Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Eur J Pharmacol ; 978: 176772, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38925290

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains a dreadful disease with poor prognosis. While the prognosis of colorectal carcinoma (CRC) is better than that of PDAC, it still is the second-leading cause of cancer deaths worldwide. Recently, a (methyl)lanthionine-stabilized, highly receptor-specific agonist of galanin subtype 2 (GAL2) receptor inhibited the growth of GAL2 receptor-expressing patient-derived xenografts (PDX) of pancreatic cancer. Furthermore, a lanthionine-constrained agonist of angiotensin II type 2 (AT2) receptor inhibited PDX of colorectal cancer in mice. Stimulation of GAL2 receptor may modulate immune surveillance and inhibits PDAC via cell cycle inhibition and apoptosis. Consistent with GAL2 receptor-mediated tumor inhibition, for PDAC, survival is much higher for patients with high GAL2 receptor expression. Importantly, a (methyl)lanthionine-stabilized GAL2 receptor-specific agonist enhances expression of GAL2 receptor, not only in PDAC-PDX but also in healthy tissue indicating therapeutic and preventive potentials for GAL2 receptor agonists. AT2 receptor is interacting with four tumor suppressor proteins, Src homology phosphatase 1, Src homology phosphatase 2, Promyelocytic Leukemia Zinc Finger protein and Microtuble-Associated Scaffold Protein1, the latter also known as Angiotensin-II type 2 receptor-Interacting Protein. Pathways linked to these tumor suppressor proteins may enhance immune surveillance, prevent carcinogenesis, counter proliferation and stimulate apoptosis. Taken together, current data are prompting the hypothesis of a prophylactic treatment option with stable, specific and safe agonists of GAL2 receptor and AT2 receptor to prevent the emergence of pancreatic and colorectal cancer in individuals at risk.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pancreáticas , Receptor de Angiotensina Tipo 2 , Receptor de Galanina Tipo 2 , Humanos , Animales , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/prevención & control , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/prevención & control , Carcinoma Ductal Pancreático/metabolismo
2.
FASEB J ; 38(7): e23595, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572811

RESUMEN

This study evaluates the sustained antidepressant-like effects and neurogenic potential of a 3-day intranasal co-administration regimen of galanin receptor 2 (GALR2) agonist M1145 and neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31, Pro34]NPY in the ventral hippocampus of adult rats, with outcomes analyzed 3 weeks post-treatment. Utilizing the forced swimming test (FST), we found that this co-administration significantly enhances antidepressant-like behaviors, an effect neutralized by the GALR2 antagonist M871, highlighting the synergistic potential of these neuropeptides in modulating mood-related behaviors. In situ proximity ligation assay (PLA) indicated a significant increase in GALR2/NPYY1R heteroreceptor complexes in the ventral hippocampal dentate gyrus, suggesting a molecular basis for the behavioral outcomes observed. Moreover, proliferating cell nuclear antigen (PCNA) immunolabeling revealed increased cell proliferation in the subgranular zone of the dentate gyrus, specifically in neuroblasts as evidenced by co-labeling with doublecortin (DCX), without affecting quiescent neural progenitors or astrocytes. The study also noted a significant uptick in the number of DCX-positive cells and alterations in dendritic morphology in the ventral hippocampus, indicative of enhanced neuronal differentiation and maturation. These morphological changes highlight the potential of these agonists to facilitate the functional integration of new neurons into existing neural circuits. By demonstrating the long-lasting effects of a brief, 3-day intranasal administration of GALR2 and NPY1R agonists, our findings contribute significantly to the understanding of neuropeptide-mediated neuroplasticity and herald novel therapeutic strategies for the treatment of depression and related mood disorders, emphasizing the therapeutic promise of targeting neurogenesis and neuronal maturation processes.


Asunto(s)
Neuropéptido Y , Neuropéptidos , Ratas , Animales , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/metabolismo , Administración Intranasal , Galanina/farmacología , Galanina/metabolismo , Hipocampo/metabolismo , Receptores de Neuropéptido Y/metabolismo , Neuropéptidos/farmacología , Antidepresivos/farmacología , Neurogénesis
3.
Behav Brain Funct ; 20(1): 6, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549164

RESUMEN

BACKGROUND: Spatial memory deficits and reduced neuronal survival contribute to cognitive decline seen in the aging process. Current treatments are limited, emphasizing the need for innovative therapeutic strategies. This research explored the combined effects of intranasally co-administered galanin receptor 2 (GALR2) and neuropeptide Y1 receptor (NPY1R) agonists, recognized for their neural benefits, on spatial memory, neuronal survival, and differentiation in adult rats. After intranasal co-delivery of the GALR2 agonist M1145 and a NPY1R agonist to adult rats, spatial memory was tested with the object-in-place task 3 weeks later. We examined neuronal survival and differentiation by assessing BrdU-IR profiles and doublecortin (DCX) labeled cells, respectively. We also used the GALR2 antagonist M871 to confirm GALR2's crucial role in promoting cell growth. RESULTS: Co-administration improved spatial memory and increased the survival rate of mature neurons. The positive effect of GALR2 in cell proliferation was confirmed by the nullifying effects of its antagonist. The treatment boosted DCX-labeled newborn neurons and altered dendritic morphology, increasing cells with mature dendrites. CONCLUSIONS: Our results show that intranasal co-delivery of GALR2 and NPY1R agonists improves spatial memory, boosts neuronal survival, and influences neuronal differentiation in adult rats. The significant role of GALR2 is emphasized, suggesting new potential therapeutic strategies for cognitive decline.


Asunto(s)
Disfunción Cognitiva , Receptor de Galanina Tipo 2 , Ratas , Animales , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/fisiología , Receptores de Neuropéptido Y , Galanina/farmacología , Neurogénesis , Cognición , Disfunción Cognitiva/tratamiento farmacológico
4.
J Cell Physiol ; 238(2): 459-474, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599082

RESUMEN

Dysregulation of adult hippocampal neurogenesis is linked to major depressive disorder (MDD), with more than 300 million people diagnosed and worsened by the COVID-19 pandemic. Accumulating evidence for neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the proliferating role of GAL2 receptor (GALR2) and Y1R agonists interaction upon intranasal infusion in the ventral hippocampus. We studied their hippocampal proliferating actions using the proliferating cell nuclear antigen (PCNA) on neuroblasts or stem cells and the expression of the brain-derived neurothrophic factor (BDNF). Moreover, we studied the formation of Y1R-GALR2 heteroreceptor complexes and analyzed morphological changes in hippocampal neuronal cells. Finally, the functional outcome of the NPY and GAL interaction on the ventral hippocampus was evaluated in the forced swimming test. We demonstrated that the intranasal infusion of GALR2 and the Y1R agonists promotes neuroblasts proliferation in the dentate gyrus of the ventral hippocampus and the induction of the neurotrophic factor BDNF. These effects were mediated by the increased formation of Y1R-GALR2 heteroreceptor complexes, which may mediate the neurites outgrowth observed on neuronal hippocampal cells. Importantly, BDNF action was found necessary for the antidepressant-like effects after GALR2 and the Y1R agonists intranasal administration. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the ventral hippocampus for the novel therapy of MDD or depressive-affecting diseases.


Asunto(s)
COVID-19 , Trastorno Depresivo Mayor , Administración Intranasal , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , COVID-19/metabolismo , Trastorno Depresivo Mayor/metabolismo , Hormonas Esteroides Gonadales/farmacología , Hipocampo/metabolismo , Neurogénesis , Neuropéptido Y/metabolismo , Pandemias , Masculino , Animales , Ratas , Receptor de Galanina Tipo 2/agonistas , Receptores de Neuropéptido Y/agonistas
5.
Neuropeptides ; 98: 102311, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36580831

RESUMEN

Neuropathic pain is a chronic and debilitating condition characterised by episodes of hyperalgesia and allodynia. It occurs following nerve damage from disease, inflammation or injury and currently impacts up to 17% of the UK population. Existing therapies lack efficacy and have deleterious side effects that can be severely limiting. Galanin receptor 2 (GalR2) is a G-protein coupled receptor (GPCR) implicated in the control and processing of painful stimuli. Within the nervous system it is expressed in key tissues involved in these actions such as dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. Stimulation of GalR2 is widely reported to have a role in the attenuation of inflammatory and neuropathic pain. Several studies have indicated GalR2 as a possible drug target, highlighting the potential of specific GalR2 agonists to both provide efficacy and to address the side-effect profiles of current pain therapies in clinical use. A strong biological target for drug discovery will be well validated with regards to its role in the relevant disease pathology. Ideally there will be good translational models, sensitive probes, selective and appropriate molecular tools, translational biomarkers, a clearly defined patient population and strong opportunities for commercialisation. Before GalR2 can be considered as a drug target suitable for investment, key questions need to be asked regarding its expression profile, receptor signalling and ligand interactions. This article aims to critically review the available literature and determine the current strength of hypothesis of GalR2 as a target for the treatment of neuropathic pain.


Asunto(s)
Neuralgia , Receptor de Galanina Tipo 2 , Humanos , Receptor de Galanina Tipo 2/agonistas , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Médula Espinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ganglios Espinales/metabolismo
6.
Neurotherapeutics ; 18(4): 2737-2752, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34859381

RESUMEN

The regulatory (neuro)peptide galanin is widely distributed in the central and peripheral nervous systems, where it mediates its effects via three G protein-coupled receptors (GAL1-3R). Galanin has a vast diversity of biological functions, including modulation of feeding behavior. However, the clinical application of natural galanin is not practicable due to its rapid in vivo breakdown by peptidases and lack of receptor subtype specificity. Much effort has been put into the development of receptor-selective agonists and antagonists, and while receptor selectivity has been attained to some degree, most ligands show overlapping affinity. Therefore, we aimed to develop a novel ligand with specificity to a single galanin receptor subtype and increased stability. To achieve this, a lanthionine amino acid was enzymatically introduced into a galanin-related peptide. The residue's subsequent cyclization created a conformational constraint which increased the peptide's receptor specificity and proteolytic resistance. Further exchange of certain other amino acids resulted in a novel methyllanthionine-stabilized galanin receptor agonist, a G1pE-T3N-S6A-G12A-methyllanthionine[13-16]-galanin-(1-17) variant, termed M89b. M89b has exclusive specificity for GAL2R and a prolonged half-life in serum. Intranasal application of M89b to unfasted rats significantly reduced acute 24 h food intake inducing a drop in body weight. Combined administration of M89b and M871, a selective GAL2R antagonist, abolished the anorexigenic effect of M89b, indicating that the effect of M89b on food intake is indeed mediated by GAL2R. This is the first demonstration of in vivo activity of an intranasally administered lanthipeptide. Consequently, M89b is a promising candidate for clinical application as a galanin-related peptide-based therapeutic.


Asunto(s)
Péptidos , Receptor de Galanina Tipo 2 , Animales , Ingestión de Alimentos , Ratas , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/metabolismo , Receptores de Galanina
7.
J Endocrinol Invest ; 44(3): 515-522, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32588381

RESUMEN

PURPOSE: Our and other's studies showed that administration of neuropeptide galanin may mitigate insulin resistance via promoting glucose transporter 4 (GLUT4) expression and translocation in rats. The objective of this study is to investigate whether galanin receptor 2 (GAL2-R) in brain mediates the ameliorative effect of galanin on insulin resistance in adipose tissues of type 2 diabetic rats. METHODS: In this study galanin, GAL2-R agonist M1145 and GAL2-R antagonist M871 were respectively or cooperatively injected into intracerebroventricles of type 2 diabetic rats once a day for successive fifteen days. Then the plasma and fat tissues of rats were used to estimate the alterations of insulin resistance indexes. RESULTS: The central administration of galanin enhanced 2-deoxy-[3H]-D-glucose, peroxisome proliferator-activated receptor γ and adiponectin levels, food intake and body weight, GLUT4 mRNA expression and GLUT4 concentration in plasma membranes, as well as homeostasis model assessment-insulin resistance index. Those effects of galanin may be blocked by M817, and imitated by M1145 except for food intake and body weight. CONCLUSION: Those results suggest that central GAL2-R mediates the beneficial effects of galanin on insulin sensitivity in type 2 diabetic rats. GAL2-R agonist may be taken as a potential antidiabetic agent to treat insulin resistance and type 2 diabetes.


Asunto(s)
Adipocitos/efectos de los fármacos , Glucemia/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Intolerancia a la Glucosa/prevención & control , Resistencia a la Insulina , Receptor de Galanina Tipo 2/agonistas , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Intolerancia a la Glucosa/metabolismo , Masculino , Ratas , Ratas Wistar
8.
Acta Physiol (Oxf) ; 228(2): e13345, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31310704

RESUMEN

AIM: Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS: Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS: Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION: Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.


Asunto(s)
Ingestión de Alimentos/fisiología , Hiperfagia/prevención & control , Área Hipotalámica Lateral/efectos de los fármacos , Leptina/farmacología , Neuronas/metabolismo , Receptor de Galanina Tipo 2/agonistas , Animales , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Galanina/farmacología , Ghrelina/metabolismo , Hiperfagia/metabolismo , Hiperfagia/patología , Área Hipotalámica Lateral/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Orexinas/metabolismo , Receptor de Galanina Tipo 2/metabolismo
9.
PLoS One ; 13(6): e0199512, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29928003

RESUMEN

In this study, we investigated temporal changes in galanin receptor type 2 (GalR2) expression in NF200-, galanin-, neuropeptide Y (NPY)-, and neuronal nitric oxide synthase (nNOS)-like immunoreactive (LI) dorsal root ganglion (DRG) neurons after median nerve chronic constriction injury (CCI), and the effects of GalR2 on c-Fos expression in the cuneate nucleus (CN). Double immunofluorescence labeling methods were used to appraise changes in GalR2 expression in NF200-LI, galanin-LI, NPY-LI, and nNOS-LI DRG neurons after CCI. The von Frey assay was used to assess the efficiency of intraplantar administration of saline, M871 (a GalR2 antagonist), or AR-M1896 (a GalR2 agonist) on neuropathic signs of rats with CCI. The effects of alterations in c-Fos expression were assessed in all treatments. The percentage of GalR2-LI neurons in lesioned DRGs increased and peaked at 1 week after CCI. We further detected that percentages of GalR2-LI neurons labeled for NF200, galanin, NPY, and nNOS significantly increased following CCI. Furthermore, M871 remarkably attenuated tactile allodynia, but the sensation was slightly aggravated by AR-M1896 after CCI. Consequentially, after electrical stimulation of the CCI-treated median nerve, the number of c-Fos-LI neurons in the cuneate nucleus (CN) was significantly reduced in the M871 group, whereas it increased in the AR-M1896 group. These results suggest that activation of GalR2, probably through NPY or nitric oxide, induces c-Fos expression in the CN and transmits mechanical allodynia sensations to the thalamus.


Asunto(s)
Hiperalgesia/metabolismo , Nervio Mediano/lesiones , Nervio Mediano/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Animales , Enfermedad Crónica , Constricción Patológica , Galanina , Ganglios Espinales/metabolismo , Hiperalgesia/patología , Masculino , Nervio Mediano/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/antagonistas & inhibidores
10.
Neurosci Lett ; 681: 26-30, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29787787

RESUMEN

Galanin is a neuropeptide distributed in human and rat brain regions that are involved with emotional regulation, such as the dorsal raphe nucleus (DRN). Galanin effects in the DRN are mediated by GAL1 and GAL2 receptors. Intracerebral infusion of a GAL2 (AR-M1896) or a GAL1 (M617) agonist induced either antidepressant or depressive-like effect, respectively, in rats exposed to the forced swimming test (FST). However, it is not clear if GAL1 and/or GAL2 receptors present in the DRN would be involved in such effects. Therefore, we investigated the effects induced by intra-DRN infusion of galanin (0.3 nmol), AR-M1896 (1 nmol, GAL2 agonist), or M617 (GAL1 agonist) in rats exposed to the FST. Galanin and AR-M1896 intra-DRN administration induced antidepressant-like effect in the FST. However, M617 did not induce any change in the FST. Neither M617 nor AR-M1896 changed the locomotor activity of rats in the open field test. Intra-DRN pre-treatment with M871 (1 nmol), a selective GAL2 antagonist, counteracted the antidepressant-like effect induced by galanin. These results suggest that galanin signaling through GAL2 receptors in the DRN produces triggers antidepressant-like effect.


Asunto(s)
Antidepresivos/administración & dosificación , Depresión/tratamiento farmacológico , Núcleo Dorsal del Rafe/fisiología , Galanina/administración & dosificación , Precursores de Proteínas/administración & dosificación , Receptor de Galanina Tipo 2/fisiología , Animales , Depresión/psicología , Núcleo Dorsal del Rafe/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Fragmentos de Péptidos/administración & dosificación , Péptidos/administración & dosificación , Ratas , Ratas Wistar , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/antagonistas & inhibidores , Natación/fisiología , Natación/psicología , Resultado del Tratamiento
11.
Peptides ; 99: 92-98, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183756

RESUMEN

The results of our and other's studies showed that activation of galanin receptor 1 could mitigate insulin resistance via promoting glucose transporter 4 (GLUT4) expression and translocation in the skeletal muscle of rats. But no literature are available regarding the effect of galanin receptor 2 (GALR2) on insulin resistance in skeletal muscle of type 2 diabetes. Herein, in this study we intended to survey the effect of GALR2 and its signal mechanisms in the mice with high fat diet-induced obese. The mice were intraperitoneally injected with vehicle, GALR2 agonist M1145 and antagonist M871 respectively once a day for continuous 21 days. The skeletal muscles were processed for determination of glucose uptake, and GLUT4 mRNA and protein expression levels. The PGC-1α, AKT, p38MAPK, AS160, pAKT, pP38MAPK and pAS160 expression levels were quantitatively assessed too. We found that pharmacological activation of GALR2 enhanced energy expenditure, and increased GLUT4 expression and translocation in skeletal muscle of mice during high-fat diet regimens. Activation of GALR2 alleviated insulin resistance through P38MAPK/PGC-1α/GLUT4 and AKT/AS160/GLUT4 pathway in the skeletal muscle of mice. Overall, these results identify that GALR2 is a regulator of insulin resistance and activation of GALR2 represents a promising strategy against obesity-induced insulin resistance.


Asunto(s)
Galanina/análogos & derivados , Resistencia a la Insulina , Proteínas Musculares , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Receptor de Galanina Tipo 2 , Animales , Galanina/farmacología , Glucosa/metabolismo , Masculino , Ratones , Proteínas Musculares/agonistas , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Obesidad/tratamiento farmacológico , Obesidad/patología , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/metabolismo
12.
Neuropeptides ; 63: 14-17, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28431685

RESUMEN

Galanin, a neuropeptide co-released from noradrenergic and serotonergic projection neurons to the dentate gyrus, has recently emerged as an important mediator for signaling neuronal activity to the subgranular neurogenic stem cell niche supporting adult hippocampal neurogenesis. Galanin and its receptors appear to play key roles in depression-like behavior, and effects on hippocampal neurogenesis are relevant to pharmacological strategies for treating depression, which in part appear to rely on restoring altered neurogenesis. We previously demonstrated that the GalR2/3 receptor agonist Gal 2-11 is proliferative and proneurogenic for postnatal hippocampal progenitor cells; however, the specific receptor mediation remained to be identified. With the recent availability of M1145 (a specific GalR2 agonist), and SNAP 37889 (GalR3 specific antagonist), we extend our previous studies and show that while M1145 has no proliferative effect, the co-treatment of postnatal rat hippocampal progenitors with Gal 2-11 and SNAP 37889 completely abolished the Gal 2-11 proliferative effects. Taken together, these results clearly demonstrate that GalR3 and not GalR2 is the specific receptor subtype that mediates the proliferative effects of galanin on hippocampal progenitor cells. These results implicate GALR3 in the mediation of galanin neurogenic effects and, potentially, its neurogenic anti-depressant effects.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Galanina/análogos & derivados , Hipocampo/efectos de los fármacos , Indoles/farmacología , Células-Madre Neurales/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptor de Galanina Tipo 3/antagonistas & inhibidores , Animales , Galanina/farmacología , Neurogénesis/efectos de los fármacos , Ratas , Receptor de Galanina Tipo 2/agonistas
13.
Neuropeptides ; 60: 75-82, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27592409

RESUMEN

It is over 30years since the regulatory peptide galanin was discovered by Professor Mutt and co-workers. Galanin exerts its effects by binding to three galanin G-protein coupled receptors, namely GAL1R, GAL2R and GAL3R. Each galanin receptor has a different distribution in the central nervous system and the peripheral nervous system as well as distinctive signaling pathways, which implicates that the receptors are involved in different biological- and pathological effects. The delineation of the galaninergic system is however difficult due to a lack of stable, specific galanin receptor ligands. Herein, a new short GAL2R specific ligand, Ala5-galanin (2-11), is presented. The galanin (2-11) modified analogue Ala5-galanin (2-11) was tested in 125I-galanin competitive binding studies for the three galanin receptors and the G-protein coupled receptor signaling properties was tested by the ability to influence second-messenger molecules like inositol phosphate and cyclic adenosine monophosphate. In addition, two different label-free real-time assays, namely EnSpire® based on an optical biosensor and xCELLigence® based on an electric biosensor, were used for evaluating the signaling properties using cell lines with different levels of receptor expression. Ala5-galanin (2-11) was subsequently found to be a full agonist for GAL2R with more than 375-fold preference for GAL2R compared to both GAL1R and GAL3R. The single amino acid substitution of serine to alanine at position 5 in the short ligand galanin (2-11) resulted in a ligand subsequently unable to bind neither GAL3R nor GAL1R, even at concentrations as high as 0.1mM.


Asunto(s)
Galanina/análogos & derivados , Fragmentos de Péptidos/metabolismo , Receptor de Galanina Tipo 2/agonistas , Animales , Unión Competitiva , Células CHO , Línea Celular , Cricetulus , Galanina/metabolismo , Humanos , Unión Proteica , Receptor de Galanina Tipo 2/metabolismo
14.
J Mol Model ; 22(4): 90, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27021209

RESUMEN

Galanin receptor type 2 (GALR2) is a class A G-protein-coupled receptor (GPCR), and it has been reported that orthosteric ligands and positive allosteric modulators (PAMs) of GALR2 could potentially be used to treat epilepsy. So far, the X-ray structure of this receptor has not been resolved, and knowledge of the 3D structure of GALR2 may prove informative in attempts to design novel ligands and to explore the mechanism for the allosteric modulation of this receptor. In this study, homology modeling was used to obtain several GALR2 models using known templates. ProSA-web Z-scores and Ramachandran plots as well as pre-screening against a test dataset of known compounds were all utilized to select the best model of GALR2. Molecular dockings of galanin (a peptide) and a nonpeptide ligand were carried out to choose the (GALR2 model)-galanin complex that showed the closest agreement with the corresponding experimental data. Finally, a 50-ns MD simulation was performed to study the interactions between the GALR2 model and the synthetic and endogenous ligands. The results from docking and MD simulation showed that, besides the reported residues, Tyr160(4.60), Ile105(3.32), Ala274(7.35), and Tyr163(ECL2) also appear to play important roles in the binding of galanin. The potential allosteric binding pockets in the GALR2 model were then investigated via MD simulation. The results indicated that the mechanism for the allosteric modulation caused by PAMs is the binding of the PAM at pocket III, which is formed by galanin, ECL2, TM2, TM3, and ECL1; this results in the disruption of the Na(+)-binding site and/or the Na(+) ion pathway, leading to GALR2 agonism.


Asunto(s)
Cumarinas/química , Galanina/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor de Galanina Tipo 2/química , Bibliotecas de Moléculas Pequeñas/química , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Animales , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Ratas , Receptor de Galanina Tipo 2/agonistas , Electricidad Estática , Homología Estructural de Proteína
15.
Sci Rep ; 6: 21453, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26907960

RESUMEN

The novel neuropeptide spexin (SPX) was discovered to activate galanin receptor 2 (GALR2) and 3 (GALR3) but not galanin receptor 1 (GALR1). Although GALR2 is known to display a function, particularly in anxiety, depression, and appetite regulation, the further determination of its function would benefit from a more stable and selective agonist that acts only at GALR2. In the present study, we developed a GALR2-specific agonist with increased stability in serum. As galanin (GAL) showed a low affinity to GALR3, the residues in SPX were replaced with those in GAL, revealing that particular mutations such as Gln5 → Asn, Met7 → Ala, Lys11 → Phe, and Ala13 → Pro significantly decreased potencies toward GALR3 but not toward GALR2. Quadruple (Qu) mutation of these residues still retained potency to GALR2 but totally abolished the potency to both GALR3 and GALR1. The first amino acid modifications or D-Asn1 substitution significantly increased the stability when they are incubated in 100% fetal bovine serum. Intracerebroventricular administration of the mutant peptide with D-Asn1 and quadruple substitution (dN1-Qu) exhibited an anxiolytic effect in mice. Taken together, the GALR2-specific agonist with increased stability can greatly help delineation of GALR2-mediated functions and be very useful for treatments of anxiety disorder.


Asunto(s)
Ansiolíticos/química , Receptor de Galanina Tipo 2/agonistas , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Ansiolíticos/farmacología , Evaluación Preclínica de Medicamentos , Estabilidad de Medicamentos , Células HEK293 , Humanos , Concentración 50 Inhibidora , Masculino , Ratones Endogámicos C57BL , Imitación Molecular , Hormonas Peptídicas/química , Estabilidad Proteica , Receptor de Galanina Tipo 2/metabolismo , Suero/química
16.
Neuropeptides ; 58: 83-92, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26764217

RESUMEN

The neuropeptide galanin is widely distributed in the central and peripheral nervous systems and part of a bigger family of bioactive peptides. Galanin exerts its biological activity through three G-protein coupled receptor subtypes, GAL1-3R. Throughout the last 20years, data has accumulated that galanin can have a neuroprotective effect presumably mediated through the activation of GAL1R and GAL2R. In order to test the pharmaceutical potential of galanin receptor subtype selective ligands to inhibit excitotoxic cell death, the GAL1R selective ligand M617 and the GAL2R selective ligand M1145 were compared to the novel GAL1/2R ligand M1154, in their ability to reduce the excitotoxic effects of intracerebroventricular injected kainate acid in rats. The peptide ligands were evaluated in vitro for their binding preference in a competitive (125)I-galanin receptor subtype binding assay, and G-protein signaling was evaluated using both classical signaling and a label-free real-time technique. Even though there was no significant difference in the time course or severity of the kainic acid induced epileptic behavior in vivo, administration of either M617 or M1154 before kainic acid administration significantly attenuated the neuronal cell death in the hippocampus. Our results indicate the potential therapeutic value of agonists selective for GAL1R in the prevention of neuronal cell death.


Asunto(s)
Bradiquinina/análogos & derivados , Galanina/análogos & derivados , Hipocampo/patología , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/farmacología , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Animales , Bradiquinina/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , AMP Cíclico/metabolismo , Galanina/farmacología , Hipocampo/efectos de los fármacos , Humanos , Ácido Kaínico/toxicidad , Ligandos , Masculino , Neuronas/efectos de los fármacos , Unión Proteica , Ratas , Ratas Sprague-Dawley , Receptor de Galanina Tipo 1/agonistas , Receptor de Galanina Tipo 2/agonistas
17.
Brain Struct Funct ; 221(8): 4129-4139, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26666529

RESUMEN

Galanin (GAL) and the NPYY1 agonist play a role in mood regulation and both neuropeptides interact in several central functions. The present study examined the interaction between Galanin receptor 2 (GALR2) and Neuropeptide Y Y1 receptor (NPYY1R) in the dentate gyrus (DG) of the Hippocampus in relation to depression-like behavior. Using receptor autoradiography, in situ hybridization and in situ proximity ligation assay an interaction between GALR and NPYY1R was demonstrated in the DG probably involving the formation of GALR2-NPYY1R heteroreceptor complexes. These complexes were specifically observed in the polymorphic and subgranular subregions of the DG, where both receptors were found to colocalize. Moreover, this GALR2/NPYY1R interaction was linked to an enhancement of the antidepressive-like behavior mediated by NPYY1R in the forced swimming test. Specific cells populations within DG subregions may be involved in this behavioral effect since the coactivation of GALR2 and NPYY1R enhances the NPYY1R-mediated reduction in the number of c-Fos immunoreactive nuclei in the polymorphic region. These results indicate that GALR2/NPYY1R interactions can provide a novel integrative mechanism in DG in depression-related behavior and may give the basis for the development of drugs targeting GALR2/NPYY1R heteroreceptor complexes in the DG of the hippocampus for the treatment of depression.


Asunto(s)
Giro Dentado/metabolismo , Depresión/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Galanina/administración & dosificación , Masculino , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Galanina Tipo 2/agonistas
18.
Endocrinology ; 155(5): 1864-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24517231

RESUMEN

The novel neuropeptide spexin (SPX) was discovered using bioinformatics. The function of this peptide is currently under investigation. Here, we identified SPX along with a second SPX gene (SPX2) in vertebrate genomes. Syntenic analysis and relocating SPXs and their neighbor genes on reconstructed vertebrate ancestral chromosomes revealed that SPXs reside in the near vicinity of the kisspeptin (KISS) and galanin (GAL) family genes on the chromosomes. Alignment of mature peptide sequences showed some extent of sequence similarity among the 3 peptide groups. Gene structure analysis indicated that SPX is more closely related to GAL than KISS. These results suggest that the SPX, GAL, and KISS genes arose through local duplications before 2 rounds (2R) of whole-genome duplication. Receptors of KISS and GAL (GAL receptor [GALR]) are phylogenetically closest among rhodopsin-like G protein-coupled receptors, and synteny revealed the presence of 3 distinct receptor families KISS receptor, GALR1, and GALR2/3 before 2R. A ligand-receptor interaction study showed that SPXs activate human, Xenopus, and zebrafish GALR2/3 family receptors but not GALR1, suggesting that SPXs are natural ligands for GALR2/3. Particularly, SPXs exhibited much higher potency toward GALR3 than GAL. Together, these results identify the coevolution of SPX/GAL/KISS ligand genes with their receptor genes. This study demonstrates the advantage of evolutionary genomics to explore the evolutionary relationship of a peptide gene family that arose before 2R by local duplications.


Asunto(s)
Evolución Molecular , Galanina/metabolismo , Kisspeptinas/metabolismo , Hormonas Peptídicas/metabolismo , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 3/agonistas , Animales , Mapeo Cromosómico , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Galanina/química , Galanina/genética , Duplicación de Gen , Células HEK293 , Humanos , Kisspeptinas/química , Kisspeptinas/genética , Ligandos , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/metabolismo , Hormonas Peptídicas/química , Hormonas Peptídicas/genética , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor de Galanina Tipo 1/agonistas , Receptor de Galanina Tipo 1/química , Receptor de Galanina Tipo 1/genética , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/química , Receptor de Galanina Tipo 2/genética , Receptor de Galanina Tipo 2/metabolismo , Receptor de Galanina Tipo 3/química , Receptor de Galanina Tipo 3/genética , Receptor de Galanina Tipo 3/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Sintenía , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Neurochem Res ; 38(2): 398-404, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23192661

RESUMEN

Neuropeptide galanin and its three receptors, galanin receptor type 1-galanin receptor type 3, are known to be involved in the regulation of numerous psychological processes, including depression. Studies have suggested that stimulation of galanin receptor type 2 (GalR2) leads to attenuation of the depression-like behavior in animals. However, due to the lack of highly selective galanin subtype specific ligands the involvement of different receptors in depression-like behavior is yet not fully known. In the present study we introduce a novel GalR2 selective agonist and demonstrate its ability to produce actions consistent with theorized GalR2 functions and analogous to that of the anti-depressant, imipramine.


Asunto(s)
Antidepresivos/metabolismo , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Depresión/psicología , Femenino , Galanina/metabolismo , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos BALB C , Unión Proteica/fisiología , Distribución Aleatoria , Receptor de Galanina Tipo 2/agonistas
20.
Behav Brain Res ; 239: 90-3, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23142608

RESUMEN

Galanin is a 29/30-amino acid long neuropeptide that has been implicated in many physiological and behavioral functions. Previous research has shown that i.c.v. administration of galanin strongly stimulates food intake in sated rats when food is freely available, but fails to stimulate this consumption when an operant response requirement is present. Using fixed ratio (FR) schedules, we sought to further clarify galanin's role in motivated behavior by administering galanin i.c.v. to rats working on fixed ratio schedules requiring either a low work condition (FR1) or higher work conditions (FR>1) to obtain a 0.2% saccharin reward. Rats in the FR>1 group were assigned to either an FR3, FR5 or FR7 schedule of reinforcement. The rate of reinforcement decreased for only the FR>1 group as compared to saline controls. Furthermore, injections of GalR1 receptor agonist M617 led to a similar, marginally significant decrease in the number of reinforcers received in the FR>1 condition, but a decrease was not seen after injections of GalR2 receptor agonist M1153. Taken together, these results show that galanin may be playing a role in decreasing motivation at times of high appetitive behavior, and that this effect is likely mediated by the GalR1 receptor.


Asunto(s)
Conducta Apetitiva/fisiología , Galanina/fisiología , Motivación/fisiología , Receptor de Galanina Tipo 1/agonistas , Receptor de Galanina Tipo 2/agonistas , Animales , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Condicionamiento Operante/efectos de los fármacos , Galanina/administración & dosificación , Galanina/farmacología , Inyecciones Intraventriculares , Masculino , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Esquema de Refuerzo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA