Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39042031

RESUMEN

Interhemispheric inhibition of the homotopic motor cortex is believed to be effective for accurate unilateral motor function. However, the cellular mechanisms underlying interhemispheric inhibition during unilateral motor behavior remain unclear. Furthermore, the impact of the neuromodulator acetylcholine on interhemispheric inhibition and the associated cellular mechanisms are not well understood. To address this knowledge gap, we conducted recordings of neuronal activity from the bilateral motor cortex of mice during the paw-reaching task. Subsequently, we analyzed interhemispheric spike correlation at the cell-pair level, classifying putative cell types to explore the underlying cellular circuitry mechanisms of interhemispheric inhibition. We found a cell-type pair-specific enhancement of the interhemispheric spike correlation when the mice were engaged in the reaching task. We also found that the interhemispheric spike correlation was modulated by pharmacological acetylcholine manipulation. The local field responses to contralateral excitation differed along the cortical depths, and muscarinic receptor antagonism enhanced the inhibitory component of the field response in deep layers. The muscarinic subtype M2 receptor is predominantly expressed in deep cortical neurons, including GABAergic interneurons. These results suggest that GABAergic interneurons expressing muscarinic receptors in deep layers mediate the neuromodulation of interhemispheric inhibition in the homotopic motor cortex.


Asunto(s)
Acetilcolina , Corteza Motora , Inhibición Neural , Animales , Corteza Motora/fisiología , Corteza Motora/efectos de los fármacos , Acetilcolina/metabolismo , Ratones , Masculino , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Lateralidad Funcional/fisiología , Ratones Endogámicos C57BL , Interneuronas/fisiología , Interneuronas/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Receptor Muscarínico M2/antagonistas & inhibidores , Receptor Muscarínico M2/metabolismo , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos
2.
Mol Cell Neurosci ; 129: 103935, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703973

RESUMEN

Muscarinic neurotransmission is fundamentally involved in supporting several brain functions by modulating flow of information in brain neural circuits including the hippocampus which displays a remarkable functional segregation along its longitudinal axis. However, how muscarinic neuromodulation contributes to the functional segregation along the hippocampus remains unclear. In this study we show that the nonselective muscarinic receptor agonist carbachol similarly suppresses basal synaptic transmission in the dorsal and ventral CA1 hippocampal field, in a concentration-depended manner. Furthermore, using a ten-pulse stimulation train of varying frequency we found that carbachol changes the frequency filtering properties more in ventral than dorsal hippocampus by facilitating synaptic inputs at a wide range of input frequencies in the ventral compared with dorsal hippocampus. Using the M2 receptor antagonist gallamine and the M4 receptor antagonist tropicamide, we found that M2 receptors are involved in controlling basal synaptic transmission and short-term synaptic plasticity (STSP) in the ventral but not the dorsal hippocampus, while M4 receptors participate in modulating basal synaptic transmission and STSP in both segments of the hippocampus. These results were corroborated by the higher protein expression levels of M2 receptors in the ventral compared with dorsal hippocampus. We conclude that muscarinic transmission modulates excitatory synaptic transmission and short-term synaptic plasticity along the entire rat hippocampus by acting through M4 receptors and recruiting M2 receptors only in the ventral hippocampus. Furthermore, M4 receptors appear to exert a permissive role on the actions of M2 receptors on STSP in the ventral hippocampus. This dorsoventral differentiation of muscarinic modulation is expected to have important implications in information processing along the endogenous hippocampal circuitry.


Asunto(s)
Hipocampo , Plasticidad Neuronal , Transmisión Sináptica , Animales , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Ratas , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Carbacol/farmacología , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos/metabolismo , Ratas Wistar , Antagonistas Muscarínicos/farmacología , Receptor Muscarínico M4/metabolismo , Agonistas Muscarínicos/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos
3.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38719447

RESUMEN

Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.


Asunto(s)
Giro del Cíngulo , Macaca mulatta , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiología , Masculino , Femenino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Acetilcolina/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología
4.
J Neurophysiol ; 131(6): 1213-1225, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629848

RESUMEN

Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.


Asunto(s)
Corteza Visual Primaria , Receptor Muscarínico M2 , Animales , Masculino , Ratones , Receptor Muscarínico M2/metabolismo , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/metabolismo , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Receptor Muscarínico M1/metabolismo , Corteza Visual/fisiología , Corteza Visual/metabolismo , Somatostatina/metabolismo , Aprendizaje/fisiología
5.
Proc Natl Acad Sci U S A ; 121(18): e2307090121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648487

RESUMEN

G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.


Asunto(s)
Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Ratones , Células HEK293 , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Isoproterenol/farmacología , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Morfina/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Técnicas Biosensibles/métodos
6.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683874

RESUMEN

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Asunto(s)
Respiración de la Célula , Mitocondrias , Receptor Muscarínico M2 , Animales , Humanos , Ratones , Proliferación Celular , Células HEK293 , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/genética , Estrés Fisiológico
7.
Neurochem Int ; 174: 105673, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185384

RESUMEN

Glioblastoma (GB) is a very aggressive human brain tumor. The high growth potential and invasiveness make this tumor surgically and pharmacologically untreatable. Our previous work demonstrated that the activation of the M2 muscarinic acetylcholine receptors (M2 mAChRs) inhibited cell proliferation and survival in GB cell lines and in the cancer stem cells derived from human biopsies. The aim of the present study was to investigate the ability of M2 mAChR to modulate cell migration in two different GB cell lines: U87 and U251. By wound healing assay and single cell migration analysis performed by time-lapse microscopy, we demonstrated the ability of M2 mAChRs to negatively modulate cell migration in U251 but not in the U87 cell line. In order to explain the different effects observed in the two cell lines we have evaluated the possible involvement of the intermediate conductance calcium-activated potassium (IKCa) channel. IKCa channel is present in the GB cells, and it has been demonstrated to modulate cell migration. Using the perforated patch-clamp technique we have found that selective activation of M2 mAChR significantly reduced functional density of the IKCa current in U251 but not in U87 cells. To understand whether the M2 mAChR mediated reduction of ion channel density in the U251 cell line was relevant for the cell migration impairment, we tested the effects of TRAM-34, a selective inhibitor of the IKCa channel, in wound healing assay. We found that it was able to markedly reduce U251 cell migration and significantly decrease the number of invadopodia-like structure formations. These results suggest that only in U251 cells the reduced cell migration M2 mAChR-mediated might involve, at least in part, the IKCa channel.


Asunto(s)
Glioblastoma , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Glioblastoma/metabolismo , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos/metabolismo
8.
Mol Pharmacol ; 104(5): 195-202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37595966

RESUMEN

M4 muscarinic receptors are highly expressed in the striatum and cortex, brain regions that are involved in diseases such as Parkinson's disease, schizophrenia, and dystonia. Despite potential therapeutic advantages of specifically targeting the M4 receptor, it has been historically challenging to develop highly selective ligands, resulting in undesired off-target activity at other members of the muscarinic receptor family. Recently, we have reported first-in-class, potent, and selective M4 receptor antagonists. As an extension of that work, we now report the development and characterization of a radiolabeled M4 receptor antagonist, [3H]VU6013720, with high affinity (pKd of 9.5 ± 0.2 at rat M4, 9.7 at mouse M4, and 10 ± 0.1 at human M4 with atropine to define nonspecific binding) and no significant binding at the other muscarinic subtypes. Binding assays using this radioligand in rodent brain tissues demonstrate loss of specific binding in Chrm4 knockout animals. Dissociation kinetics experiments with various muscarinic ligands show differential effects on the dissociation of [3H]VU6013720 from M4 receptors, suggesting a binding site that is overlapping but may be distinct from the orthosteric site. Overall, these results demonstrate that [3H]VU6013720 is the first highly selective antagonist radioligand for the M4 receptor, representing a useful tool for studying the basic biology of M4 as well for the support of M4 receptor-based drug discovery. SIGNIFICANCE STATEMENT: This manuscript describes the development and characterization of a novel muscarinic (M) acetylcholine subtype 4 receptor antagonist radioligand, [3H]VU6013720. This ligand binds to or overlaps with the acetylcholine binding site, providing a highly selective radioligand for the M4 receptor that can be used to quantify M4 protein expression in vivo and probe the selective interactions of acetylcholine with M4 versus the other members of the muscarinic receptor family.


Asunto(s)
Acetilcolina , Receptores Muscarínicos , Ratas , Humanos , Ratones , Animales , Acetilcolina/metabolismo , Receptores Muscarínicos/metabolismo , Receptor Muscarínico M4/metabolismo , Atropina , Ligandos , Colinérgicos , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/metabolismo , Receptor Muscarínico M2/metabolismo , Ensayo de Unión Radioligante , Receptor Muscarínico M1/metabolismo
9.
Mol Pharmacol ; 104(3): 92-104, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348914

RESUMEN

The development of subtype selective small molecule drugs for the muscarinic acetylcholine receptor (mAChR) family has been challenging. The design of more selective ligands can be improved by understanding the structure and function of key amino acid residues that line ligand binding sites. Here we study the role of three conserved key tyrosine residues [Y1043.33, Y4036.51, and Y4267.39 (Ballesteros and Weinstein numbers in superscript)] at the human M2 mAChR, located at the interface between the orthosteric and allosteric binding sites of the receptor. We specifically focused on the role of the three tyrosine hydroxyl groups in the transition between the inactive and active conformations of the receptor by making phenylalanine point mutants. Single-point mutation at either of the three positions was sufficient to reduce the affinity of agonists by ∼100-fold for the M2 mAChR, whereas the affinity of antagonists remained largely unaffected. In contrast, neither of the mutations affected the efficacy of orthosteric agonists. When mutations were combined into double and triple M2 mAChR mutants, the affinity of antagonists was reduced by more than 100-fold compared with the wild-type M2 receptor. In contrast, the affinity of allosteric modulators, either negative or positive, was retained at all single and multiple mutations, but the degree of allosteric effect exerted on the endogenous ligand acetylcholine was affected at all mutants containing Y4267.39F. These findings will provide insights to consider when designing future mAChR ligands. SIGNIFICANCE STATEMENT: Structural studies demonstrated that three tyrosine residues between the orthosteric and allosteric sites of the M2 muscarinic acetylcholine receptor (mAChR) had different hydrogen bonding networks in the inactive and active conformations. The role of hydroxyl groups of the tyrosine residues on orthosteric and allosteric ligand pharmacology was unknown. We found that hydroxyl groups of the tyrosine residues differentially affected the molecular pharmacology of orthosteric and allosteric ligands. These results provide insights to consider when designing future mAChR ligands.


Asunto(s)
Agonistas Muscarínicos , Tirosina , Humanos , Ligandos , Agonistas Muscarínicos/farmacología , Receptores Muscarínicos , Sitio Alostérico , Regulación Alostérica/fisiología , Receptor Muscarínico M1 , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo
10.
Nat Commun ; 14(1): 376, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690613

RESUMEN

The M2 muscarinic receptor (M2R) is a prototypical G-protein-coupled receptor (GPCR) that serves as a model system for understanding GPCR regulation by both orthosteric and allosteric ligands. Here, we investigate the mechanisms governing M2R signaling versatility using cryo-electron microscopy (cryo-EM) and NMR spectroscopy, focusing on the physiological agonist acetylcholine and a supra-physiological agonist iperoxo, as well as a positive allosteric modulator LY2119620. These studies reveal that acetylcholine stabilizes a more heterogeneous M2R-G-protein complex than iperoxo, where two conformers with distinctive G-protein orientations were determined. We find that LY2119620 increases the affinity for both agonists, but differentially modulates agonists efficacy in G-protein and ß-arrestin pathways. Structural and spectroscopic analysis suggest that LY211620 stabilizes distinct intracellular conformational ensembles from agonist-bound M2R, which may enhance ß-arrestin recruitment while impairing G-protein activation. These results highlight the role of conformational dynamics in the complex signaling behavior of GPCRs, and could facilitate design of better drugs.


Asunto(s)
Acetilcolina , Receptores Muscarínicos , Microscopía por Crioelectrón , Regulación Alostérica/fisiología , Receptores Muscarínicos/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Ligandos , beta-Arrestinas/metabolismo
11.
Dig Dis Sci ; 68(2): 439-450, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35947306

RESUMEN

BACKGROUND: The specific role of the M3 muscarinic acetylcholine receptor in gastrointestinal motility under physiological conditions is unclear, due to a lack of subtype-selective compounds. AIMS: The objective of this study was to determine the region-specific role of the M3 receptor in gastrointestinal motility. METHODS: We developed a novel positive allosteric modulator (PAM) for the M3 receptor, PAM-369. The effects of PAM-369 on the carbachol-induced contractile response of porcine esophageal smooth muscle and mouse colonic smooth muscle (ex vivo) and on the transit in mouse small intestine and rat colon (in vivo) were examined. RESULTS: PAM-369 selectively potentiated the M3 receptor under the stimulation of its orthosteric ligands without agonistic or antagonistic activity. Half-maximal effective concentrations of PAM activity for human, mouse, and rat M3 receptors were 0.253, 0.345, and 0.127 µM, respectively. PAM-369 enhanced carbachol-induced contraction in porcine esophageal smooth muscle and mouse colonic smooth muscle without causing any contractile responses by itself. The oral administration of 30 mg/kg PAM-369 increased the small intestinal transit in both normal motility and loperamide-induced intestinal dysmotility mice but had no effects on the colonic transit, although the M3 receptor mRNA expression is higher in the colon than in the small intestine. CONCLUSIONS: This study provided the first direct evidence that the M3 receptor has different region-specific roles in the motility function between the small intestine and colon in physiological and pathophysiological contexts. Selective PAMs designed for targeted subtypes of muscarinic receptors are useful for elucidating the subtype-specific function.


Asunto(s)
Motilidad Gastrointestinal , Receptor Muscarínico M3 , Animales , Humanos , Ratones , Ratas , Carbacol/farmacología , Motilidad Gastrointestinal/genética , Motilidad Gastrointestinal/fisiología , Contracción Muscular , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptores Muscarínicos/fisiología , Porcinos
12.
Bioconjug Chem ; 33(11): 2223-2233, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36327428

RESUMEN

The development of fluorescently labeled receptor-targeting compounds represents a powerful pharmacological tool to study and characterize ligand-receptor interactions. Despite significant advances in developing sub-type-specific antagonists for muscarinic acetylcholine receptors (mAChRs), reports on antagonists feasible for click chemistry are less common. Here, we designed and synthesized an antagonist suitable for probe attachment through click chemistry, namely, dibenzodiazepinone (DIBA)-alkyne, based on a previously reported DIBA scaffold with a high binding affinity to type-2 mAChR (M2R). To demonstrate the versatility of DIBA-alkyne as a building block for bioconjugates, we assembled DIBA-alkyne with Cyanine5 fluorophores (Cy5) and polyethylene glycol (PEG) biomolecules to obtain fluorescent DIBA antagonist (DIBA-Cy5) and fluorescent DIBA PEG derivatives. Flow cytometric analysis showed that DIBA-Cy5 possessed a high binding affinity to M2R (Kd = 1.80 nM), a two-order magnitude higher binding affinity than M1R. Fluorescent DIBA PEG derivatives maintained a potent binding to the M2R (Kd ≤ 4 nM), confirmed by confocal microscopic imaging. Additionally, DIBA-Cy5 can serve as a fluorescent ligand in the receptor-ligand competitive binding assay for other mAChR ligands, an attractive alternative to the traditional radioligand-based assay. The competitive binding mode between DIBA-Cy5 and orthosteric antagonist atropine/allosteric modulator LY2119620 indicated a dualsteric binding mode of the DIBA-type antagonist to M2R. Lastly, we demonstrated the direct staining of DIBA-Cy5 to M2R receptors in the sinoatrial node of a mouse heart. The adaptability of the clickable DIBA antagonist to a wide range of fluorophores and biomolecules can facilitate its use in various biomedical applications such as binding assays that screen compounds for M2R as the receptor target.


Asunto(s)
Química Clic , Receptor Muscarínico M2 , Animales , Ratones , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Colorantes Fluorescentes/química , Ligandos , Alquinos
13.
J Cell Biochem ; 123(9): 1440-1453, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35775813

RESUMEN

Ovarian cancer is the fifth leading cause of cancer-related deaths in females. Many ovarian tumor cell lines express muscarinic receptors (mAChRs), and their expression is correlated with reduced survival of patients. We have characterized the expression of mAChRs in two human ovarian carcinoma cell lines (SKOV-3, TOV-21G) and two immortalized ovarian surface epithelium cell lines (iOSE-120, iOSE-398). Among the five subtypes of mAChRs (M1-M5 receptors), we focused our attention on the M2 receptor, which is involved in the inhibition of tumor cell proliferation. Western blot analysis and real-time PCR analyses indicated that the levels of M2 are statistically downregulated in cancer cells. Therefore, we investigated the effect of arecaidine propargyl ester hydrobromide (APE), a preferential M2 agonist, on cell growth and survival. APE treatment decreased cell number in a dose and time-dependent manner by decreasing cell proliferation and increasing cell death. FACS and immunocytochemistry analysis have also demonstrated the ability of APE to accumulate the cells in G2/M phase of the cell cycle and to increase the percentage of abnormal mitosis. The higher level of M2 receptors in the iOSE cells rendered these cells more sensitive to APE treatment than cancer cells. The data here reported suggest that M2 has a negative role in cell growth/survival of ovarian cell lines, and its downregulation may favor tumor progression.


Asunto(s)
Hominidae , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario , Ciclo Celular , Proliferación Celular , Ésteres/farmacología , Femenino , Hominidae/metabolismo , Humanos , Neoplasias Ováricas/genética , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos
14.
Brain Res ; 1788: 147926, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35469847

RESUMEN

PURPOSE: Activation of muscarinic receptors located in bladder sensory pathways is generally considered to be the primary contributor for driving the pathogenesis of neurogenic detrusor overactivity following spinal cord injury. The present study is undertaken to examine whether moxibustion improves neurogenic detrusor overactivity via modulating the abnormal muscarinic receptor pathway. MATERIALS AND METHODS: Female Sprague-Dawley rats were subjected to spinal cord injury with T9-10 spinal cord transection. Fourteen days later, animals were received moxibustion treatment for one week. Urodynamic parameters and pelvic afferents discharge were measured. Adenosine triphosphate (ATP) content in the voided cystometry fluid was determined. Expressions of M2, M3, and P2X3 receptors in the bladder mucosa were evaluated. RESULTS: Moxibustion treatment prevented the development of detrusor overactivity in spinal cord injury rats, with an increase in the intercontraction interval and micturition pressure threshold and a decrease in afferent activity during filling. The expression of M2 was markedly suppressed by moxibustion, accompanied by a reduction in the levels of ATP and P2X3. M2 receptor antagonist methoctramine hemihydrate had similar effects to moxibustion on bladder function and afferent activity, while the M2-preferential agonist oxotremorine methiodide abolished the beneficial effects of moxibustion. CONCLUSION: Moxibustion is a potential candidate for treating neurogenic bladder overactivity in a rat model of spinal cord injury, possibly through inhibiting the M2/ATP/P2X3 pathway.


Asunto(s)
Adenosina Trifosfato , Moxibustión , Receptor Muscarínico M2 , Traumatismos de la Médula Espinal , Vejiga Urinaria Hiperactiva , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Diaminas/farmacología , Femenino , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M2/antagonistas & inhibidores , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos , Receptores Purinérgicos P2X3/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Vejiga Urinaria Neurogénica/tratamiento farmacológico , Vejiga Urinaria Neurogénica/metabolismo , Vejiga Urinaria Neurogénica/terapia , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/terapia
15.
Sci Rep ; 12(1): 1688, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105922

RESUMEN

Organophosphorus (OP) compounds that inhibit acetylcholinesterase are a common cause of poisoning worldwide, resulting in several hundred thousand deaths each year. The pathways activated during OP compound poisoning via overstimulation of muscarinic acetylcholine receptors (mAChRs) play a decisive role in toxidrome. The antidotal therapy includes atropine, which is a nonspecific blocker of all mAChR subtypes. Atropine is efficient for mitigating depression in respiratory control centers but does not benefit patients with OP-induced skeletal muscle weakness. By using an ex vivo model of OP-induced muscle weakness, we studied the effects of the M1/M4 mAChR antagonist pirenzepine and the M2/M4 mAChR antagonist methoctramine on the force of mouse diaphragm muscle contraction. It was shown that weakness caused by the application of paraoxon can be significantly prevented by methoctramine (1 µM). However, neither pirenzepine (0.1 µM) nor atropine (1 µM) was able to prevent muscle weakness. Moreover, the application of pirenzepine significantly reduced the positive effect of methoctramine. Thus, balanced modulation of neuromuscular synaptic transmission via M1 and M2 mAChRs contributes to paraoxon-induced muscle weakness. It was shown that methoctramine (10 µmol/kg, i.p.) and atropine (50 µmol/kg, i.p.) were equieffective toward increasing the survival of mice poisoned with a 2xLD50 dose of paraoxon.


Asunto(s)
Antídotos/administración & dosificación , Atropina/administración & dosificación , Inhibidores de la Colinesterasa/efectos adversos , Diaminas/administración & dosificación , Antagonistas Muscarínicos/administración & dosificación , Debilidad Muscular/inducido químicamente , Debilidad Muscular/prevención & control , Paraoxon/efectos adversos , Parasimpatolíticos/administración & dosificación , Sustancias Protectoras/administración & dosificación , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Inhibidores de la Colinesterasa/administración & dosificación , Colinesterasas/metabolismo , Diafragma/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Contracción Muscular/efectos de los fármacos , Debilidad Muscular/metabolismo , Paraoxon/administración & dosificación , Pirenzepina/administración & dosificación , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor Muscarínico M2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
16.
Biomolecules ; 12(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35204740

RESUMEN

The cross-talk between axon and glial cells during development and in adulthood is mediated by several molecules. Among them are neurotransmitters and their receptors, which are involved in the control of myelinating and non-myelinating glial cell development and physiology. Our previous studies largely demonstrate the functional expression of cholinergic muscarinic receptors in Schwann cells. In particular, the M2 muscarinic receptor subtype, the most abundant cholinergic receptor expressed in Schwann cells, inhibits cell proliferation downregulating proteins expressed in the immature phenotype and triggers promyelinating differentiation genes. In this study, we analysed the in vitro modulation of the Neuregulin-1 (NRG1)/erbB pathway, mediated by the M2 receptor activation, through the selective agonist arecaidine propargyl ester (APE). M2 agonist treatment significantly downregulates NRG1 and erbB receptors expression, both at transcriptional and protein level, and causes the internalization and intracellular accumulation of the erbB2 receptor. Additionally, starting from our previous results concerning the negative modulation of Notch-active fragment NICD by M2 receptor activation, in this work, we clearly demonstrate that the M2 receptor subtype inhibits erbB2 receptors by Notch-1/NICD downregulation. Our data, together with our previous results, demonstrate the existence of a cross-interaction between the M2 receptor and NRG1/erbB pathway-Notch1 mediated, and that it is responsible for the modulation of Schwann cell proliferation/differentiation.


Asunto(s)
Neurregulinas , Receptor ErbB-2 , Receptor Muscarínico M2/metabolismo , Receptores Notch , Células de Schwann , Transducción de Señal , Proliferación Celular , Células Cultivadas , Neurregulinas/metabolismo , Receptor ErbB-2/metabolismo , Receptores Notch/metabolismo , Células de Schwann/citología , Células de Schwann/metabolismo
17.
Cereb Cortex ; 32(23): 5420-5437, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35151230

RESUMEN

Chronic adolescent administration of marijuana's major psychoactive compound, ∆9-tetrahydrocannabinol (Δ9-THC), produces adaptive changes in adult social and cognitive functions sustained by prelimbic prefrontal cortex (PL-PFC). Memory and learning processes in PL-PFC neurons can be regulated through cholinergic muscarinic-2 receptors (M2R) and modulated by activation of cannabinoid-1 receptors (CB1Rs) targeted by Δ9-THC. Thus, chronic exposure to Δ9-THC during adolescence may alter the expression and/or distribution of M2Rs in PL-PFC neurons receiving CB1R terminals. We tested this hypothesis by using electron microscopic dual CB1R and M2R immunolabeling in adult C57BL/6 J male mice that had received vehicle or escalating dose of Δ9-THC through adolescence. In vehicle controls, CB1R immunolabeling was mainly localized to axonal profiles virtually devoid of M2R but often apposing M2R-immunoreactive dendrites and dendritic spines. The dendrites received inputs from CB1R-labeled or unlabeled terminals, whereas spines received asymmetric synapses exclusively from axon terminals lacking CB1Rs. Adolescent Δ9-THC significantly increased plasmalemmal M2R-immunogold density exclusively in large dendrites receiving input from CB1R-labeled terminals. In contrast, cytoplasmic M2R-immunogold density decreased in small spines of the Δ9-THC-treated adult mice. We conclude that Δ9-THC engagement of CB1Rs during adolescence increases M2R plasmalemmal accumulation in large proximal dendrites and decreases M2R cytoplasmic expression in small spines of PL-PFC.


Asunto(s)
Dronabinol , Corteza Prefrontal , Receptor Cannabinoide CB1 , Receptor Muscarínico M2 , Animales , Masculino , Ratones , Dronabinol/farmacología , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Muscarínico M2/metabolismo
18.
PLoS One ; 17(1): e0261960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030226

RESUMEN

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the 'relaxation' property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


Asunto(s)
Acetilcolina/farmacología , Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/farmacología , Activación del Canal Iónico/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canales de Potasio/metabolismo , Receptor de Adenosina A1/metabolismo , Animales , Femenino , Cobayas , Masculino , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo
19.
J Neurochem ; 160(3): 342-355, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878648

RESUMEN

Cholinergic transmission underlies higher brain functions such as cognition and movement. To elucidate the process whereby acetylcholine (ACh) release is maintained and regulated in the central nervous system, uptake of [3 H]choline and subsequent synthesis and release of [3 H]ACh were investigated in rat striatal segments. Incubation with [3 H]choline elicited efficient uptake via high-affinity choline transporter-1, resulting in accumulation of [3 H]choline and [3 H]ACh. However, following inhibition of ACh esterase (AChE), incubation with [3 H]choline led predominantly to the accumulation of [3 H]ACh. Electrical stimulation and KCl depolarization selectively released [3 H]ACh but not [3 H]choline. [3 H]ACh release gradually declined upon repetitive stimulation, whereas the release was reproducible under inhibition of AChE. [3 H]ACh release was abolished after treatment with vesamicol, an inhibitor of vesicular ACh transporter. These results suggest that releasable ACh is continually replenished from the cytosol to releasable pools of cholinergic vesicles to maintain cholinergic transmission. [3 H]ACh release evoked by electrical stimulation was abolished by tetrodotoxin, but that induced by KCl was largely resistant. ACh release was Ca2+ dependent and exhibited slightly different sensitivities to N- and P-type Ca2+ channel toxins (ω-conotoxin GVIA and ω-agatoxin IVA, respectively) between both stimuli. [3 H]ACh release was negatively regulated by M2 muscarinic and D2 dopaminergic receptors. The present results suggest that inhibition of AChE within cholinergic neurons and of presynaptic negative regulation of ACh release contributes to maintenance and facilitation of cholinergic transmission, providing a potentially useful clue for the development of therapies for cholinergic dysfunction-associated disorders, in addition to inhibition of synaptic cleft AChE.


Asunto(s)
Acetilcolina/biosíntesis , Neostriado/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Colina/metabolismo , Inhibidores de la Colinesterasa/farmacología , Estimulación Eléctrica , Masculino , Cloruro de Potasio/farmacología , Radiofármacos , Ratas , Ratas Wistar , Receptor Muscarínico M2/efectos de los fármacos , Receptor Muscarínico M2/metabolismo , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
20.
Neurochem Res ; 47(1): 190-203, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33765249

RESUMEN

The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating nociceptive signal progression. The cholinergic system acting through muscarinic acetylcholine receptors (mAChRs) also mediates important regulations of nociceptive transmission being the M2 subtype the most abundantly expressed in the spinal cord. Here we studied the effect of M2 mAChRs stimulation on GlyT2 function co-expressed in a heterologous system with negligible levels of muscarinic receptor activity. We found GlyT2 is down-regulated by carbachol in a calcium-dependent manner. Different components involved in cell calcium homeostasis were analysed to establish a role in the mechanism of GlyT2 inhibition. GlyT2 down-regulation by carbachol was increased by thapsigargin and reduced by internal store depletion, although calcium release from endoplasmic reticulum or mitochondria had a minor role on GlyT2 inhibition. Our results are consistent with a GlyT2 sensitivity to intracellular calcium mobilized by M2 mAChRs in the subcortical area of the plasma membrane. A crucial role of the plasma membrane sodium calcium exchanger NCX is proposed.


Asunto(s)
Calcio , Proteínas de Transporte de Glicina en la Membrana Plasmática , Neuronas , Receptor Muscarínico M2 , Animales , Calcio/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Neuronas/metabolismo , Ratas , Ratas Wistar , Receptor Muscarínico M2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA