Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.304
Filtrar
1.
Int J Oncol ; 64(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38757343

RESUMEN

Daunorubicin, also known as daunomycin, is a DNA­targeting anticancer drug that is used as chemotherapy, mainly for patients with leukemia. It has also been shown to have anticancer effects in monotherapy or combination therapy in solid tumors, but at present it has not been adequately studied in colorectal cancer (CRC). In the present study, from a screening using an FDA­approved drug library, it was found that daunorubicin suppresses GLI­dependent luciferase reporter activity. Daunorubicin also increased p53 levels, which contributed to both GLI1 suppression and apoptosis. The current detailed investigation showed that daunorubicin promoted the ß­TrCP­mediated ubiquitination and proteasomal degradation of GLI1. Moreover, a competition experiment using BODIPY­cyclopamine, a well­known Smo inhibitor, suggested that daunorubicin does not bind to Smo in HCT116 cells. Administration of daunorubicin (2 mg/kg, ip, qod, 15 days) into HCT116 xenograft mice profoundly suppressed tumor progress and the GLI1 level in tumor tissues. Taken together, the present results revealed that daunorubicin suppresses canonical Hedgehog pathways in CRC. Ultimately, the present study discloses a new mechanism of daunorubicin's anticancer effect and might provide a rationale for expanding the clinical application of daunorubicin.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Daunorrubicina , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína con Dedos de Zinc GLI1 , Humanos , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Daunorrubicina/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Animales , Ratones , Apoptosis/efectos de los fármacos , Células HCT116 , Receptor Smoothened/metabolismo , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
2.
Cells ; 13(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38667291

RESUMEN

Both Hedgehog and androgen signaling pathways are known to promote myelin regeneration in the central nervous system. Remarkably, the combined administration of agonists of each pathway revealed their functional cooperation towards higher regeneration in demyelination models in males. Since multiple sclerosis, the most common demyelinating disease, predominates in women, and androgen effects were reported to diverge according to sex, it seemed essential to assess the existence of such cooperation in females. Here, we developed an intranasal formulation containing the Hedgehog signaling agonist SAG, either alone or in combination with testosterone. We show that SAG promotes myelin regeneration and presumably a pro-regenerative phenotype of microglia, thus mimicking the effects previously observed in males. However, unlike in males, the combined molecules failed to cooperate in the demyelinated females, as shown by the level of functional improvement observed. Consistent with this observation, SAG administered in the absence of testosterone amplified peripheral inflammation by presumably activating NK cells and thus counteracting a testosterone-induced reduction in Th17 cells when the molecules were combined. Altogether, the data uncover a sex-dependent effect of the Hedgehog signaling agonist SAG on the peripheral innate immune system that conditions its ability to cooperate or not with androgens in the context of demyelination.


Asunto(s)
Enfermedades Desmielinizantes , Testosterona , Animales , Femenino , Masculino , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/tratamiento farmacológico , Ratones , Testosterona/farmacología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/agonistas , Ratones Endogámicos C57BL , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Sistema Nervioso Central/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/agonistas , Vaina de Mielina/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/inmunología , Caracteres Sexuales
3.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572590

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Exosomas , Células Madre Mesenquimatosas , Humanos , Ratas , Animales , Nefropatías Diabéticas/metabolismo , Exosomas/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrosis , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo , Diabetes Mellitus/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542295

RESUMEN

Hedgehog (Hh) signaling is crucial in cardiovascular development and maintenance. However, the biological role of Patched1 (Ptch1), an inhibitory receptor of the Hh signaling pathway, remains elusive. In this study, a Ptch1 ortholog was characterized in Nile tilapia (Oreochromis niloticus), and its function was investigated through CRISPR/Cas9 gene knockout. When one-cell embryos were injected with CRISPR/Cas9 targeting ptch1, the mutation efficiency exceeded 70%. During 0-3 days post fertilization (dpf), no significant differences were observed between the ptch1 mutant group and the control group; at 4 dpf (0 day after hatching), about 10% of the larvae showed an angiogenesis defect and absence of blood flow; from 5 dpf, most larvae exhibited an elongated heart, large pericardial cavity, and blood leakage and coagulation, ultimately dying during the 6-8 dpf period due to the lack of blood circulation. Consistently, multiple differentially expressed genes related to angiogenesis, blood coagulation, and heart development were enriched in the ptch1 mutants. Furthermore, Smoothened (Smo) antagonist (cyclopamine) treatment of the ptch1 mutants greatly rescued the cardiovascular disorders. Collectively, our study suggests that Ptch1 is required for cardiovascular development and vascular integrity via Smo signaling, and excessive Hh signaling is detrimental to cardiovascular development.


Asunto(s)
Cíclidos , Animales , Cíclidos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal , Técnicas de Inactivación de Genes , Mutación , Receptor Smoothened/genética
5.
Biochim Biophys Acta Gen Subj ; 1868(4): 130557, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38181892

RESUMEN

BACKGROUND: HERC4 has been reported to have functions in several types of tumors, but its roles in ovarian cancer have not been studied yet. METHODS: Primary tissues from ovarian cancer patients and cell lines were collected for real-time PCR. Kaplan-Meier Plotter was used to predict the prognosis of ovarian cancer patients. HERC4 was overexpressed in cells by lentivirus, and CCK-8 assay was performed to evaluate cell viability. Real-time PCR and Western blot were carried out to analyze the mRNA and protein expression, respectively. Xenograft tumor models were established to analyze HERC4 function in vivo. RESULTS: Firstly, we found that HERC4 was significantly downregulated in ovarian cancer. We then found that ovarian cancer patients with high HERC4 expression had significantly higher overall survival and progression-free survival rates compared with patients with low expression. Then, HERC4 was overexpressed in ovarian cancer cells, and we found that overexpression of HERC4 significantly inhibited ovarian cancer cell growth, as well as the expression of the target protein SMO, and the key proteins in the downstream hedgehog signaling pathway. Finally, the xenograft tumor models revealed that overexpression of HERC4 significantly inhibited tumor growth in vivo. CONCLUSIONS: Overall, these results indicate that overexpression of HERC4 inhibits cell proliferation of ovarian cancer in vitro and in vivo, suggesting that HERC4 may serve as an effective target for the treatment of ovarian cancer.


Asunto(s)
Proteínas Hedgehog , Neoplasias Ováricas , Humanos , Femenino , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacología , Línea Celular Tumoral , Transducción de Señal , Neoplasias Ováricas/genética , Proliferación Celular , Receptor Smoothened/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Neurochem Res ; 49(6): 1556-1576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38160216

RESUMEN

Multiple sclerosis (MS) is a pathological condition characterized by the demyelination of nerve fibers, primarily attributed to the destruction of oligodendrocytes and subsequent motor neuron impairment. Ethidium bromide (EB) is a neurotoxic compound that induces neuronal degeneration, resulting in demyelination and symptoms resembling those observed in experimental animal models of multiple sclerosis (MS). The neurotoxic effects induced by EB in multiple sclerosis (MS) are distinguished by the death of oligodendrocytes, degradation of myelin basic protein (MBP), and deterioration of axons. Neurological complications related to MS have been linked to alterations in the signaling pathway known as smo-shh. Purmorphine (PUR) is a semi-synthetic compound that exhibits potent Smo-shh agonistic activity. It possesses various pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects. Hence, the current investigation was conducted to assess the neuroprotective efficacy of PUR (at doses of 5 and 10 mg/kg, administered intraperitoneally) both individually and in conjunction with Fingolimod (FING) (at a dose of 0.5 mg/kg, administered intraperitoneally) in the experimental model of MS induced by EB. The administration of EB was conducted via the intracerebropeduncle route (ICP) over a period of seven days in the brain of rats. The Wistar rats were allocated into six groups using randomization, each consisting of eight rats (n = 8 per group). The experimental groups in this study were categorized as follows: (I) Sham Control, (II) Vehicle Control, (III) PUR per se, (IV) EB, (V) EB + PUR5, (VI) EB + PUR10, (VII) EB + FING 0.5, and (VIII) EB + PUR10 + FING 0.5. On the final day of the experimental timeline, all animal subjects were euthanized, and subsequent neurochemical estimations were conducted on cerebrospinal fluid, blood plasma, and brain tissue samples. In addition, we conducted neurofilament (NFL) analysis and histopathological examination. We utilized the luxol myelin stain to understand better the degeneration associated with MS and its associated neurological complications. The findings of our study indicate that the activation of SMO-Shh by PUR has a mitigating effect on neurobehavioral impairments induced by EB, as well as a restorative effect on cellular and neurotransmitter abnormalities in an experimental model of MS.


Asunto(s)
Proteínas Hedgehog , Esclerosis Múltiple , Neurogénesis , Ratas Wistar , Animales , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Neurogénesis/efectos de los fármacos , Masculino , Proteínas Hedgehog/metabolismo , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptor Smoothened/metabolismo , Modelos Animales de Enfermedad , Proteína con Dedos de Zinc GLI1/metabolismo , Conducta Animal/efectos de los fármacos , Etidio , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico
7.
J Invest Dermatol ; 144(6): 1368-1377.e6, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38157930

RESUMEN

Although basal cell carcinomas arise from ectopic Hedgehog pathway activation and can be treated with pathway inhibitors, sporadic basal cell carcinomas display high resistance rates, whereas tumors arising in patients with Gorlin syndrome with germline Patched (PTCH1) alterations are uniformly suppressed by inhibitor therapy. In rare cases, patients with Gorlin syndrome on long-term inhibitor therapy will develop individual resistant tumor clones that rapidly progress, but the basis of this resistance remains unstudied. In this study, we report a case of an SMO inhibitor-resistant tumor arising in a patient with Gorlin syndrome on suppressive SMO inhibitor for nearly a decade. Using a combination of multiomics and spatial transcriptomics, we define the tumor populations at the cellular and tissue level to conclude that Gorlin tumors can develop resistance to SMO inhibitors through the previously described basal to squamous cell carcinoma transition. Intriguingly, through spatial whole-exome genomic analysis, we nominate PCYT2, ETNK1, and the phosphatidylethanolamine biosynthetic pathway as genetic suppressors of basal to squamous cell carcinoma transition resistance. These observations provide a general framework for studying tumor evolution and provide important clinical insight into mechanisms of resistance to SMO inhibitors for not only Gorlin syndrome but also sporadic basal cell carcinomas.


Asunto(s)
Síndrome del Nevo Basocelular , Carcinoma Basocelular , Carcinoma de Células Escamosas , Resistencia a Antineoplásicos , Neoplasias Cutáneas , Receptor Smoothened , Humanos , Síndrome del Nevo Basocelular/genética , Síndrome del Nevo Basocelular/patología , Síndrome del Nevo Basocelular/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Receptor Smoothened/genética , Receptor Smoothened/antagonistas & inhibidores , Receptor Smoothened/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma Basocelular/genética , Carcinoma Basocelular/tratamiento farmacológico , Carcinoma Basocelular/patología , Masculino , Anilidas/uso terapéutico , Femenino , Transducción de Señal/efectos de los fármacos , Piridinas/uso terapéutico
8.
Proc Natl Acad Sci U S A ; 120(49): e2300919120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015850

RESUMEN

Smoothened (SMO) is an oncoprotein and signal transducer in the Hedgehog signaling pathway that regulates cellular differentiation and embryogenesis. As a member of the Frizzled (Class F) family of G protein-coupled receptors (GPCRs), SMO biochemically and functionally interacts with Gi family proteins. However, key molecular features of fully activated, G protein-coupled SMO remain elusive. We present the atomistic structure of activated human SMO complexed with the heterotrimeric Gi protein and two sterol ligands, equilibrated at 310 K in a full lipid bilayer at physiological salt concentration and pH. In contrast to previous experimental structures, our equilibrated SMO complex exhibits complete breaking of the pi-cation interaction between R4516.32 and W5357.55, a hallmark of Class F receptor activation. The Gi protein couples to SMO at seven strong anchor points similar to those in Class A GPCRs: intracellular loop 1, intracellular loop 2, transmembrane helix 6, and helix 8. On the path to full activation, we find that the extracellular cysteine-rich domain (CRD) undergoes a dramatic tilt, following a trajectory suggested by positions of the CRD in active and inactive experimental SMO structures. Strikingly, a sterol ligand bound to a shallow transmembrane domain (TMD) site in the initial structure migrates to a deep TMD pocket found exclusively in activator-bound SMO complexes. Thus, our results indicate that SMO interacts with Gi prior to full activation to break the molecular lock, form anchors with Gi subunits, tilt the CRD, and facilitate migration of a sterol ligand in the TMD to an activated position.


Asunto(s)
Proteínas Hedgehog , Esteroles , Humanos , Esteroles/metabolismo , Ligandos , Modelos Moleculares , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/metabolismo
9.
Sci Signal ; 16(807): eadd6834, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847757

RESUMEN

Hedgehog (Hh) signaling controls growth and patterning during embryonic development and homeostasis in adult tissues. Hh binding to the receptor Patched (Ptc) elicits intracellular signaling by relieving Ptc-mediated inhibition of the transmembrane protein Smoothened (Smo). We uncovered a role for the lipid phosphatidic acid (PA) in the regulation of the Hh pathway in Drosophila melanogaster. Deleting the Ptc C-terminal tail or mutating the predicted PA-binding sites within it prevented Ptc from inhibiting Smo in wing discs and in cultured cells. The C-terminal tail of Ptc directly interacted with PA in vitro, an association that was reduced by Hh, and increased the amount of PA at the plasma membrane in cultured cells. Smo also interacted with PA in vitro through a binding pocket located in the transmembrane region, and mutating residues in this pocket reduced Smo activity in vivo and in cells. By genetically manipulating PA amounts in vivo or treating cultured cells with PA, we demonstrated that PA promoted Smo activation. Our findings suggest that Ptc may sequester PA in the absence of Hh and release it in the presence of Hh, thereby increasing the amount of PA that is locally available to promote Smo activation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Patched/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
10.
Oncogene ; 42(47): 3529-3541, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37845394

RESUMEN

TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.


Asunto(s)
Antineoplásicos , Osteosarcoma , Humanos , Animales , Ratones , Proteínas Hedgehog/metabolismo , Ligandos , Transducción de Señal , Antineoplásicos/farmacología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Cilios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
11.
Cells ; 12(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830570

RESUMEN

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.


Asunto(s)
Cilios , Glioma , Humanos , Cilios/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Receptor Smoothened/metabolismo
12.
Chemistry ; 29(62): e202302237, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37565343

RESUMEN

Natural products (NPs) are highly profitable pharmacological tools due to their chemical diversity and ability to modulate biological systems. Accessing new chemical entities while retaining the biological relevance of natural chemotypes is a fundamental goal in the design of novel bioactive compounds. Notably, NPs have played a crucial role in understanding Hedgehog (HH) signalling and its pharmacological modulation in anticancer therapy. However, HH antagonists developed so far have shown several limitations, thus growing interest in the design of second-generation HH inhibitors. Through smart manipulation of the NPs core-scaffold, unprecedented and intriguing architectures have been achieved following different design strategies. This study reports the rational design and synthesis of a first and second generation of anthraquinone-based hybrids by combining the rhein scaffold with variously substituted piperazine nuclei that are structurally similar to the active portion of known SMO antagonists, the main transducer of the HH pathway. A thorough functional and biological investigation identified RH2_2 and RH2_6 rhein-based hybrids as valuable candidates for HH inhibition through SMO antagonism, with the consequent suppression of HH-dependent tumour growth. These findings also corroborated the successful application of the NPs-based hybrid design strategy in the development of novel NP-based SMO antagonists.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor Smoothened/uso terapéutico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antraquinonas/farmacología , Receptores Acoplados a Proteínas G/metabolismo
13.
BMC Pediatr ; 23(1): 424, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626311

RESUMEN

BACKGROUND: Congenital tibial hemimelia (CTH [MIM: 275220]) is a rare congenital limb deficiency that manifests as a shortened, curved, dysplastic or absent tibia with polydactyly. In previous studies, mutations of a distant sonic hedgehog (SHH) cis-regulator (ZRS) and a Shh repressor (GLI3) were identified. CASE PRESENTATION: Here, we admitted a 20-month-old boy who manifested with right tibial deformity, varus foot, ankle dislocation, and ipsilateral preaxial polydactyly. After genetic sequencing and data analysis, the results revealed a 443 A > G mutation in the father and a 536 C > T mutation in the mother in exon 2 of the Smoothed (SMO) gene at 7q32.1, with the coexistence of both mutant alleles in the proband/patient. CONCLUSIONS: Our report suggests that even though not previously reported, SMO mutations may be associated with limb anomalies such as tibial hemimelia via Hh signaling in humans and has implications for genetic counseling.


Asunto(s)
Proteínas Hedgehog , Polidactilia , Masculino , Humanos , Lactante , Proteínas Hedgehog/genética , Mutación Puntual , Tibia/diagnóstico por imagen , Polidactilia/genética , Receptor Smoothened
14.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240278

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the deadliest neoplasm of the urinary tract, and we are still far from completely understanding ccRCC development and treatment. The renal tissue paraffin blocks (20) of patients with ccRCC were collected at the University Hospital in Split from 2019 to 2020, and tissue sections were stained with patched (PTCH), anti-smoothened (SMO) and anti-Sonic Hedgehog (SHH) antibodies. SHH was highly expressed (31.9%) in grade 1 tumour, it being higher than all other grades and the control (p < 0.001-p < 0.0001). The trend of a linear decrease in the expression of SHH was observed with the progression of the tumour grade (p < 0.0001). PTCH expression was significantly lower in grades 1 and 2 in comparison to the control (p < 0.01) and grade 4 (p < 0.0001). A significant increase in the expression of SMO was found in grade 4 compared to all other grades (p < 0.0001) and the control (p < 0.001). The strong expression of SHH was observed in carcinoma cells of the G1 stage with a diffuse staining pattern (>50% of neoplastic cells). Stroma and/or inflammatory infiltrate display no staining and no expression of SHH in G1 and G2, while mild focal staining (10-50% of neoplastic cells) was observed in G3 and G4. Patients with high PTCH and low SMO expression had significant time survival differences (p = 0.0005 and p = 0.029, respectively). Therefore, high levels of PTCH and low levels of SMO expression are important markers of better survival rates in ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Carcinoma de Células Renales/genética , Receptores Patched/metabolismo , Transducción de Señal , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Renales/genética , Receptor Smoothened/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
15.
Biomed Res Int ; 2023: 6575194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139482

RESUMEN

Background: To investigate the value of SMO and GLI1 genes in the hedgehog pathway in malignant mesothelioma specimens. Further study on the expression and prognosis of SMO and GLI1 in malignant mesothelioma tissues and the relationship between the two and the molecular mechanisms of mesothelioma immunity and to further investigate the prognostic value of mesothelioma expression. Materials and Methods: Immunohistochemistry and RT-qPCR were applied to detect the expression of SMO and GLI1 proteins and mRNA in biopsy specimens and plasma cavity effusion specimens from malignant mesothelioma (n = 130) and benign mesothelial tissues (n = 50) and to analyze the clinicopathological significance and survival risk factors of SMO and GLI1 protein expression in mesothelioma. The mechanisms of mesothelioma cell expression and immune cell infiltration were investigated using bioinformatics methods. Results: SMO and GLI1 in mesothelioma tissues detected high concordance between the diagnostic results of mesothelioma biopsy specimens and plasma cavity effusion specimens. The expression levels of SMO and GLI1 protein and mRNA in mesothelioma tissues were higher than those in benign mesothelioma tissues. The expression levels of SMO and GLI1 protein were correlated with the age, site, and asbestos exposure history of patients with mesothelioma. The expression levels of SMO and GLI1 protein were correlated with the expressions of ki67 and p53 (P < 0.05). SMO and GLI1 gene expression levels were negatively correlated with good prognosis in mesothelioma patients (P < 0.05). Cox proportional risk model indicated that protein expressions of invasion, lymph node metastasis, distant metastasis, staging, and genes were independent prognostic factors of mesothelioma. The GEPIA database showed the overall survival rate and the disease-free survival rate of mesothelioma patients in the high SMO and GLI1 expression groups; the UALCAN database analysis showed lower SMO expression levels in mesothelioma patients with more pronounced TP53 mutations (P = 0.001); GLI1 gene expression levels were strongly correlated with lymph node metastasis in mesothelioma patients (P = 0.009). Timer database analysis showed that the mechanism of immune cell infiltration was closely related to SMO and GLI1 expression. The degree of immune cell infiltration was strongly correlated with the prognosis of mesothelioma patients (P < 0.05). Conclusion: The expression levels of both SMO and GLI1 proteins were higher than those of normal mesothelial tissues, and the mRNA expression levels also changed in the same direction. SMO and GLI1 gene expressions in mesothelioma were negatively correlated with age, site of occurrence, and history of asbestos exposure. Positive expression of SMO and GLI1 was negatively correlated with patient survival. The Cox proportional risk model showed that gender, history of asbestos exposure, site of occurrence, SMO, and GLI1 were independent prognostic factors for mesothelioma. The mechanism of immune cell infiltration in mesothelioma is closely related to the gene expression of both and the survival prognosis of mesothelioma patients.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Metástasis Linfática , Transducción de Señal , Proteínas Hedgehog/genética , Mesotelioma/genética , Mesotelioma/patología , Pronóstico , ARN Mensajero/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Receptor Smoothened/genética
16.
J Mol Model ; 29(5): 143, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37062794

RESUMEN

CONTEXT: The Hedgehog (Hh) signaling pathway is a crucial regulator of various cellular processes. Dysregulated activation of the Smoothened (SMO) oncoprotein, a key component of the Hh pathway, has been implicated in several types of cancer. Although SMO inhibitors are important anti-cancer therapeutics, drug-resistant SMO mutants have emerged, limiting their efficacy. This study aimed to discover stable SMO inhibitors for both wild-type and mutant SMOs, using a 12-feature pharmacophore model validated for virtual screening. One lead compound, LCT10312, was identified with high affinity to SMO and showed a significant conformational change in the SMO structure upon binding. Molecular dynamic simulation revealed stable interaction of LCT10312 with SMO and large atom motions, indicating SMO structural fluctuation. The lead compound showed high predicted binding scores to several clinically relevant SMO mutants. METHODS: A ligand-based pharmacophore model was developed from 25 structurally clustered SMO inhibitors using LigandScout v3.12 software and virtually screened for hit identification from a library of 511,878 chemicals. Molecular docking was employed to identify potential leads based on SMO affinities. Molecular dynamic simulation (MDS) with GROMACS v5.1.4 was performed to analyze the structural changes of SMO oncoprotein upon binding lead compound(s) and cyclopamine as the control for 100 ns. The binding affinity of lead compound(s) was predicted on clinical and laboratory SMO mutants.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Humanos , Proteínas Hedgehog/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Neoplasias/metabolismo , Farmacóforo , Receptor Smoothened/metabolismo
17.
Biophys J ; 122(7): 1400-1413, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36883002

RESUMEN

Smoothened (SMO) is a membrane protein of the class F subfamily of G protein-coupled receptors (GPCRs) and maintains homeostasis of cellular differentiation. SMO undergoes conformational change during activation, transmitting the signal across the membrane, making it amenable to bind to its intracellular signaling partner. Receptor activation has been studied at length for class A receptors, but the mechanism of class F receptor activation remains unknown. Agonists and antagonists bound to SMO at sites in the transmembrane domain (TMD) and the cysteine-rich domain have been characterized, giving a static view of the various conformations SMO adopts. Although the structures of the inactive and active SMO outline the residue-level transitions, a kinetic view of the overall activation process remains unexplored for class F receptors. We describe SMO's activation process in atomistic detail by performing 300 µs of molecular dynamics simulations and combining it with Markov state model theory. A molecular switch, conserved across class F and analogous to the activation-mediating D-R-Y motif in class A receptors, is observed to break during activation. We also show that this transition occurs in a stage-wise movement of the transmembrane helices: TM6 first, followed by TM5. To see how modulators affect SMO activity, we simulated agonist and antagonist-bound SMO. We observed that agonist-bound SMO has an expanded hydrophobic tunnel in SMO's core TMD, whereas antagonist-bound SMO shrinks this tunnel, further supporting the hypothesis that cholesterol travels through a tunnel inside Smoothened to activate it. In summary, this study elucidates the distinct activation mechanism of class F GPCRs and shows that SMO's activation process rearranges the core TMD to open a hydrophobic conduit for cholesterol transport.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Receptor Smoothened/química , Receptor Smoothened/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo
18.
J Control Release ; 357: 94-108, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931470

RESUMEN

Cancer stem cells (CSCs) possess the ability to indefinitely proliferate and resist therapy, leading to cancer relapse and metastasis. To address this, we aimed to develop a CSC-inclusive therapy that targets both CSCs and non-CSC glioblastoma (GBM) cells. We accomplished this by using a smoothened (SMO) CRISPR/Cas9 plasmid to suppress the hedgehog pathway in CSCs, in combination with inhibiting the serine hydroxymethyl transferase 1 (SHMT1)-driven thymidylate biosynthesis pathway in non-CSC GBM cells using SHMT1 siRNA (siSHMT1). We targeted CSCs using a CD133 peptide attached to an osmotically active vitamin B6-coupled polydixylitol vector (VPX-CD133) by a photoactivatable heterobifunctional linker. VPX-CD133 nanocomplexes in comparison to VPX complexes remarkably targeted and transfected CSCs both in vitro and in subcutaneous tumor. The VPX-CD133-mediated targeted delivery of SMO CRISPR in CSCs led to SMO suppression that negatively affected its growth. Next, we performed comprehensive therapy in xenograft mice using VPX-CD133, which delivered SMO-CRISPR to CSCs, and VPX, which delivered siSHMT1 to non-CSC GBM cells. The combined treatment induced apoptosis in a large number of cells, reduced tumor volume by up to 81%, and improved the health of treated mice significantly. By eliminating CSCs together with the non-CSC GBM cells, the combined study paves the way for developing CSC-inclusive therapies for GBM.


Asunto(s)
Glioblastoma , Proteínas Hedgehog , Humanos , Animales , Ratones , Proteínas Hedgehog/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , ARN Interferente Pequeño/metabolismo , Apoptosis , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Antígeno AC133 , Receptor Smoothened/metabolismo
19.
Mol Cancer Ther ; 22(3): 343-356, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36807728

RESUMEN

Cholangiocarcinoma (CCA) is characterized by resistance to chemotherapy and a poor prognosis. Therefore, treatments that can effectively suppress tumor growth are urgently needed. Aberrant activation of hedgehog (HH) signaling has been implicated in several cancers, including those of the hepatobiliary tract. However, the role of HH signaling in intrahepatic CCA (iCCA) has not been completely elucidated. In this study, we addressed the function of the main transducer Smoothened (SMO) and the transcription factors (TFs) GLI1 and GLI2 in iCCA. In addition, we evaluated the potential benefits of the combined inhibition of SMO and the DNA damage kinase WEE1. Transcriptomic analysis of 152 human iCCA samples showed increased expression of GLI1, GLI2, and Patched 1 (PTCH1) in tumor tissues compared with nontumor tissues. Genetic silencing of SMO, GLI1, and GLI2 inhibited the growth, survival, invasiveness, and self-renewal of iCCA cells. Pharmacologic inhibition of SMO reduced iCCA growth and viability in vitro, by inducing double-strand break DNA damage, leading to mitotic arrest and apoptotic cell death. Importantly, SMO inhibition resulted in the activation of the G2-M checkpoint and DNA damage kinase WEE1, increasing the vulnerability to WEE1 inhibition. Hence, the combination of MRT-92 with the WEE1 inhibitor AZD-1775 showed increased antitumor activity in vitro and in iCCA xenografts compared with single treatments. These data indicate that combined inhibition of SMO and WEE1 reduces tumor burden and may represent a strategy for the clinical development of novel therapeutic approaches in iCCA.


Asunto(s)
Colangiocarcinoma , Proteínas Hedgehog , Humanos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN , Proteínas Tirosina Quinasas/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
20.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674836

RESUMEN

Hedgehog-GLI (HH) signaling plays an essential role in embryogenesis and tissue homeostasis. Aberrant activation of the pathway through mutations or other mechanisms is involved in the development and progression of numerous types of cancer, including basal cell carcinoma, medulloblastoma, melanoma, breast, prostate, hepatocellular and pancreatic carcinomas. Activation of HH signaling sustains proliferation, suppresses cell death signals, enhances invasion and metastasis, deregulates cellular metabolism and promotes angiogenesis and tumor inflammation. Targeted inhibition of the HH pathway has therefore emerged as an attractive therapeutic strategy for the treatment of a wide range of cancers. Currently, the Smoothened (SMO) receptor and the downstream GLI transcriptional factors have been investigated for the development of targeted drugs. Recent studies have revealed that the HH signaling is also involved in tumor immune evasion and poor responses to cancer immunotherapy. Here we focus on the effects of HH signaling on the major cellular components of the adaptive and innate immune systems, and we present recent discoveries elucidating how the immunosuppressive function of the HH pathway is engaged by cancer cells to prevent immune surveillance. In addition, we discuss the future prospect of therapeutic options combining the HH pathway and immune checkpoint inhibitors.


Asunto(s)
Carcinoma Basocelular , Neoplasias Cerebelosas , Neoplasias Cutáneas , Masculino , Humanos , Proteínas Hedgehog/metabolismo , Transducción de Señal , Carcinoma Basocelular/patología , Receptor Smoothened/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA