoid constituents, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), led to the synthesis of new cannabinoids (termed synthetic cannabinoids) to understand the mechanisms underlying the pharmacology of Cannabis. These pharmacological tools were instrumental in the ultimate discovery of the endogenous cannabinoid system, which consists of CB1 and CB2 cannabinoid receptors and endogenously produced ligands (endocannabinoids), which bind and activate both cannabinoid receptors. CB1 receptors mediate the cannabimimetic effects of THC and are highly expressed on presynaptic neurons in the nervous system, where they modulate neurotransmitter release. In contrast, CB2 receptors are primarily expressed on immune cells. The endocannabinoids are tightly regulated by biosynthetic and hydrolytic enzymes. Accordingly, the endocannabinoid system plays a modulatory role in many physiological processes, thereby generating many promising therapeutic targets. An unintended consequence of this research was the emergence of synthetic cannabinoids sold for human consumption to circumvent federal laws banning Cannabis use. Here, we describe research that led to the discovery of the endogenous cannabinoid system and show how knowledge of this system benefitted as well as unintentionally harmed human health.


Asunto(s)
Endocannabinoides/fisiología , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Cannabidiol/farmacología , Cannabinoides/farmacología , Dronabinol/farmacología , Humanos
11.
Ann Anat ; 230: 151516, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32240731

RESUMEN

PURPOSE: The endocannabionoid signaling system has been demonstrated to be present in the skeleton, with involvement in the regulation of skeletal homeostasis. However, investigations substantiating these findings in cranial and alveolar bones are missing to date. The aim of our study was to investigate a potential impact of the endocannabinoid system on cranial and alveolar bone structures and phenotypes. BASIC PROCEDURES: CB1-/-, CB2-/- and WT mice (n = 5) were scanned via µCT. Reconstructed datasets were processed for analyses. Cranial cephalometric measurements were performed with OnyxCeph3TMsoftware. Alveolar bone densities were determined via mean grey value measurements with Mimics research 18.0. Alveolar bone heights around teeth in upper and lower jaws were morphometrically analyzed. Alveolar osteoclasts were quantified via TRAP staining of paraffin-embedded histologies. Bone-marrow derived macrophages isolated from murine hind legs were analyzed for CD40 and MMR expression via flow cytometry. MAIN FINDINGS: CB2-/- mice exhibited significantly higher bone densities with mean grey values of 138.3 ± 22.6 compared to 121.9 ± 9.3 for WT for upper jaws, and 134.6 ± 22.9 compared to 116.1 ± 12.9 for WT 134.6 ± 22.9. Concurrently, CB2 receptor knockout entailed reduced alveolar bone heights of about 50% compared to WT mice. Antigen-presenting cell marker expression of MMR was significantly diminished in bone-marrow derived macrophages of CB2-/- mice. Cranium dimensions as much as alveolar osteoclasts were unaffected by receptor knockouts.CB1 receptor knockout did not involve statistically significant alterations in the parameters investigated compared to WT mice. PRINCIPAL CONCLUSIONS: The endoncannabinoid system, and particularly CB2 receptor strongly affects murine alveolar bone phenotypes. These observations suggest CB2 as promising target in the modulation of oral bone phenotypes, probably by impact on bone dynamics via osteal immune cells.


Asunto(s)
Endocannabinoides/fisiología , Maxilares/anatomía & histología , Receptor Cannabinoide CB2/fisiología , Cráneo/anatomía & histología , Análisis de Varianza , Animales , Densidad Ósea , Resorción Ósea/fisiopatología , Antígenos CD40/metabolismo , Cefalometría , Citometría de Flujo , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Análisis Multivariante , Fenotipo
12.
Exp Cell Res ; 389(1): 111881, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32006556

RESUMEN

Human adipose tissue includes large quantities of mesenchymal stromal cells (atMSCs), which represent an abundant cell source for therapeutic applications in the field of regenerative medicine. Adipose tissue secrets various soluble factors including endocannabinoids, and atMSCs express the cannabinoid receptors CB1 and CB2. This indicates that adipose tissue possesses an endocannabinoid system (ECS). The ECS is also ascribed great significance for wound repair, e.g. by modulating inflammation. However, the exact effects of CB1/CB2 activation in human atMSCs have not been investigated, yet. In the present study, we stimulated human atMSCs with increasing concentrations (1-30 µM) of the unspecific cannabinoid receptor ligand WIN55,212-2 and the specific CB2 agonist JWH-133, either alone or co-applied with the receptor antagonist Rimonabant (CB1) or AM 630 (CB2). We investigated the effects on metabolic activity, cell number, differentiation and cytokine release, which are important processes during tissue regeneration. WIN decreased metabolic activity and cell number, which was reversed by Rimonabant. This suggests a CB1 dependent mechanism, whereas the number of atMSCs was increased after CB2 ligation. WIN and JWH increased the release of VEGF, TGF-ß1 and HGF. Adipogenesis was enhanced by WIN, which could be reversed by blocking CB1. There was no effect on osteogenesis, and only WIN increased chondrogenic differentiation. Our results indicate that definite activation of the cannabinoid receptors exerted different effects in atMSCs, which could be of specific value in cell-based therapy for wound regeneration.


Asunto(s)
Tejido Adiposo/citología , Autorrenovación de las Células , Células Madre Mesenquimatosas/fisiología , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Regeneración , Benzoxazinas/farmacología , Cannabinoides/farmacología , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Endocannabinoides/agonistas , Endocannabinoides/antagonistas & inhibidores , Endocannabinoides/farmacología , Humanos , Indoles/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Cultivo Primario de Células , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Regeneración/efectos de los fármacos , Regeneración/fisiología , Rimonabant/farmacología
13.
J Pharmacol Exp Ther ; 373(2): 230-238, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32054717

RESUMEN

Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain. SIGNIFICANCE STATEMENT: Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non-opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone.


Asunto(s)
Neoplasias Óseas/secundario , Dolor en Cáncer/tratamiento farmacológico , Carbamatos/uso terapéutico , Endocannabinoides/fisiología , Neoplasias Mamarias Experimentales/patología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Succinimidas/uso terapéutico , Animales , Neoplasias Óseas/fisiopatología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos BALB C , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-31830508

RESUMEN

Adolescence is characterised by substantial changes in emotion regulation and, in particular, impaired extinction consolidation and retention. In this study, we replicated the well-established finding that increasing the activation of cannabinoid receptor 1 (CB1R) via the agonist WIN55212-2 improves fear extinction in adult rodents before examining whether this adjunct would also rescue the extinction retention deficit seen in adolescent rodents. Contrary to the effects in adults, we found that WIN55212-2 impaired within-session acquisition of extinction in adolescent rats with no effect on extinction retention. The same effects of WIN55212-2 were observed for juvenile rats, and did not vary as a function of drug dose. Increased fear expression observed during extinction training was not a result of altered locomotor or anxiety-like behaviour in adolescent rats, as assessed by the open field test. Lastly, we observed a linear decrease in CB1R protein expression across age (i.e., from juveniles, to adolescents, and adults) in both the medial prefrontal cortex and amygdala, two regions implicated in fear expression and extinction, suggesting that there is continued refinement of the endocannabinoid system across development in two regions involved in extinction. Our findings suggest that the expression and extinction of fear in developing rats is differentially affected by CB1R agonism due to an immature endocannabinoid system.


Asunto(s)
Benzoxazinas/farmacología , Encéfalo/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas , Factores de Edad , Animales , Encéfalo/crecimiento & desarrollo , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Masculino , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología
15.
Psychopharmacology (Berl) ; 237(2): 385-394, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31667531

RESUMEN

RATIONALE: Cocaine is a psychostimulant drug that facilitates monoaminergic neurotransmission. The endocannabinoid system, comprising the cannabinoid receptors (CB1R and CB2R), the endocannabinoids, and their metabolizing-enzymes, modulates the mesolimbic dopaminergic pathway and represents a potential target for the treatment of addiction. OBJECTIVES: Here, we tested the hypothesis that the cannabinoid receptors are implicated in cocaine-induced motor sensitization, conditioned place preference (CPP), and hippocampal activation. METHODS: Male Swiss mice received injections of AM251 (CB1R antagonist; 0.3-10 mg/kg) or JWH133 (CB2R agonist; 1-10 mg/kg) before acquisition or expression of cocaine (20 mg/kg)-induced sensitization and CPP. After the CPP test, cFos-staining was employed as a marker of neuronal activation in the hippocampus. RESULTS: AM251 inhibited the acquisition (0.3, 1, and 3 mg/kg) and expression (1 and 3 mg/kg) of sensitization, as well as the acquisition (10 mg/kg) of CPP. JWH133 inhibited the acquisition (0.3 and 1 mg/kg) and expression (1 and 3 mg/kg) of both sensitization and CPP. JWH133 effects were reversed by AM630 (CB2R antagonist; 5 mg/kg). AM251 and JWH133 also prevented neuronal activation (c-Fos expression) in the hippocampus of CPP-exposed animals. CONCLUSIONS: CB1R and CB2R have opposite roles in modulating cocaine-induced sensitization and CPP, possibly by preventing neuronal activation in the hippocampus.


Asunto(s)
Cocaína/farmacología , Condicionamiento Clásico/fisiología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/fisiología , Animales , Cannabinoides/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Piperidinas/farmacología , Pirazoles/farmacología
16.
Neurotox Res ; 37(1): 126-135, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31286434

RESUMEN

A number of physiological responses in the central nervous system (CNS) are regulated by the endocannabinoid system (ECS). Inhibition of neuronal excitability via activation of cannabinoid receptors (CBr) constitutes a potential protective response against neurotoxic insults. Oleamide (ODA) is a fatty acid amide with endocannabinoid profile exerting several effects in the CNS, though its neuroprotective properties remain unknown. The tryptophan metabolite quinolinic acid (QUIN) elicits toxic effects via overactivation of N-methyl-D-aspartate receptors (NMDAr) after its accumulation in the CNS under pathological conditions. Here, we investigated the protective properties of ODA against the excitotoxic damage induced by QUIN in rat brain synaptosomes and cortical slices, and whether these effects are linked to the stimulation of the endocannabinoid system via CB1 and/or CB2 receptor activation. ODA (1-50 µM) prevented the QUIN (100 µM)-induced loss of mitochondrial reductive capacity in synaptosomes in a mechanism partially mediated by CB1 receptor, as evidenced by the recovery of mitochondrial dysfunction induced by co-incubation with the CB1 receptor antagonist/inverse agonist AM281 (1 µM). In cortical slices, ODA prevented the short-term QUIN-induced loss of cell viability and the cell damage in a partial CB1 and CB2 receptor-dependent manner. Altogether, these findings demonstrate the neuroprotective and modulatory properties of ODA in biological brain preparations exposed to excitotoxic insults and the partial role that the stimulation of CB1 and CB2 receptors exerts in these effects.


Asunto(s)
Supervivencia Celular/fisiología , Corteza Cerebral/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácidos Oléicos/farmacología , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/fisiología , Animales , Encéfalo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Morfolinas/farmacología , Ácidos Oléicos/antagonistas & inhibidores , Pirazoles/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas
17.
Arch Oral Biol ; 108: 104525, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31472278

RESUMEN

OBJECTIVES: This study aims to investigate the role of Cannabinoid receptor 2 (CB2) on osteogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) under hypoxia. MATERIALS AND METHODS: BMSCs were isolated from Sprague-Dawley rats and cultured in the presence of cobalt chloride (CoCl2) to induce intracellular hypoxia. Cell proliferation was measured with MTT assay. Quantitative real-time PCR and western blot were applied to evaluate the mRNA and protein expressions of CB2 and osteogenic indicators including osteocalcin, RUNX2, collagen-1 and osterix (SP7). The osteogenic differentiation of BMSCs was further examined by ALP assay and alizarin red S (ARS) staining. Moreover, the activation of MAPKs signaling pathways was analyzed by western blot. RESULTS: CoCl2 dose-dependently increased hypoxia inducible factor while higher concentrations (200 and 400 µM) of CoCl2 markedly inhibited cell proliferation. CoCl2 induced hypoxia significantly increased the protein and mRNA expressions of osteocalcin, RUNX2, collagen-1 and osterix, along with enhanced ALP and ARS staining. Interestingly, such effects can be inhibited by the addition of CB2 inhibitor AM630. Moreover, AM630 partially inhibited hypoxia-induced p38 and ERK pathways, which may lead to a decrease in the osteogenic transcripts of RUNX2, collagen-1 and osterix. CONCLUSIONS: CoCl2 induced hypoxia could promote osteogenesis of rat BMSCs possibly through CB2.


Asunto(s)
Cannabinoides , Hipoxia , Células Madre Mesenquimatosas , Osteogénesis , Receptor Cannabinoide CB2 , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Cobalto , Células Madre Mesenquimatosas/microbiología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB2/fisiología
18.
Expert Rev Clin Immunol ; 15(10): 1019-1032, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31512536

RESUMEN

Introduction: Clinicians involved in pain management can finally include cannabis or cannabis-related products in their therapeutic armamentarium as a growing number of countries have approved them for pain relief. Despite the several benefits attributed to analgesic, anti-inflammatory and immunomodulatory properties of cannabinoids, there are still significant areas of uncertainty concerning their use in many fields of medicine. The biosynthesis and inactivation of cannabinoids are regulated by a complex signaling system of cannabinoid receptors, endocannabinoids (the endogenous ligands of cannabinoid receptors) and enzymes, with a variety of interactions with neuroendocrinological and immunological systems. Areas covered: A review of studies carried out during clinical development of cannabis and cannabis medical products in systemic rheumatic diseases was performed, highlighting the aspects that we believe to be relevant to clinical practice. Expert opinion: The growing public opinion, pushing toward the legalization of the use of cannabis in chronic pain and various rheumatological conditions, makes it necessary to have educational programs that modify the concerns and widespread preconceptions related to this topic in the medical community by increasing confidence. More extensive basic and clinical research on the mechanisms and clinical utility of cannabis and derivatives in various diseases and their long-term side effects is necessary.


Asunto(s)
Cannabinoides/uso terapéutico , Marihuana Medicinal/uso terapéutico , Enfermedades Reumáticas/tratamiento farmacológico , Cannabinoides/efectos adversos , Dronabinol/uso terapéutico , Humanos , Marihuana Medicinal/efectos adversos , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología
19.
Curr Pharm Des ; 25(29): 3147-3164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31448709

RESUMEN

The Endocannabinoid (eCB) system and its role in many physiological and pathological conditions is well described and accepted, and includes cardiovascular disorders. However, the eCB system has been expanded to an "-ome"; the endocannabinoidome (eCBome) that includes endocannabinoid-related mediators, their protein targets and metabolic enzymes, many of which significantly impact upon cardiometabolic health. These recent discoveries are here summarized with a special focus on their potential involvement in atherosclerosis. We described the role of classical components of the eCB system (eCBs, CB1 and CB2 receptors) and eCB-related lipids, their regulatory enzymes and molecular targets in atherosclerosis. Furthermore, since increasing evidence points to significant cross-talk between the eCBome and the gut microbiome and the gut microbiome and atherosclerosis, we explore the possibility that a gut microbiome - eCBome axis has potential implications in atherosclerosis.


Asunto(s)
Aterosclerosis/fisiopatología , Endocannabinoides/fisiología , Microbioma Gastrointestinal , Animales , Humanos , Lípidos , Ratones , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología
20.
Med Hypotheses ; 131: 109321, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31443753

RESUMEN

Interstitial cystitis is a chronic inflammatory condition of the urinary bladder with an unclear etiology. Currently, there are no widely accepted long-term treatment options available for patients with IC, with the European Association of Urology (EAU, 2017 guidelines), American Urology Association (AUA, 2014 guidelines), and the Royal College of Obstetricians and Gynaecologists (RCOG, 2016 guidelines) all suggesting various different conservative, pharmacological, intravesical, and surgical interventions. The endocannabinoid system represents a potential target for IC treatment and management. Activation of cannabinoid receptor 2 (CBR2) with various agonists has previously been shown to reduce leukocyte differentiation and migration, in addition to inhibiting the release of pro-inflammatory cytokines at the site of inflammation. These receptors have been identified in the detrusor and sensory nerves of the urothelium in various mammalian species, including humans. We hypothesize that by inhibiting the enzymes responsible for the catabolism of endogenous cannabinoids locally, bladder concentrations of CBR2 agonists will increase, particularly 2-arachidonyl glycerol, resulting in a diminished inflammatory response.


Asunto(s)
Cistitis Intersticial/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Terapia Molecular Dirigida , Monoacilglicerol Lipasas/antagonistas & inhibidores , Administración Intravesical , Animales , Ácidos Araquidónicos/metabolismo , Cistitis Intersticial/enzimología , Endocannabinoides/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Glicéridos/metabolismo , Humanos , Ratas , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/fisiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA