Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.100
Filtrar
1.
MAbs ; 16(1): 2412881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381966

RESUMEN

Currently approved human epidermal growth factor receptor 2 (HER2)-targeted antibody therapies are largely derived from trastuzumab, including trastuzumab-chemotherapy combinations, fixed-dose trastuzumab-pertuzumab combinations, and trastuzumab antibody-drug conjugates. To expand the options, bispecific antibodies, which may better utilize the benefits of combination therapy, are being developed. Among them, biparatopic antibodies (bpAbs) have shown improved efficacy compared to monoclonal antibody (mAb) combinations in HER2-positive patients. BpAbs bind two independent epitopes on the same antigen, which allows fine-tuning of mechanisms of action, including enhancement of on-target specificity and induction of strong antigen clustering due to the unique binding mode. To fully utilize the potential of bpAbs for anti-HER2 drug development, it is crucial to consider formats that offer stability and high-yield production, along with a functional balance between the two epitopes. In this study, we rationally designed a bpAb, KJ015, that shares a common light chain with two Fab arms and exhibits functionally balanced high affinity for two HER2 non-overlapping epitopes. KJ015 demonstrated high-expression titers over 7 g/L and stable physicochemical properties at elevated concentrations, facilitating subcutaneous administration with hyaluronidase. Moreover, KJ015 maintained comparable antibody-dependent cytotoxicity, phagocytosis, and complement-dependent cytotoxicity with trastuzumab plus pertuzumab. It exhibited enhanced synergy when administered subcutaneously with hyaluronidase and anti-PD-1 mAb in a mouse tumor model, suggesting promising clinical prospects for this combination.


Asunto(s)
Anticuerpos Biespecíficos , Receptor ErbB-2 , Animales , Humanos , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Femenino , Línea Celular Tumoral , Afinidad de Anticuerpos , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología
2.
Front Immunol ; 15: 1457887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267747

RESUMEN

NKG2D is an activating receptor expressed by natural killer (NK) cells and other cytotoxic lymphocytes that plays a pivotal role in the elimination of neoplastic cells through recognition of different stress-induced cell surface ligands (NKG2DL). To employ this mechanism for cancer immunotherapy, we generated NKG2D-engaging bispecific antibodies that selectively redirect immune effector cells to cancer cells expressing the tumor-associated antigen ErbB2 (HER2). NKG2D-specific single chain fragment variable (scFv) antibodies cross-reactive toward the human and murine receptors were derived by consecutive immunization of chicken with the human and murine antigens, followed by stringent screening of a yeast surface display immune library. Four distinct species cross-reactive (sc) scFv domains were selected, and reformatted into a bispecific engager format by linking them via an IgG4 Fc domain to a second scFv fragment specific for ErbB2. The resulting molecules (termed scNKAB-ErbB2) were expressed as disulfide-linked homodimers, and demonstrated efficient binding to ErbB2-positive cancer cells as well as NKG2D-expressing primary human and murine lymphocytes, and NK-92 cells engineered with chimeric antigen receptors derived from human and murine NKG2D (termed hNKAR and mNKAR). Two of the scNKAB-ErbB2 molecules were found to compete with the natural NKG2D ligand MICA, while the other two engagers interacted with an epitope outside of the ligand binding site. Nevertheless, all four tested scNKAB-ErbB2 antibodies were similarly effective in redirecting the cytotoxic activity of primary human and murine lymphocytes as well as hNKAR-NK-92 and mNKAR-NK-92 cells to ErbB2-expressing targets, suggesting that further development of these species cross-reactive engager molecules for cancer immunotherapy is warranted.


Asunto(s)
Anticuerpos Biespecíficos , Reacciones Cruzadas , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Receptor ErbB-2 , Animales , Humanos , Receptor ErbB-2/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ratones , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Reacciones Cruzadas/inmunología , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos
3.
Cancer Treat Rev ; 130: 102826, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39270365

RESUMEN

Human epidermal growth factor receptor-2 (HER2) is overexpressed in various solid tumor types, acting as an established therapeutic target. Over the last three decades, the fast-paced development of diverse HER2-targeted agents, notably marked by the introduction of the antibody-drug conjugate (ADC), yielding substantial improvements in survival rates. However, resistance to anti-HER2 treatments continues to pose formidable challenges. The complex structure and dynamic dimerization properties of HER2 create significant hurdles in the development of novel targeted therapeutics. In this review, we synthesize the latest insights into the structural intricacies of HER2 and present an unprecedented overview of the epitope characteristics of HER2-targeted antibodies and their derivatives. Furthermore, we delve into the correlation between anti-HER2 antibody binding epitopes and their respective functions, with a particular focus on their efficacy against resistant tumors. In addition, we highlight the potential of emerging anti-HER2 agents that target specific sites or non-overlapping epitopes, poised to transform the therapeutic landscape for HER2-positive tumors in the foreseeable future.


Asunto(s)
Epítopos , Neoplasias , Receptor ErbB-2 , Humanos , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Epítopos/inmunología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Terapia Molecular Dirigida/métodos
4.
J Med Chem ; 67(18): 16222-16234, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39235949

RESUMEN

Toll-like receptor (TLR) activation converts immunologically inactive tumors into immunologically active tumors by activating tumor residing antigen-presenting cells and recruitment of cytotoxic T lymphocytes. Targeted immune agonists (TIAs) are antibody drug conjugates with small-molecule TLR agonist payloads. The mechanism of action of TIAs involves tumor antigen recognition, Fcγ-receptor-dependent phagocytosis, and TLR-mediated activation to drive tumor killing by myeloid cells. Several new low DAR anti-HER2 TIAs conjugated with novel TLR7 or dual-TLR7/8 agonists with cleavable and noncleavable linkers were synthesized and profiled. In vitro studies demonstrated that these TIAs activate myeloid cells only in the presence of antigen-expressing cancer cells. Evaluation in ELISpot-based assays confirmed the low immunogenicity of these constructs. Systemic administration of the novel TIAs in tumor-bearing mice resulted in tumor reduction at low doses. These results provide a strong rationale for further development of the TIAs as a novel class of immunotherapeutics.


Asunto(s)
Receptor Toll-Like 7 , Animales , Femenino , Humanos , Ratones , Anticuerpos/química , Anticuerpos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Descubrimiento de Drogas , Inmunoconjugados/farmacología , Inmunoconjugados/química , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Receptores Toll-Like/agonistas
5.
Biol Pharm Bull ; 47(9): 1532-1541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39313389

RESUMEN

Transgenic chicken bioreactors can efficiently produce egg whites containing large quantities of recombinant proteins. We previously developed transgenic chickens that produce recombinant monoclonal antibodies (mAbs) against epidermal growth factor receptor 2 (HER2). However, the practical applications of mAbs derived from transgenic eggs have not yet been examined. Therefore, we aimed to evaluate whether these recombinant mAbs can be used in enzyme-linked immunosorbent assay (ELISA). Recombinant HER2 mAbs from transgenic eggs were dissolved in phosphate-buffered saline and applied directly to 96-well microplates as immobilized antibodies without purification. The performance of ELISA using the unpurified recombinant HER2 mAbs from transgenic eggs was comparable to that of ELISA using commercially available purified recombinant HER2 mAbs. Moreover, ELISA using unpurified recombinant HER2 mAbs from transgenic eggs demonstrated high antigen specificity and was successfully applied to samples from cultured cell lysates derived from HER2-positive and HER2-negative cell lines. The unpurified recombinant HER2 mAbs from transgenic eggs were also efficiently used as immobilized antibodies in paper-based ELISA. In conclusion, our findings suggest that recombinant mAbs from transgenic eggs have the potential to be used to develop economic ELISA devices. To the best of our knowledge, this study is the first to use recombinant HER2 mAbs from transgenic eggs in ELISA.


Asunto(s)
Animales Modificados Genéticamente , Anticuerpos Monoclonales , Reactores Biológicos , Pollos , Ensayo de Inmunoadsorción Enzimática , Receptor ErbB-2 , Proteínas Recombinantes , Animales , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Receptor ErbB-2/inmunología , Receptor ErbB-2/genética , Humanos , Línea Celular Tumoral
6.
Sci Rep ; 14(1): 22432, 2024 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342013

RESUMEN

T-cell-based adoptive immunotherapy is a new pillar of cancer care. Tumor-redirected B cells could also contribute to therapy if their manipulation to rewire immunoglobulin (Ig) genes is mastered. We designed a single-chain Ig-encoding cassette ("scFull-Ig") that redirects antigen specificity when inserted at a single position of the IgH locus. This design, which places combined IgH and IgL variable genes downstream of a pVH promoter, nevertheless preserves all Ig functional domains and the intrinsic mechanisms that regulate expression from the IgM B cell receptor (BCR) expression to Ig secretion, somatic hypermutation and class switching. This single-locus editing provides an efficient and safe strategy to both disrupt endogenous Ig expression and encode a new Ig paratope. As a proof of concept, the functionality of scFull BCR and/or secreted Ig was validated against two different classical human tumor antigens, HER2 and hCD20. Once validated in cell lines, the strategy was extended to primary B cells, confirming the successful engineering of BCR and Ig expression and the ability of scFull-Ig to undergo further class switching. These results further pave the way for future B cell-based adoptive immunotherapy and strategies to express a therapeutic mAb with a variety of switched H-chains that provide complementary functions.


Asunto(s)
Antígenos de Neoplasias , Linfocitos B , Edición Génica , Receptores de Antígenos de Linfocitos B , Humanos , Linfocitos B/inmunología , Edición Génica/métodos , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptor ErbB-2/inmunología , Receptor ErbB-2/genética , Inmunoterapia Adoptiva/métodos , Cambio de Clase de Inmunoglobulina/genética
7.
Signal Transduct Target Ther ; 9(1): 222, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183247

RESUMEN

The sole use of single modality data often fails to capture the complex heterogeneity among patients, including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens, for the treatment of HER2-positive gastric cancer (GC). This modality deficit has not been fully considered in many studies. Furthermore, the application of artificial intelligence in predicting the treatment response, particularly in complex diseases such as GC, is still in its infancy. Therefore, this study aimed to use a comprehensive analytic approach to accurately predict treatment responses to anti-HER2 therapy or anti-HER2 combined immunotherapy in patients with HER2-positive GC. We collected multi-modal data, comprising radiology, pathology, and clinical information from a cohort of 429 patients: 310 treated with anti-HER2 therapy and 119 treated with a combination of anti-HER2 and anti-PD-1/PD-L1 inhibitors immunotherapy. We introduced a deep learning model, called the Multi-Modal model (MuMo), that integrates these data to make precise treatment response predictions. MuMo achieved an area under the curve score of 0.821 for anti-HER2 therapy and 0.914 for combined immunotherapy. Moreover, patients classified as low-risk by MuMo exhibited significantly prolonged progression-free survival and overall survival (log-rank test, P < 0.05). These findings not only highlight the significance of multi-modal data analysis in enhancing treatment evaluation and personalized medicine for HER2-positive gastric cancer, but also the potential and clinical value of our model.


Asunto(s)
Inmunoterapia , Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/tratamiento farmacológico , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
8.
Cancer Immunol Immunother ; 73(10): 209, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112670

RESUMEN

BACKGROUND: Cancer immunotherapy approaches that elicit immune cell responses, including T and NK cells, have revolutionized the field of oncology. However, immunosuppressive mechanisms restrain immune cell activation within solid tumors so additional strategies to augment activity are required. METHODS: We identified the co-stimulatory receptor NKG2D as a target based on its expression on a large proportion of CD8+ tumor infiltrating lymphocytes (TILs) from breast cancer patient samples. Human and murine surrogate NKG2D co-stimulatory receptor-bispecifics (CRB) that bind NKG2D on NK and CD8+ T cells as well as HER2 on breast cancer cells (HER2-CRB) were developed as a proof of concept for targeting this signaling axis in vitro and in vivo. RESULTS: HER2-CRB enhanced NK cell activation and cytokine production when co-cultured with HER2 expressing breast cancer cell lines. HER2-CRB when combined with a T cell-dependent-bispecific (TDB) antibody that synthetically activates T cells by crosslinking CD3 to HER2 (HER2-TDB), enhanced T cell cytotoxicity, cytokine production and in vivo antitumor activity. A mouse surrogate HER2-CRB (mHER2-CRB) improved in vivo efficacy of HER2-TDB and augmented NK as well as T cell activation, cytokine production and effector CD8+ T cell differentiation. CONCLUSION: We demonstrate that targeting NKG2D with bispecific antibodies (BsAbs) is an effective approach to augment NK and CD8+ T cell antitumor immune responses. Given the large number of ongoing clinical trials leveraging NK and T cells for cancer immunotherapy, NKG2D-bispecifics have broad combinatorial potential.


Asunto(s)
Neoplasias de la Mama , Linfocitos T CD8-positivos , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Humanos , Animales , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Ratones , Linfocitos T CD8-positivos/inmunología , Células Asesinas Naturales/inmunología , Femenino , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Receptor ErbB-2/inmunología , Línea Celular Tumoral , Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
9.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125956

RESUMEN

Cancer-specific monoclonal antibodies (CasMabs) that recognize cancer-specific antigens with in vivo antitumor efficacy are innovative therapeutic strategies for minimizing adverse effects. We previously established a cancer-specific anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody (mAb), H2Mab-250/H2CasMab-2. In flow cytometry and immunohistochemistry, H2Mab-250 reacted with HER2-positive breast cancer cells but did not show reactivity to normal epithelial cells. In contrast, a clinically approved anti-HER2 mAb, trastuzumab, strongly recognizes both breast cancer and normal epithelial cells in flow cytometry. The human IgG1 version of H2Mab-250 (H2Mab-250-hG1) possesses compatible in vivo antitumor effects against breast cancer xenografts to trastuzumab despite the lower affinity and effector activation than trastuzumab in vitro. This study compared the antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cellular cytotoxicity (CDC) between H2Mab-250-hG1 and trastuzumab. Both H2Mab-250-hG1 and trastuzumab showed ADCC activity against HER2-overexpressed Chinese hamster ovary -K1 and breast cancer cell lines (BT-474 and SK-BR-3) in the presence of human natural killer cells. Some tendency was observed where trastuzumab showed a more significant ADCC effect compared to H2Mab-250-hG1. Importantly, H2Mab-250-hG1 exhibited superior CDC activity in these cells compared to trastuzumab. Similar results were obtained in the mouse IgG2a types of both H2Mab-250 and trastuzumab. These results suggest the different contributions of ADCC and CDC activities to the antitumor effects of H2Mab-250-hG1 and trastuzumab, and indicate a future direction for the clinical development of H2Mab-250-hG1 against HER2-positive tumors.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Cricetulus , Receptor ErbB-2 , Trastuzumab , Trastuzumab/farmacología , Animales , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Células CHO , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Antineoplásicos Inmunológicos/farmacología , Anticuerpos Monoclonales/farmacología , Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/inmunología , Ratones , Cricetinae
10.
Int J Biol Macromol ; 278(Pt 1): 134622, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127267

RESUMEN

Antibody therapy of anti-HER2 monoclonal antibody (mAb) has been an important strategy in treating HER2-positive cancers. However, the efficacy is restricted by many factors, including the level of HER2 expressed by tumor cells and antibody resistance. To overcome these and boost the efficacy, a novel nanoparticle (NP) was constructed in this study for combined antibody therapy of antibody and photothermal therapy (PTT). This novel NP was assembled from 1-pyrenecarboxylic acid (PCA) functionalized anti-HER2 mAb and indocyanine green (ICG), a photothermal transduction agents (PTA), by non-covalent interactions, which was named as Anti-HER2 mAb-pyrene-indocyanine green (H-P-I). Notably, the constructed H-P-I NP not only maintained the affinity and cytotoxicity of anti-HER2 mAb, but also exhibited high photothermal conversion efficiency mediated by ICG. Both in vitro and in vivo assessments confirmed that compared with monotherapy of antibody or ICG, H-P-I demonstrated preferable efficacy in treating HER2-positive cancers. Further biochemistry analysis and pathological analysis ensured the biosafety of H-P-I administration. Taked together, this study proposes a feasible method for constructing tumor-targeted nano PTA based on anti-HER2 mAb through supramolecular self-assembly strategy, achieving synergistic antibody photothermal anticancer treatment, which has the potential to be a promising candidate for combination therapy of HER2-positive cancers.


Asunto(s)
Inmunoconjugados , Terapia Fototérmica , Receptor ErbB-2 , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Humanos , Terapia Fototérmica/métodos , Animales , Inmunoconjugados/farmacología , Inmunoconjugados/química , Inmunoconjugados/uso terapéutico , Ratones , Línea Celular Tumoral , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/química , Nanopartículas/química , Verde de Indocianina/química , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Femenino , Neoplasias/terapia , Neoplasias/inmunología
11.
J Am Chem Soc ; 146(39): 26801-26807, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39167468

RESUMEN

This paper describes the synthesis, characterization, and functional activity of 26 MegaMolecule-based bispecific antibody mimics for T-cell redirection toward HER2+ cancer cells. The work reports functional bispecific MegaMolecules that bind both receptor targets, and recruit and activate T-cells resulting in lysis of the target tumor cells. Changing the orientation of linkage between Fabs against either HER2 or CD3ε results in an approximately 150-fold range in potency. Increasing scaffold valency from Fab dimers up to tetramers improves the potency of the antibody mimics up to 5-fold, but with diminishing returns in effective dose beyond trimeric formats. Antibody mimics that present either one or two Fabs against either receptor target allows for initial engagement of one cell type over the other. Finally, the antibody mimics significantly reduce HER2+ tumor volumes in a humanized xenograft model of breast cancer.


Asunto(s)
Anticuerpos Biespecíficos , Receptor ErbB-2 , Linfocitos T , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Animales , Ratones , Complejo CD3/inmunología , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología
12.
Commun Biol ; 7(1): 983, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138287

RESUMEN

The mechanism of action of bispecific antibodies (bsAbs) directing T-cell immunity to solid tumors is incompletely understood. Here, we screened a series of CD3xHER2 bsAbs using extracellular matrix (ECM) embedded breast cancer tumoroid arrays exposed to healthy donor-derived T-cells. An initial phase of random T-cell movement throughout the ECM (day 1-2), was followed by a bsAb-dependent phase of active T-cell recruitment to tumoroids (day 2-4), and tumoroid killing (day 4-6). Low affinity HER2 or CD3 arms were compensated for by increasing bsAb concentrations. Instead, a bsAb binding a membrane proximal HER2 epitope supported tumor killing whereas a bsAb binding a membrane distal epitope did not, despite similar affinities and intra-tumoroid localization of the bsAbs, and efficacy in 2D co-cultures. Initial T-cell-tumor contact through effective bsAbs triggered a wave of subsequent T-cell recruitment. This critical surge of T-cell recruitment was explained by paracrine signaling and preceded a full-scale T-cell tumor attack.


Asunto(s)
Anticuerpos Biespecíficos , Complejo CD3 , Comunicación Paracrina , Linfocitos T , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Humanos , Complejo CD3/inmunología , Complejo CD3/metabolismo , Linfocitos T/inmunología , Femenino , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Línea Celular Tumoral
13.
Nat Commun ; 15(1): 7267, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179564

RESUMEN

Targeted antineoplastic immunotherapies have achieved remarkable clinical outcomes. However, resistance to these therapies due to target absence or antigen shedding limits their efficacy and excludes tumours from candidacy. To address this limitation, here we engineer an oncolytic rhabdovirus, vesicular stomatitis virus (VSVΔ51), to express a truncated targeted antigen, which allows for HER2-targeting with trastuzumab. The truncated HER2 (HER2T) lacks signaling capabilities and is efficiently expressed on infected cell surfaces. VSVΔ51-mediated HER2T expression simulates HER2-positive status in tumours, enabling effective treatment with the antibody-drug conjugate trastuzumab emtansine in vitro, ex vivo, and in vivo. Additionally, we combine VSVΔ51-HER2T with an oncolytic vaccinia virus expressing a HER2-targeted T-cell engager. This dual-virus therapeutic strategy demonstrates potent curative efficacy in vivo in female mice using CD3+ infiltrate for anti-tumour immunity. Our findings showcase the ability to tailor the tumour microenvironment using oncolytic viruses, thereby enhancing compatibility with "off-the-shelf" targeted therapies.


Asunto(s)
Inmunoterapia , Viroterapia Oncolítica , Virus Oncolíticos , Receptor ErbB-2 , Linfocitos T , Trastuzumab , Virus Vaccinia , Animales , Femenino , Humanos , Inmunoterapia/métodos , Ratones , Receptor ErbB-2/metabolismo , Receptor ErbB-2/inmunología , Receptor ErbB-2/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Linfocitos T/inmunología , Línea Celular Tumoral , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Microambiente Tumoral/inmunología , Vesiculovirus/genética , Vesiculovirus/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C
14.
Anal Chem ; 96(33): 13663-13671, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39126679

RESUMEN

Rapid and accurate detection of human epidermal growth factor receptor 2 (HER2) is crucial for the early diagnosis and prognosis of breast cancer. In this study, we reported an iron-manganese ion N-doped carbon single-atom catalyst (FeMn-NCetch/SAC) bimetallic peroxidase mimetic enzyme with abundant active sites etched by H2O2 and further demonstrated unique advantages of single-atom bimetallic nanozymes in generating hydroxyl radicals by density functional theory (DFT) calculations. As a proof of concept, a portable device-dependent electrochemical-photothermal bifunctional immunoassay detection platform was designed to achieve reliable detection of HER2. In the enzyme-linked reaction, H2O2 was generated by substrate catalysis via secondary antibody-labeled glucose oxidase (GOx), while FeMn-NCetch/SAC nanozymes catalyzed the decomposition of H2O2 to form OH*, which catalyzed the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to ox-TMB. The ox-TMB generation was converted from the colorimetric signals to electrical and photothermal signals by applied potential and laser irradiation, which could be employed for the quantitative detection of HER2. With the help of this bifunctional detection technology, HER2 was accurately detected in two ways: photothermally, with a linear scope of 0.01 to 2.0 ng mL-1 and a limit of detection (LOD) of 7.5 pg mL-1, and electrochemically, with a linear scope of 0.01 to 10 ng mL-1 at an LOD of 3.9 pg mL-1. By successfully avoiding environmental impacts, the bifunctional-based immunosensing strategy offers strong support for accurate clinical detection.


Asunto(s)
Técnicas Electroquímicas , Receptor ErbB-2 , Teléfono Inteligente , Humanos , Inmunoensayo/métodos , Receptor ErbB-2/análisis , Receptor ErbB-2/inmunología , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Catálisis , Límite de Detección , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Bencidinas/química , Manganeso/química , Hierro/química , Neoplasias de la Mama , Teoría Funcional de la Densidad
15.
Clin Cancer Res ; 30(18): 4044-4054, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39028916

RESUMEN

PURPOSE: A multicenter, randomized, open-label, phase II study (HERIZON; NCT02795988) was conducted to evaluate the clinical and immunologic efficacy of HER-Vaxx (IMU-131), a B-cell, peptide-based vaccine targeting HER2 overexpressed in 6% to 30% of gastroesophageal adenocarcinomas (GEA). PATIENTS AND METHODS: Patients (n = 36) with GEA were treated with standard-of-care chemotherapy (n = 17) or HER-Vaxx plus chemotherapy (n = 19), using the recommended phase 2 dose for the vaccine. Overall survival (OS; primary endpoint), safety, progression-free survival (PFS), clinical response (secondary endpoints), and vaccine-induced HER2-specific antibody levels in serum and correlation with tumor response rates (exploratory endpoints) were investigated. RESULTS: A 40% OS benefit [HR, 0.60; median OS, 13.9 months; 80% confidence interval (CI), 7.52-14.32] for patients treated with HER-Vaxx plus chemotherapy compared with OS of 8.31 months (80% CI, 6.01-9.59) in patients that received chemotherapy alone. A 20% PFS difference was obtained for the vaccination arm (HR, 0.80; 80% CI, 0.47, 1.38). No additional toxicity due to HER-Vaxx was observed. The vaccine-induced high levels of HER2-specific total IgG and IgG1 antibodies (P < 0.001 vs. controls) that significantly correlated with tumor reduction (IgG, P = 0.001; IgG1, P = 0.016), had a significant capacity in inhibiting phosphorylation of the intracellular HER2-signaling pathways, mediated antibody-dependent cellular cytotoxicity, and decreased immunosuppressive FOXP3+ regulatory T cells. CONCLUSIONS: HER-Vaxx plus standard chemotherapy exhibits an excellent safety profile and improves OS. Furthermore, vaccine-induced immune response was significantly associated with reduced tumor size compared with standard-of-care chemotherapy. The presented vaccination approach may substitute for treatment with trastuzumab, upon unavailability or toxicity, based on further evidence of equivalent treatment efficacy.


Asunto(s)
Vacunas contra el Cáncer , Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Femenino , Persona de Mediana Edad , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Masculino , Anciano , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/uso terapéutico , Vacunas de Subunidad/inmunología , Resultado del Tratamiento , Estadificación de Neoplasias , Anciano de 80 o más Años
16.
Front Immunol ; 15: 1400177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953027

RESUMEN

Background: Chimeric antigen receptor T (CAR-T) cell therapies have achieved remarkable success in the treatment of hematological tumors. However, given the distinct features of solid tumors, particularly heterogeneity, metabolic aggressiveness, and fewer immune cells in tumor microenvironment (TME), the practical utility of CAR-T cells for solid tumors remains as a challenging issue. Meanwhile, although anti-PD-1 monoclonal antibody (mAb) has shown clinical efficacy, most mAbs also show limited clinical benefits for solid tumors due mainly to the issues associated with the lack of immune cells in TME. Thus, the infiltration of targeted immunological active cells into TME could generate synergistic efficacy for mAbs. Methods: We present a combinational strategy for solid tumor treatment, which combines armored-T cells to express Fc-gamma receptor I (FcγRI) fragment on the surfaces for targeting various tumors with therapeutically useful mAbs. Choosing CD20 and HER-2 as the targets, we characterized the in vitro and in vivo efficacy and latent mechanism of the combination drug by using flow cytometry, ELISA and other methods. Results: The combination and preprocessing of armored T-cells with corresponding antibody of Rituximab and Pertuzumab exerted profound anti-tumor effects, which is demonstrated to be mediated by synergistically produced antibody-dependent cellular cytotoxicity (ADCC) effects. Meanwhile, mAb was able to carry armored-T cell by preprocessing for the infiltration to TME in cell derived xenograft (CDX) model. Conclusions: This combination strategy showed a significant increase of safety profiles from the reduction of antibody doses. More importantly, the present strategy could be a versatile tool for a broad spectrum of cancer treatment, with a simple pairing of engineered T cells and a conventional antibody.


Asunto(s)
Neoplasias , Receptores de IgG , Linfocitos T , Microambiente Tumoral , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Humanos , Animales , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoterapia Adoptiva/métodos , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Femenino , Antígenos CD20/inmunología
17.
J Immunol Methods ; 532: 113730, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059744

RESUMEN

Most antibodies used in immunohistochemistry (IHC) have been developed by animal immunization. We wanted to explore naive antibody repertoires displayed on filamentous phages as a source of full-length antibodies for IHC on Formalin-Fixed and Paraffin-Embedded (FFPE) tissues. We used two isogenic mouse fibroblast cell lines that express or not human HER2 to generate positive and negative FFPE pseudo-tissue respectively. Using these pseudo-tissues and previously described approaches based on differential panning, we isolated very efficient antibody clones, but not against HER2. To optimize HER2 targeting and tissue specificity, we first performed 3-4 rounds of in vitro panning using recombinant HER2 extracellular domain (ECD) to enrich the phage library in HER2 binders, followed by one panning round using the two FFPE pseudo-tissues to retain binders for IHC conditions. We then analyzed the bound phages using next-generation sequencing to identify antibody sequences specifically associated with the HER2-positive pseudo-tissue. Using this approach, the top-ranked clone identified by sequencing was specific to the HER2-positive pseudo-tissue and showed a staining pattern similar to that of the antibody used for the clinical diagnosis of HER2-positive breast cancer. However, we could not optimize staining on other tissues, showing that specificity was restricted to the tissue used for selection and screening. Therefore, future optimized protocols must consider tissue diversity early during the selection by panning using a wide collection of tissue types.


Asunto(s)
Anticuerpos Monoclonales , Formaldehído , Inmunohistoquímica , Adhesión en Parafina , Biblioteca de Péptidos , Receptor ErbB-2 , Animales , Ratones , Humanos , Receptor ErbB-2/inmunología , Receptor ErbB-2/genética , Anticuerpos Monoclonales/inmunología , Fijación del Tejido , Femenino , Especificidad de Anticuerpos , Neoplasias de la Mama/inmunología , Técnicas de Visualización de Superficie Celular
18.
Biotechnol J ; 19(7): e2300745, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39014926

RESUMEN

We developed a method to produce a soluble form of a single-chain fragment variable (scFv) targeting human epithelial growth factor receptor 2 (HER2) in Escherichia coli. By optimizing the orientations of the variable heavy (VH) and variable light (VL) domains and the His-tag, we identified the HL-His type antibody with the highest HER2-binding activity. Purification of HL-His yielded 40.7 mg from a 1 L culture, achieving >99% purity. The limit of detection was determined to be 2.9 ng, demonstrating high production yield, purity, and sensitivity. Moreover, we successfully labeled HER2+ cell lines with fluorescent dye-conjugated scFv, resulting in a significantly higher observed signal-to-background ratio, compared to that of HER2- cell lines. This highlights the potential of these fluorescent scFvs as valuable probes for HER2+ breast cancer diagnostics. Notably, the process for the complete scFv production was streamlined and required only 4-5 days. Additionally, the product maintained its activity after freeze storage, allowing for large-scale production and a wide range of practical applications.


Asunto(s)
Escherichia coli , Receptor ErbB-2 , Proteínas Recombinantes , Anticuerpos de Cadena Única , Receptor ErbB-2/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/aislamiento & purificación , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/inmunología
19.
Cancer Lett ; 597: 217043, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38876386

RESUMEN

HER2-positive cancer is a prevalent subtype of malignancy with poor prognosis, yet current targeted therapies, like Trastuzumab and pyrotinib, have resulted in remission in patients with HER2-positive cancer. This study provides a novel approach for immunotherapy based on a hydroxyapatite (HA) gene delivery system producing a bispecific antibody for HER2-positive cancer treatment. An HA nanocarrier has been synthesized by the classical hydrothermal method. Particularly, the HA-nanoneedle system was able to mediate stable gene expression of minicircle DNA (MC) encoding a humanized anti-CD3/anti-HER2 bispecific antibody (BsAbHER2) in vivo. The produced BsAbs exhibited a potent killing effect not only in HER2-positive cancer cells but also in patient-derived organoids in vitro. This HA-nanoneedle gene delivery system features simple large-scale preparation and clinical applicability. Hence, the HA-nanoneedle gene delivery system combined with minicircle DNA vector encoding BsAbHER2 reported here provides a potential immunotherapy strategy for HER2-positive tumors.


Asunto(s)
Anticuerpos Biespecíficos , Complejo CD3 , Durapatita , Técnicas de Transferencia de Gen , Receptor ErbB-2 , Humanos , Receptor ErbB-2/inmunología , Receptor ErbB-2/genética , Anticuerpos Biespecíficos/farmacología , Animales , Complejo CD3/inmunología , Complejo CD3/genética , Organoides/inmunología , Línea Celular Tumoral , Femenino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Terapia Genética/métodos
20.
ACS Nano ; 18(24): 15790-15801, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847355

RESUMEN

Targeted drug delivery systems based on metal-organic frameworks (MOFs) have progressed tremendously since inception and are now widely applicable in diverse scientific fields. However, translating MOF agents directly to targeted drug delivery systems remains a challenge due to the biomolecular corona phenomenon. Here, we observed that supramolecular conjugation of antibodies to the surface of MOF particles (MOF-808) via electrostatic interactions and coordination bonding can reduce protein adhesion in biological environments and show stealth shields. Once antibodies are stably conjugated to particles, they were neither easily exchanged with nor covered by biomolecule proteins, which is indicative of the stealth effect. Moreover, upon conjugation of the MOF particle with specific targeted antibodies, namely, anti-CD44, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR), the resulting hybrid exhibits an augmented targeting efficacy toward cancer cells overexpressing these receptors, such as HeLa, SK-BR-3, and 4T1, as evidenced by flow cytometry. The therapeutic effectiveness of the antibody-conjugated MOF (anti-M808) was further evaluated through in vivo imaging and the assessment of tumor inhibition effects using IR-780-loaded EGFR-M808 in a 4T1 tumor xenograft model employing nude mice. This study therefore provides insight into the use of supramolecular antibody conjugation as a promising method for developing MOF-based drug delivery systems.


Asunto(s)
Estructuras Metalorgánicas , Ratones Desnudos , Estructuras Metalorgánicas/química , Humanos , Animales , Ratones , Sistemas de Liberación de Medicamentos , Anticuerpos/química , Anticuerpos/inmunología , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Línea Celular Tumoral , Células HeLa , Ratones Endogámicos BALB C , Antineoplásicos/química , Antineoplásicos/farmacología , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA