Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Cell Mol Life Sci ; 81(1): 277, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913115

RESUMEN

Many brain diseases lead to a reduction in the number of functional neurons and it would be of value to be able to increase the number of neurons in the affected brain areas. In this study, we examined whether we can promote neural stem cells to produce mature neurons and whether an increase in the mature neurons can affect cognitive performance. We detected that the EphB2 receptor is localized in immature basolateral amygdala (BLA) neurons. We therefore aimed to increase the level of EphB2 activity in neural stem cells (NSCs) in the BLA and examine the effects on the production of mature neurons and cognition. Toward that end, we utilized a photoactivatable EphB2 construct (optoEphB2) to increase EphB2 forward signaling in NSCs in the BLA. We revealed that the activation of optoEphB2 in NSCs in the BLA increased the level of immature and mature neurons in the BLA. We further found that activation of optoEphB2 in BLA NSCs enhanced auditory, but not contextual, long-term fear memory formation. Impairing EphB2 forward signaling did not affect the level of immature and mature neurons in the BLA. This study provides evidence that NSCs can be promoted to produce mature neurons by activating EphB2 to enhance specific brain functions.


Asunto(s)
Complejo Nuclear Basolateral , Memoria a Largo Plazo , Células-Madre Neurales , Neurogénesis , Receptor EphB2 , Animales , Receptor EphB2/metabolismo , Receptor EphB2/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Memoria a Largo Plazo/fisiología , Masculino , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/citología , Ratones , Neuronas/metabolismo , Neuronas/citología , Ratones Endogámicos C57BL , Miedo/fisiología , Transducción de Señal
2.
ACS Chem Biol ; 19(6): 1214-1221, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739742

RESUMEN

Ephrin (Eph) receptors are the largest family of receptor tyrosine kinases. Interactions between Eph receptors and their membrane-bound ephrin protein ligands are associated with many developmental processes as well as various cancers and neurodegenerative diseases. With significant crosstalk between different Eph receptors and ephrin ligands, there is an urgent need for high-affinity ligands that bind specifically to individual Eph receptors to interrogate and modulate their functions. Here, we describe the rational development of potent EphB2 receptor inhibitors derived from the EphB2 receptor-specific SNEW peptide. To improve inhibitory potency, we evaluated 20+ cross-linkers with the goal of spanning and stabilizing a single polyproline II helical turn observed when SNEW binds to the EphB2 receptor. Of the cross-linkers evaluated, an 11-atom cross-linker, composed of a rigid 2,7-dimethylnaphthyl moiety between two cysteine residues, was found to yield the most potent inhibitor. Analysis of the cyclized region of this peptide by NMR and molecular dynamics simulations suggests that cross-linking stabilizes the receptor-bound polyproline II helix structure observed in the receptor-peptide complex. Cross-linked SNEW variants retained binding specificity for EphB2 and showed cross-linker-dependent resistance to trypsin proteolysis. Beyond the discovery of more potent EphB2 receptor inhibitors, these studies illustrate a novel cyclization approach with potential to stabilize polyproline II helical structure in various peptides for specific targeting of the myriad protein-protein interactions (PPIs) mediated by polyproline II helices.


Asunto(s)
Péptidos , Receptor EphB2 , Receptor EphB2/química , Receptor EphB2/metabolismo , Receptor EphB2/antagonistas & inhibidores , Péptidos/química , Péptidos/farmacología , Humanos , Simulación de Dinámica Molecular , Unión Proteica
3.
Sci Adv ; 10(20): eadi7024, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758791

RESUMEN

At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas del Tejido Nervioso , Neurotransmisores , Receptor EphB2 , Proteínas SNARE , Transmisión Sináptica , Proteínas SNARE/metabolismo , Animales , Neurotransmisores/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Receptor EphB2/metabolismo , Receptor EphB2/genética , Proteínas de Unión al Calcio/metabolismo , Unión Proteica , Humanos , Ratones , Ratas
4.
ACS Infect Dis ; 10(4): 1152-1161, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442009

RESUMEN

Periodontitis, a chronic infectious disease in periodontal tissues, is characterized by an imbalance of alveolar bone resorption and remodeling, which eventually results in tooth loosening and even tooth loss. The etiology of periodontitis is polymicrobial synergy and dysbiosis, in which Porphyromonas gingivalis (P. gingivalis) is one of the primary pathogens responsible for periodontitis progression. The interplay of EphrinB2/EphB4 is crucial for osteoblast-osteoclast communication during bone remodeling and healing. This study investigates the mechanism of EphB4/EphrinB2 transduction modulating osteogenesis inhibition and bone resorption in periodontitis induced by P. gingivalis. An in vivo model of chronic periodontitis provoked by P. gingivalis was constructed, the inflammation and bone resorption were evaluated. The expression of EphB4 and EphrinB2 proteins in periodontal tissues was detected, which was also evaluated, respectively, in osteoblasts and osteoclasts infected with P. gingivalis in vitro. Then, a simulated coculture model of osteoblasts and osteoclasts was established to activate the forward and reverse pathways of EphB4/EphrinB2 with P. gingivalis infection. This study showed that P. gingivalis infection promoted alveolar bone resorption in rats and enhanced EphB4 and EphrinB2 expression in periodontal tissues. EphB4 and molecules associated with osteogenesis in osteoblasts infected with P. gingivalis were inhibited, while EphrinB2 and osteoclast differentiation-related markers in osteoclasts were activated. In conclusion, this study suggested that EphB4/EphrinB2 proteins were involved in alveolar bone remodeling in the process of periodontitis induced by P. gingivalis infection. Moreover, attenuated EphB4/EphrinB2 with P. gingivalis infection weakened osteoblast activity and enhanced osteoclast activity.


Asunto(s)
Resorción Ósea , Periodontitis , Receptor EphB2 , Receptor EphB4 , Animales , Ratas , Resorción Ósea/genética , Resorción Ósea/metabolismo , Resorción Ósea/microbiología , Osteoclastos/metabolismo , Periodontitis/microbiología , Porphyromonas gingivalis/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Transducción de Señal , Receptor EphB2/metabolismo , Infecciones por Bacteroidaceae/metabolismo , Infecciones por Bacteroidaceae/microbiología
5.
CNS Neurosci Ther ; 30(2): e14611, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353051

RESUMEN

AIMS: Basolateral amygdala (BLA), as a center for stress responses and emotional regulation, is involved in visceral hypersensitivity of irritable bowel syndrome (IBS) induced by stress. In the present study, we aimed to investigate the role of EphB2 receptor (EphB2) in BLA and explore the underlying mechanisms in this process. METHODS: Visceral hypersensitivity was induced by water avoidance stress (WAS). Elevated plus maze test, forced swimming test, and sucrose preference test were applied to assess anxiety- and depression-like behaviors. Ibotenic acid or lentivirus was used to inactivate BLA in either the induction or maintenance stage of visceral hypersensitivity. The expression of protein was determined by quantitative PCR, immunofluorescence, and western blot. RESULTS: EphB2 expression was increased in BLA in WAS rats. Inactivation of BLA or downregulation of EphB2 in BLA failed to induce visceral hypersensitivity as well as anxiety-like behaviors. However, during the maintenance stage of visceral pain, visceral hypersensitivity was only partially relieved but anxiety-like behaviors were abolished by inactivation of BLA or downregulation of EphB2 in BLA. Chronic WAS increased the expression of EphB2, N-methyl-D-aspartate receptors (NMDARs), and postsynaptic density protein (PSD95) in BLA. Downregulation of EphB2 in BLA reduced NMDARs and PSD95 expression in WAS rats. However, activation of NMDARs after the knockdown of EphB2 expression still triggered visceral hypersensitivity and anxiety-like behaviors. CONCLUSIONS: Taken together, the results suggest that EphB2 in BLA plays an essential role in inducing visceral hypersensitivity. In the maintenance stage, the involvement of EphB2 is crucial but not sufficient. The increase in EphB2 induced by WAS may enhance synaptic plasticity in BLA through upregulating NMDARs, which results in IBS-like symptoms. These findings may give insight into the treatment of IBS and related psychological distress.


Asunto(s)
Complejo Nuclear Basolateral , Síndrome del Colon Irritable , Dolor Visceral , Animales , Ratas , Complejo Nuclear Basolateral/metabolismo , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/psicología , Ratas Sprague-Dawley , Receptor EphB2/metabolismo , Estrés Psicológico/psicología , Dolor Visceral/metabolismo , Agua/metabolismo
6.
Elife ; 122024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289221

RESUMEN

Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas F-Box , Receptor EphB2 , Ubiquitina-Proteína Ligasas , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Caenorhabditis elegans/genética , Receptor EphB2/genética , Transducción de Señal , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
7.
Int J Biol Macromol ; 258(Pt 1): 128848, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114003

RESUMEN

The survival benefit for patients with gastric cancer (GC) is modest due to its high transfer potential. Targeted therapy for metastasis-related genes in GC may be a viable approach, however, inhibitors specifically targeting GC are limited. In this study, GC patient-derived xenografts (PDX) with metastatic burden were established via orthotopic transplantation. PCR-Array analysis of primary and metastatic tumors revealed EPH receptor B2 (EPHB2) as the most significantly upregulated gene. The interaction between the EPHB2 receptor and its cognate-specific EFNB1 ligands was high in GC and correlated with a poor prognosis. Fc-EFNB1 treatment increased the invasion and migration abilities of GC cells and induced a high EPHB2 expression. EPHB2 knockdown in GC cells completely abolished the ephrin ligand-induced effects on invasion and migration abilities. Signal transduction analysis revealed Wnt/ß-catenin and FAK as downstream signaling mediators potentially inducing the EPHB2 phenotype. In conclusion, the observed deregulation of EPHB2/EFNB1 expression in GC enhances the invasive phenotype, suggesting a potential role of EPHB2/EFNB1 compound in local tumor cell invasion and the formation of metastasis.


Asunto(s)
Receptor EphB2 , Neoplasias Gástricas , Humanos , Receptor EphB2/genética , Receptor EphB2/metabolismo , Neoplasias Gástricas/patología , Efrina-B1/genética , Efrina-B1/metabolismo , beta Catenina/metabolismo , Ligandos , Vía de Señalización Wnt , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
8.
Cell Mol Neurobiol ; 44(1): 12, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150042

RESUMEN

Intracranial vascular malformations manifest on a continuum ranging from predominantly arterial to predominantly venous in pathology. Cerebral cavernous malformations (CCMs) are capillary malformations that exist at the midpoint of this continuum. The axon guidance factor Ephrin B2 and its receptor EphB4 are critical regulators of vasculogenesis in the developing central nervous system. Ephrin B2/EphB4 dysregulation has been implicated in the pathogenesis of arterial-derived arteriovenous malformations and vein-based vein of Galen malformations. Increasing evidence supports the hypothesis that aberrant Ephrin B2/EphB4 signaling may contribute to developing vascular malformations, but their role in CCMs remains largely uncharacterized. Evidence of Ephrin dysregulation in CCMs would be important to establish a common link in the pathogenic spectrum of EphrinB2/Ephb4 dysregulation. By studying patient-derived primary CCM endothelial cells (CCMECs), we established that CCMECs are functionally distinct from healthy endothelial cell controls; CCMECs demonstrated altered patterns of migration, motility, and impaired tube formation. In addition to the altered phenotype, the CCMECs also displayed an increased ratio of EphrinB2/EphB4 compared to the healthy endothelial control cells. Furthermore, whole exome sequencing identified mutations in both EphrinB2 and EphB4 in the CCMECs. These findings identify functional alterations in the EphrinB2/EphB4 ratio as a feature linking pathophysiology across the spectrum of arterial, capillary, and venous structural malformations in the central nervous system while revealing a putative therapeutic target.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Receptor EphB2 , Receptor EphB4 , Humanos , Receptor EphB4/genética , Receptor EphB2/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Células Endoteliales/patología , Cultivo Primario de Células , Secuenciación del Exoma , Masculino , Femenino , Preescolar , Niño , Adolescente
9.
J Chem Inf Model ; 63(21): 6900-6911, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37910792

RESUMEN

With the aim of identifying novel antagonists selective for the EphA receptor family, a combined experimental and computational approach was taken to investigate the molecular basis of the recognition between a prototypical Eph-ephrin antagonist (UniPR1447) and two representative receptors of the EphA and EphB subfamilies, namely, EphA2 and EphB2 receptors. The conformational free-energy surface (FES) of the binding state of UniPR1447 within the ligand binding domain of EphA2 and EphB2, reconstructed from molecular dynamics (MD) simulations performed on the microsecond time scale, was exploited to drive the design and synthesis of a novel antagonist selective for EphA2 over the EphB2 receptor. The availability of compounds with this pharmacological profile will help discriminate the importance of these two receptors in the insurgence and progression of cancer.


Asunto(s)
Receptor EphA2 , Receptor EphB2 , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Receptor EphA2/antagonistas & inhibidores , Receptor EphB2/antagonistas & inhibidores
10.
Proc Natl Acad Sci U S A ; 120(9): e2219952120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802416

RESUMEN

Social behavior starts with dynamic approach prior to the final consummation. The flexible processes ensure mutual feedback across social brains to transmit signals. However, how the brain responds to the initial social stimuli precisely to elicit timed behaviors remains elusive. Here, by using real-time calcium recording, we identify the abnormalities of EphB2 mutant with autism-associated Q858X mutation in processing long-range approach and accurate activity of prefrontal cortex (dmPFC). The EphB2-dependent dmPFC activation precedes the behavioral onset and is actively associated with subsequent social action with the partner. Furthermore, we find that partner dmPFC activity is responsive coordinately to the approaching WT mouse rather than Q858X mutant mouse, and the social defects caused by the mutation are rescued by synchro-optogenetic activation in dmPFC of paired social partners. These results thus reveal that EphB2 sustains neuronal activation in the dmPFC that is essential for the proactive modulation of social approach to initial social interaction.


Asunto(s)
Corteza Prefrontal , Receptor EphB2 , Conducta Social , Animales , Ratones , Encéfalo , Neuronas/fisiología , Corteza Prefrontal/fisiología , Receptor EphB2/genética , Receptor EphB2/fisiología
11.
Mol Neurobiol ; 60(4): 2320-2329, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36637747

RESUMEN

Alterations in mRNA transcription have been associated with changes in brain functions. We wanted to examine if fear conditioning causes long-term changes in transcriptome profiles in the basolateral amygdala (BLA) and hippocampus using RNA-Seq and laser microdissection microscopy. We further aimed to uncover whether these changes are involved in memory formation by monitoring their levels in EphB2lacZ/lacZ mice, which lack EphB2 forward signaling and can form short-term fear conditioning memory but not long-term fear conditioning memory. We found transcriptome signatures unique to each brain region that are comprise of specific cellular pathways. We also revealed that fear conditioning leads to alterations in mRNAs levels 24 h after training in hippocampal neuropil, but not in hippocampal cell layers or BLA. The two main groups of altered mRNAs encode proteins involved in neuronal transmission, neuronal morphogenesis and neuronal development and the vast majority are known to be enriched in neurons. None of these mRNAs levels were altered by fear conditioning in EphB2lacZ/lacZ mice, which were also impaired in long-term fear memory. We show here that fear conditioning leads to an enduring alteration in mRNAs levels in hippocampal neuropil that is dependent on processes mediated by EphB2 that are needed for long-term memory formation.


Asunto(s)
Hipocampo , Transducción de Señal , Ratones , Animales , Transducción de Señal/fisiología , Hipocampo/metabolismo , Neurópilo/metabolismo , Miedo/fisiología , ARN , Receptor EphB2/genética , Receptor EphB2/metabolismo
12.
Ocul Immunol Inflamm ; 31(3): 506-514, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35404750

RESUMEN

OBJECTIVE: LINC00488 confers oncogenic activity in the progression of some tumors. Hence, the target of the study was about to specify LINC00488-mediated network in retinoblastoma (RB). METHODS: LINC00488 expression was tested in RB clinical tissues. siRNA targeting LINC00488 or miR-30a-5p mimic was introduced into RB cell line (Y79) to observe cellular biological functions. The relationship between LINC00488, miR-30a-5p and EPHB2 was verified. Afterward, the role of miR-30a-5p involved in RB through targeted regulation of EPHB2 was probed in vitro and in vivo. RESULTS: LINC00488 was induced in RB tissue and cells. LINC00488 knockdown or miR-30a-5p upregulation depressed the malignant activities of Y79 cells. LINC00488 could sponge miR-30a-5p that targeted EPHB2. EPHB2, and EPHB2 overexpression counteracted miR-30a-5p restoration-induced inhibition of Y79 cell development in vitro and in vivo. CONCLUSION: LINC00488 induces tumorigenicity in RB by binding to miR-30a-5p to target EPHB2, which may offer a new clue of RB treatment from an lncRNA-miRNA-mRNA network.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Receptor EphB2 , Neoplasias de la Retina , Retinoblastoma , Humanos , Línea Celular Tumoral , Proliferación Celular , MicroARNs/metabolismo , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Retinoblastoma/metabolismo , Retinoblastoma/patología , ARN Largo no Codificante/metabolismo , Receptor EphB2/metabolismo
13.
Nat Rev Clin Oncol ; 19(10): 616, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36064792
14.
J Immunol ; 209(9): 1796-1805, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130827

RESUMEN

The receptor tyrosine kinase EPHB2 (EPH receptor B2) is highly expressed in many human cancer types, especially in gastrointestinal cancers, such as colorectal cancer. Several coding mutations of the EPHB2 gene have been identified in many cancer types, suggesting that EPHB2 plays a critical role in carcinogenesis. However, the exact functional mechanism of EPHB2 in carcinogenesis remains unknown. In this study, we find that EPHB2 is required for TNF-induced signaling activation and proinflammatory cytokine production in colorectal epithelial cells. Mechanistically, after TNF stimulation, EPHB2 is ubiquitinated by its E3 ligase RNF186. Then, ubiquitinated EPHB2 recruits and further phosphorylates TAB2 at nine tyrosine sites, which is a critical step for the binding between TAB2 and TAK1. Due to defects in TNF signaling in RNF186-knockout colorectal epithelial cells, the phenotype of colitis-propelled colorectal cancer model in RNF186-knockout mice is significantly reduced compared with that in wild-type control mice. Moreover, we find that a genetic mutation in EPHB2 identified in a family with colorectal cancer is a gain-of-function mutation that promoted TNF signaling activation compared with wild-type EPHB2. We provide evidence that the EPHB2-RNF186-TAB2-TAK1 signaling cascade plays an essential role in TNF-mediated signal transduction in colorectal epithelial cells and the carcinogenesis of colorectal cancer, which may provide potential targets for the treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Receptor EphA1 , Animales , Humanos , Ratones , Carcinogénesis , Neoplasias Colorrectales/genética , Citocinas , Células Epiteliales/metabolismo , Receptor EphA1/metabolismo , Transducción de Señal , Tirosina , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Receptor EphB2
15.
JCI Insight ; 7(15)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35737458

RESUMEN

Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.


Asunto(s)
Lesiones Encefálicas , Monocitos , Humanos , Lesiones Encefálicas/metabolismo , Efrinas/metabolismo , Monocitos/metabolismo , Fenotipo , Receptor EphB2/metabolismo , Animales , Ratones
16.
Stress ; 25(1): 166-178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435121

RESUMEN

Patients with post-traumatic stress disorder (PTSD) are usually at an increased risk for chronic disorders, such as irritable bowel syndrome (IBS), characterized by hyperalgesia and allodynia, but its subsequent effect on visceral hyperalgesia and the mechanism remain unclear. The present study employed single prolonged stress (SPS), a model of PTSD-pain comorbidity, behavioral evaluation, intrathecal drug delivery, immunohistochemistry, Western blotting, and RT-PCR techniques. When detecting visceral sensitivity, the score of the abdominal withdrawal reflex (AWR) induced by graded colorectal distention (CRD) was used. The AWR score was reduced in the SPS day 1 group but increased in the SPS day 7 and SPS day 14 groups at 40 mmHg and 60 mmHg, and the score was increased significantly with EphrinB1-Fc administration. The EphB2+ cell density and EphB2 protein and mRNA levels were downregulated in the SPS day 1 group and then upregulated significantly in the SPS day 7 group; these changes were more noticeable with EphrinB1-Fc administration compared with the SPS-only group. The C-Fos-positive reaction induced by SPS was mainly localized in neurons of the spinal dorsal horn, in which the C-Fos-positive cell density and its protein and mRNA levels were upregulated on SPS days 7 and 14; these changes were statistically significant in the SPS + EphrinB1-Fc group compared with the SPS alone group. The present study confirmed the time window for the AWR value, EphB2 and C-Fos changes, and the effect of EphrinB1-Fc on these changes, which suggests that spinal cord EphB2 activation exacerbates visceral pain after SPS.


Asunto(s)
Hiperalgesia , Dolor Visceral , Animales , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor EphB2/genética , Receptor EphB2/metabolismo , Médula Espinal/metabolismo , Estrés Psicológico , Dolor Visceral/genética , Dolor Visceral/metabolismo
17.
Life Sci ; 295: 120419, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183555

RESUMEN

AIMS: Sustained visceral hypersensitivity is a hallmark of irritable bowel syndrome (IBS) could be partially explained by enteric neural remodeling. Particularly, synaptic plasticity in the enteric nervous system, a form of enteric "memory", has been speculated as a participant in the pain maintenance in IBS. This study aimed to elucidate the role of ephrinB2/ephB2 in enteric synaptic plasticity and visceral pain in IBS. MATERIALS AND METHODS: EphrinB2/ephB2 expression and synaptic plasticity were assessed in colonic tissues from IBS patients, and rats induced by Trichinella spiralis infection and those treated with ephB2-Fc (an ephB2 receptor blocker) or ifenprodil (a selective NR2B antagonist). Furthermore, abdominal withdrawal reflex scores to colorectal distention and mesenteric afferent firing were assessed. EphrinB2-Fc(an ephB2 receptor activator) induced enteric synaptic plasticity was further evaluated in longitudinal muscle-myenteric plexus(LMMP) cultures and primary cultured myenteric neurons. KEY FINDINGS: EphrinB2/ephB2 was specifically expressed in colonic nerves and upregulated in IBS patients and rats, which was correlated with pain severity. The functional synaptic plasticity, visceral sensitivity to colorectal distention and colonic mesenteric afferent activity to mechanical and chemical stimulus were enhanced in IBS rats, and were blocked by ephB2-Fc or ifenprodil treatment. EphrinB2-Fc promoted the phosphorylation of NR2B in IBS rats and LMMP cultures, and could mediate sustained neural activation via increased [Ca2+]i and raised expression of synaptic plasticity-related early immediate genes, including c-fos and arc. SIGNIFICANCE: EphrinB2/ephB2 facilitated NR2B-mediated synaptic potentiation in the enteric nervous system that may be a novel explanation and potential therapeutic target for sustained pain hypersensitivity in IBS.


Asunto(s)
Efrina-B2/metabolismo , Síndrome del Colon Irritable/fisiopatología , Receptor EphB2/metabolismo , Adulto , Animales , China , Colon/metabolismo , Sistema Nervioso Entérico/fisiología , Efrina-B2/fisiología , Femenino , Humanos , Hiperalgesia/metabolismo , Síndrome del Colon Irritable/metabolismo , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Receptor EphB2/fisiología , Potenciales Sinápticos/fisiología , Dolor Visceral/metabolismo
18.
Dev Dyn ; 251(7): 1138-1155, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35025117

RESUMEN

BACKGROUND: Variation in facial shape may arise from the combinatorial or overlapping actions of paralogous genes. Given its many members, and overlapping expression and functions, the EPH receptor family is a compelling candidate source of craniofacial morphological variation. We performed a detailed morphometric analysis of an allelic series of E14.5 Ephb1-3 receptor mutants to determine the effect of each paralogous receptor gene on craniofacial morphology. RESULTS: We found that Ephb1, Ephb2, and Ephb3 genotypes significantly influenced facial shape, but Ephb1 effects were weaker than Ephb2 and Ephb3 effects. Ephb2-/- and Ephb3-/- mutations affected similar aspects of facial morphology, but Ephb3-/- mutants had additional facial shape effects. Craniofacial differences across the allelic series were largely consistent with predicted additive genetic effects. However, we identified a potentially important nonadditive effect where Ephb1 mutants displayed different morphologies depending on the combination of other Ephb paralogs present, where Ephb1+/- , Ephb1-/- , and Ephb1-/- ; Ephb3-/- mutants exhibited a consistent deviation from their predicted facial shapes. CONCLUSIONS: This study provides a detailed assessment of the effects of Ephb receptor gene paralogs on E14.5 mouse facial morphology and demonstrates how the loss of specific receptors contributes to facial dysmorphology.


Asunto(s)
Efrina-B1 , Desarrollo Maxilofacial , Receptor EphB1 , Receptor EphB3 , Receptores de la Familia Eph , Animales , Efrina-B1/genética , Efrina-B1/metabolismo , Cara , Ratones , Mutación , Receptor EphB1/genética , Receptor EphB2/genética , Receptor EphB3/genética , Receptores de la Familia Eph/metabolismo
19.
Biochem Biophys Res Commun ; 584: 107-115, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34781202

RESUMEN

Dendritic spines are the postsynaptic structure to mediate signal transduction in neural circuitry, whose function and plasticity are regulated by organization of their molecular architecture and by the expression of target genes and proteins. EphB2, a member of the Eph receptor tyrosine kinase family, potentiates dendritic spine maturation through cytoskeleton reorganization and protein trafficking. However, the transcriptional mechanisms underlying prolonged activation of EphB2 signaling during dendritic spine morphogenesis are unknown. Herein, we performed transcriptional profiling by stimulating EphB2 signaling and identified differentially expressed genes implicated in pivotal roles at synapses. Notably, we characterized an F-actin binding protein, Annexin A1, whose expression was induced by EphB2 signaling; the promotor activity of its coding gene Anxa1 is regulated by the activity of CREB (cAMP-response element-binding protein). Knockdown of Annexin A1 led to a significant reduction of mature dendritic spines without an obvious deficit in the complexity of dendrites. Altogether, our findings suggest that EphB2-induced, CREB-dependent Annexin A1 expression plays a key role in regulating dendritic spine morphology.


Asunto(s)
Anexina A1/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Espinas Dendríticas/genética , Receptor EphB2/genética , Anexina A1/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Espinas Dendríticas/fisiología , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Redes Reguladoras de Genes/genética , Células HEK293 , Humanos , Microscopía Confocal , Morfogénesis/genética , Neuronas/metabolismo , Mapas de Interacción de Proteínas/genética , RNA-Seq/métodos , Receptor EphB2/metabolismo , Transducción de Señal/genética , Sinapsis/genética , Sinapsis/fisiología
20.
Cells ; 10(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34831152

RESUMEN

BACKGROUND: Previous studies in mice indicated that Paneth cells and c-Kit-positive goblet cells represent the stem cell niche of the small intestine and colon, respectively, partly by supporting Wnt and Notch activation. Whether these cell populations play a similar role in human intestinal cancer remains unexplored. METHODS: We performed histopathological evaluation and immunohistochemical analysis of early colorectal adenomas and carcinoma adenoma from patients at the Hospital del Mar in Barcelona. We then determined the possible correlation between the different parameters analyzed and with patient outcomes. RESULTS: Paneth cells accumulate in a subset of human colorectal adenomas directly associated with Notch and Wnt/ß-catenin activation. Adenoma areas containing Paneth cells display increased vessel density in the lamina propria and higher levels of the stem cell marker EphB2. In an in-house cohort of 200 colorectal adenoma samples, we also observed a significant correlation between the presence of Paneth cells and Wnt activation. Kaplan-Meier analysis indicated that early adenoma patients carrying Paneth cell-positive tumors display reduced disease-free survival compared with patients with Paneth cell-free lesions. CONCLUSIONS: Our results indicate that Paneth cells contribute to the initial steps of cancer progression by providing the stem cell niche to adenoma cells, which could be therapeutically exploited.


Asunto(s)
Adenoma/metabolismo , Neoplasias Colorrectales/patología , Células de Paneth/patología , Transducción de Señal , beta Catenina/metabolismo , Humanos , Estimación de Kaplan-Meier , Pronóstico , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptor EphB2/metabolismo , Receptores Notch/metabolismo , Sinaptofisina/metabolismo , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA