Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Stem Cell Res ; 76: 103368, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430736

RESUMEN

Type 1 familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disorder due to variation of the melanocortin-2-receptor (MC2R) gene. Induced pluripotent stem cell (iPSC) line SDQLCHi029-A was successfully generated from peripheral blood mononuclear cells obtained from a 5-day-old girl with MC2R mutations (c.428C > T and c.409C > T). The iPSC line showed genetically stable and matched the donor's PBMCs. displayed a normal karyotype, expressed high pluripotent markers, and exhibited differentiation potential of three germ layers in vitro. The iPSC line could be a good model to study the pathogenesis of FGD type 1 and screen new drugs for the disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Glucocorticoides , Heterocigoto , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Leucocitos Mononucleares/metabolismo , Mutación/genética
2.
Gen Comp Endocrinol ; 343: 114356, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562700

RESUMEN

Recent studies from our group on melanocortin 2 receptors (Mc2r) from basal families of actinopterygians have served to resolve that Mrap1 dependence and ACTH selectivity are features of even the most basal ray-finned fishes. However, there have been no studies on Mc2r function of the basal sarcopterygians, the lobe-finned fishes, represented by the extant members coelacanths and lungfishes. Here, we offer the first molecular and functional characterization of an Mc2r from a lobe-finned fish, the West African lungfish (Protopterus annectens). Plasmids containing cDNA constructs of lungfish (lf) Mc2r and Mrap1 were expressed in mammalian and zebrafish cell lines. Cells were then stimulated by human ACTH(1-24) and melanocyte stimulating hormone (α-MSH), as well as alanine-substituted analogs of hACTH(1-24) targeting residues within the H6F7R8W9 and K15K16R17R18P19 motifs. Activation of lfMc2r was assessed using a cAMP-responsive luciferase reporter gene assay. In these assays, lfMc2r required co-expression with lfMrap1, was selective for ACTH over α-MSH at physiological concentrations of the ligands, and was completely inhibited by multiple-alanine substitutions of the HFRW (A6-9) and KKRRP (A15-19) motifs. Single- and partial-alanine substitutions of the HFRW and KKRRP motifs varied in their impacts on receptor-ligand affinity from having no effect to completely inhibiting lfMc2r activation. This characterization of the Mc2r of a lobe-finned fish fulfills the last major extant vertebrate group for which Mc2r function had yet to be characterized. In doing so, we resolve that all basal bony vertebrate groups exhibit Mc2r function that substantially differs from that of the cartilaginous fishes, indicating that rapid and dramatic shift in Mc2r function occurred between the radiation of cartilaginous fishes and the emergence of bony fishes. We support this interpretation with a molecular clock analysis of the melanocortin receptors, which demonstrates the uniquely high rate of sequence divergence in Mc2r. Much remains to be understood regarding the molecular evolution of Mc2r during the early radiation of vertebrates that resulted in the derived functional characteristics of Mrap1 dependence and exclusive selectivity for ACTH.


Asunto(s)
Receptor de Melanocortina Tipo 2 , alfa-MSH , Animales , Humanos , Hormona Adrenocorticotrópica/farmacología , Alanina/genética , Evolución Molecular , Mamíferos/metabolismo , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Gen Comp Endocrinol ; 342: 114342, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454980

RESUMEN

The hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is a conserved vertebrate neuroendocrine mechanism regulating the stress response. The penultimate step of the HPA/I axis is the exclusive activation of the melanocortin-2 receptor (Mc2r) by adrenocorticotropic hormone (ACTH), requiring an accessory protein, Mrap1 or Mrap2. Limited data for only three cartilaginous fishes support the hypothesis that Mc2r/Mrap1 function in bony vertebrates is a derived trait. Further, Mc2r/Mrap1 functional properties appear to contrast among cartilaginous fishes (i.e., the holocephalans and elasmobranchs). This study sought to determine whether functional properties of Mc2r/Mrap1 are conserved across elasmobranchs and in contrast to holocephalans. The deduced amino acid sequences of Pacific spiny dogfish (Squalus suckleyi; pd) pdMc2r, pdMrap1, and pdMrap2 were obtained from a de novo transcriptome of the interrenal gland and validated against the S. suckleyi genome. pdMc2r showed high primary sequence similarity with elasmobranch and holocephalan Mc2r except at extracellular domains 1 and 2, and transmembrane domain 5. pdMraps showed similarly high sequence similarity with holocephalan and other elasmobranch Mraps, with all cartilaginous fish Mrap1 orthologs lacking an activation motif. cAMP reporter gene assays demonstrated that pdMc2r requires an Mrap for activation, and can be activated by stingray (sr) ACTH(1-24), srACTH(1-13)NH2 (i.e., α-MSH), and γ-melanocyte-stimulating hormone at physiological concentrations. However, pdMc2r was three orders of magnitude more sensitive to srACTH(1-24) than srACTH(1-13)NH2. Further, pdMc2r was two orders of magnitude more sensitive to srACTH(1-24) when expressed with pdMrap1 than with pdMrap2. These data suggest that functional properties of pdMc2r/pdMrap1 reflect other elasmobranchs and contrast what is seen in holocephalans.


Asunto(s)
Tiburones , Squalus acanthias , Animales , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Squalus acanthias/metabolismo , Tiburones/metabolismo , Hormona Adrenocorticotrópica/farmacología , Secuencia de Aminoácidos , Peces/metabolismo
4.
Gen Comp Endocrinol ; 339: 114290, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37088167

RESUMEN

In vertebrates, the hypothalamic-pituitaryadrenal/interrenal (HPA/HPI) axis is a highly conserved endocrine axis that regulates glucocorticoid production via signaling by corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH). Once activated by ACTH, Gs protein-coupled melanocortin 2 receptors (Mc2r) present in corticosteroidogenic cells stimulate expression of steroidogenic acute regulatory protein (Star), which initiates steroid biosynthesis. In the present study, we examined the tissue distribution of genes involved in HPI axis signaling and steroidogenesis in the Atlantic sturgeon (Acipenser oxyrinchus) and provided the first functional characterization of Mc2r in sturgeon. Mc2r of A. oxyrinchus and the sterlet sturgeon (Acipenser ruthenus) are co-dependent on interaction with the melanocortin receptor accessory protein 1 (Mrap1) and highly selective for human (h) ACTH over other melanocortin ligands. A. oxyrinchus expresses key genes involved in HPI axis signaling in a tissue-specific manner that is indicative of the presence of a complete HPI axis in sturgeon. Importantly, we co-localized mc2r, mrap1, and star mRNA expression to the head kidney, indicating that this is possibly a site of ACTH-mediated corticosteroidogenesis in sturgeon. Our results are discussed in the context of other studies on the HPI axis of basal bony vertebrates, which, when taken together, demonstrate a need to better resolve the evolution of HPI axis signaling in vertebrates.


Asunto(s)
Hormona Adrenocorticotrópica , Peces , Animales , Humanos , Hormona Adrenocorticotrópica/metabolismo , Peces/genética , Peces/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo
5.
Gen Comp Endocrinol ; 338: 114278, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996927

RESUMEN

To understand the mechanism for activation of the melanocortin-2 receptor (Mc2r) of the elasmobranch, Rhincodon typus (whale shark; ws), wsmc2r was co-expressed with wsmrap1 in CHO cells, and the transfected cells were stimulated with alanine-substituted analogs of ACTH(1-24) at the "message" motif (H6F7R8W9) and the "address" motif (K15K16R17R18P19). Complete alanine substitution of the H6F7R8W9 motif blocked activation, whereas single alanine substitution at this motif indicated the following hierarchy of position importance for activation: W9 > R8, and substitution at F7 and H6 had no effect on activation. The same analysis was done on a representative bony vertebrate Mc2r ortholog (Amia calva; bowfin; bf) and the order of position importance for activation was W9 > R8 = F7, (alanine substitution at H6 was negligible). Complete alanine substitution at the K15K16R17R18P19 motif resulted in distinct outcomes for wsMc2r and bfMc2r. For bfMc2r, this analog blocked activation-an outcome typical for bony vertebrate Mc2r orthologs. For wsMc2r, this analog resulted in a shift in sensitivity to stimulation of the analog as compared to ACTH(1-24) by two orders of magnitude, but the dose response curve did reach saturation. To evaluate whether the EC2 domain of wsMc2r plays a role in activation, a chimeric wsMc2r was made in which the EC2 domain was replaced with the EC2 domain from a melanocortin receptor that does not interact with Mrap1 (i.e., Xenopus tropicalis Mc1r). This substitution did not negatively impact the activation of the chimeric receptor. In addition, alanine substitution at a putative activation motif in the N-terminal of wsMrap1 did not affect the sensitivity of wsMc2r to stimulation by ACTH(1-24). Collectively, these observations suggest that wsMc2r may only have a HFRW binding site for melanocortin-related ligand which would explain how wsMc2r could be activated by either ACTH or MSH-sized ligands.


Asunto(s)
Oncorhynchus mykiss , Tiburones , Cricetinae , Animales , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Cricetulus , Receptores de Melanocortina/metabolismo , Tiburones/genética , Tiburones/metabolismo , Ligandos , Oncorhynchus mykiss/metabolismo , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/metabolismo , Alanina/metabolismo
6.
Cell Res ; 33(1): 46-54, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36588120

RESUMEN

G protein-coupled receptors (GPCRs) are regulated by various downstream proteins, of which the melanocortin receptor accessory protein 1 (MRAP1) is closely involved in the regulation of melanocortin receptor 2 (MC2R). Assisted by MRAP1, MC2R responds to adrenocorticotropic hormone (ACTH) and stimulates glucocorticoid biogenesis and cortisol secretion. MC2R activation plays an essential role in the hypothalamic-pituitary-adrenal (HPA) axis that regulates stress response, while its dysfunction causes glucocorticoid insufficiency- or cortisol excess-associated disorders. Here, we present a cryo-electron microscopy (cryo-EM) structure of the ACTH-bound MC2R-Gs-MRAP1 complex. Our structure, together with mutagenesis analysis, reveals a unique sharp kink at the extracellular region of MRAP1 and the 'seat-belt' effect of MRAP1 on stabilizing ACTH binding and MC2R activation. Mechanisms of ACTH recognition by MC2R and receptor activation are also demonstrated. These findings deepen our understanding of GPCR regulation by accessory proteins and provide valuable insights into the ab initio design of therapeutic agents targeting MC2R.


Asunto(s)
Melanocortinas , Receptor de Melanocortina Tipo 2 , Humanos , Receptor de Melanocortina Tipo 2/metabolismo , Glucocorticoides , Hidrocortisona , Microscopía por Crioelectrón , Hormona Adrenocorticotrópica/metabolismo
7.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692018

RESUMEN

The G protein-coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor-associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R. More generally, our study also reveals that GPCR localization to primary cilia can require specific accessory proteins that may not be present in heterologous cell culture systems. Our findings further demonstrate that targeting of MC4R to neuronal primary cilia is essential for the control of long-term energy homeostasis and suggest that genetic disruption of MC4R ciliary localization may frequently underlie inherited forms of obesity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Receptor de Melanocortina Tipo 4 , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 2/metabolismo , Cilios/metabolismo , Homeostasis
8.
Biomolecules ; 12(11)2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36421695

RESUMEN

In derived bony vertebrates, activation of the melanocortin-2 receptor (Mc2r) by its ACTH ligand requires chaperoning by the Mc2r accessory protein (Mrap1). The N-terminal domain of the non-mammalian tetrapod MRAP1 from chicken (c; Gallus gallus) has the putative activation motif, W18D19Y20I21, and the N-terminal domain in the neopterygian ray-finned fish Mrap1 from bowfin (bf; Amia calva) has the putative activation motif, Y18D19Y20I21. The current study used an alanine-substitution paradigm to test the hypothesis that only the Y20 position in the Mrap1 ortholog of these non-mammalian vertebrates is required for activation of the respective Mc2r ortholog. Instead, we found that for cMRAP1, single alanine-substitution resulted in a gradient of inhibition of activation (Y20 >> D19 = W18 > I21). For bfMrap1, single alanine-substitution also resulted in a gradient of inhibition of activation (Y20 >> D19 > I21 > Y18). This study also included an analysis of Mc2r activation in an older lineage of ray-finned fish, the paddlefish (p), Polyodon spathula (subclass Chondronstei). Currently no mrap1 gene has been found in the paddlefish genome. When pmc2r was expressed alone in our CHO cell/cAMP reporter gene assay, no activation was observed following stimulation with ACTH. However, when pmc2r was co-expressed with either cmrap1 or bfmrap1 robust dose response curves were generated. These results indicate that the formation of an Mc2r/Mrap1 heterodimer emerged early in the radiation of the bony vertebrates.


Asunto(s)
Hormona Adrenocorticotrópica , Receptor de Melanocortina Tipo 2 , Cricetinae , Animales , Filogenia , Hormona Adrenocorticotrópica/metabolismo , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Peces/genética , Peces/metabolismo , Cricetulus , Alanina
9.
Biomolecules ; 12(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358958

RESUMEN

The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal responses to five agonists than those of human MC3R. We further investigated the modulation of cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R, MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs. All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.


Asunto(s)
Melanocortinas , Receptor de Melanocortina Tipo 2 , Perros , Animales , Humanos , Melanocortinas/metabolismo , Receptor de Melanocortina Tipo 2/metabolismo , alfa-MSH/metabolismo , alfa-MSH/farmacología , Hormona Adrenocorticotrópica/farmacología , Hormona Adrenocorticotrópica/metabolismo , Receptores de Melanocortina/metabolismo , Proteínas Portadoras/metabolismo
10.
Biomolecules ; 12(10)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36291631

RESUMEN

Human melanocortin-2 receptor (hMC2R) co-expressed with the accessory protein mouse (m)MRAP1 in Chinese Hamster Ovary (CHO) cells has been used as a model system to investigate the activation and trafficking of hMC2R. A previous study had shown that the N-terminal domain of mMRAP1 makes contact with one of the extracellular domains of hMC2R to facilitate activation of hMC2R. A chimeric receptor paradigm was used in which the extracellular domains of hMC2R were replaced with the corresponding domains from Xenopus tropicalis MC1R, a receptor that does not interact with MRAP1, to reveal that EC2 (Extracellular domain 2) is the most likely contact site for hMC2R and mMRAP1 to facilitate activation of the receptor following an ACTH binding event. Prior to activation, mMRAP1 facilitates the trafficking of hMC2R from the ER to the plasma membrane. This process is dependent on the transmembrane domain (TM) of mMRAP1 making contact with one or more TMs of hMC2R. A single alanine substitution paradigm was used to identify residues in TM4 (i.e., I163, M165), EC2 (F167), and TM5 (F178) that play a role in the trafficking of hMC2R to the plasma membrane. These results provide further clarification of the activation mechanism for hMC2R.


Asunto(s)
Hormona Adrenocorticotrópica , Receptor de Melanocortina Tipo 2 , Cricetinae , Humanos , Ratones , Animales , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/química , Receptor de Melanocortina Tipo 2/metabolismo , Cricetulus , Células CHO , Hormona Adrenocorticotrópica/metabolismo , Xenopus/metabolismo , Alanina
11.
Gen Comp Endocrinol ; 328: 114105, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973587

RESUMEN

In bony vertebrates, melanocortin 2 receptor (Mc2r) specifically binds adrenocorticotropic hormone (ACTH) and is responsible for mediating anterior pituitary signaling that stimulates corticosteroid production in the adrenal gland/interrenal cells. In bony fishes Mc2r requires the chaperoning of an accessory protein (Mrap1) to traffic to the membrane surface and bind ACTH. Here, we evaluated the structure and pharmacological properties of Mc2r from the Senegal bichir (Polypterus senegalus), which represents the most basal bony fish from which an Mc2r has been pharmacologically studied to date. In our experiments, cDNA constructs of the Mc2r from the Senegal bichir (sbMc2r) and various vertebrate Mrap1s were heterologously co-expressed in Chinese hamster ovary (CHO) cells, stimulated by ACTH or melanocyte-stimulating hormone (α-MSH) ligands, and assessed using a luciferase reporter gene assay. When expressed without an Mrap1, sbMc2r was not activated by ACTH. When co-expressed with Mrap1 from either chicken (Gallus gallus) or bowfin (Amia calva), sbMc2r could be activated in a dose-dependent manner by ACTH, but not α-MSH. Co-expression of sbMrap2 with sbMc2r resulted in no detectable activation of the receptor. Collectively, these results demonstrate that sbMc2r has pharmacological properties similar to those of Mc2rs of later-evolved bony fishes, such as Mrap1 dependence and ACTH selectivity, indicating that these qualities of Mc2r function are ancestral to all bony fish Mc2rs.


Asunto(s)
Receptor de Melanocortina Tipo 2 , Receptores de Melanocortina , Hormona Adrenocorticotrópica/farmacología , Animales , Células CHO , Pollos/metabolismo , Cricetinae , Cricetulus , ADN Complementario/metabolismo , Peces/genética , Hormonas Estimuladoras de los Melanocitos/metabolismo , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Receptores de Melanocortina/metabolismo , Senegal , alfa-MSH/metabolismo
12.
Toxicol Ind Health ; 38(4): 201-209, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35343814

RESUMEN

The present study aimed at assessing the effects of exposure to silver nanoparticle (AgNP) and a subsequent acute stress on the expression of various genes involved in the hypothalamus-pituitary-interrenal (HPI) axis in zebrafish, Danio rerio. The fish were exposed to 0 (Control), 0.1 (LC), 0.4 (MC), and 1.2 (HC) mg Ag/L (as AgNP) over a 2-week period, followed by an acute air exposure stress. The whole body cortisol and the expression of selected genes in the fish brain and kidney were analyzed, before and after the acute stress. The results showed that AgNP increased basal cortisol levels and the expression of corticotropin releasing factor, prohormone convertase 1, pro-opiomelanocortin, and melanocortin 2 receptor; however, it suppressed/inhibited whole body cortisol, brain corticotropin releasing factor responses, pro-opiomelanocortin, and the kidney melanocortin 2 receptor responses to the acute stress. AgNP down-regulated the expression of the steroidogenic acute regulatory protein, but it intensified the gene expression in response to the acute stress. Before the acute stress, LC treatment exhibited an up-regulation in Cytochrome P450-11A-1 expression, but MC and HC treatments induced down-regulation. After the acute stress, the AgNP-exposed fish exhibited decreased Cytochrome P450-11A-1 expressions, compared with the Control. Exposure to AgNP significantly increased Cytochrome P450-11B expression. However, after the acute stress, LC treatment exhibited an up-regulation, but MC and HC treatments exhibited down-regulation in the Cytochrome P450-11B gene expression. In conclusion, AgNP suppressed cortisol response to stress, which appears to be a consequence of alterations in the HPI axis at the transcriptomic levels.


Asunto(s)
Nanopartículas del Metal , Pez Cebra , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Sistema Enzimático del Citocromo P-450 , Hidrocortisona/metabolismo , Nanopartículas del Metal/toxicidad , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Plata/toxicidad , Estrés Fisiológico , Pez Cebra/genética
13.
Front Endocrinol (Lausanne) ; 12: 747843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790168

RESUMEN

The melanocortin receptors (MCRs) and the MRAP accessory proteins belong to distinct gene families that are unique to the chordates. During the radiation of the chordates, the melancortin-2 receptor paralog (MC2R) and the MRAP1 paralog (melanocortin-2 receptor accessory protein 1) have co-evolved to form a heterodimer interaction that can influence the ligand selectivity and trafficking properties of MC2R. This apparently spontaneous interaction may have begun with the ancestral gnathostomes and has persisted in both the cartilaginous fishes and the bony vertebrates. The ramifications of this interaction had profound effects on the hypothalamus/anterior pituitary/adrenal-interrenal axis of bony vertebrates resulting in MC2R orthologs that are exclusively selective for the anterior pituitary hormone, ACTH, and that are dependent on MRAP1 for trafficking to the plasma membrane. The functional motifs within the MRAP1 sequence and their potential contact sites with MC2R are discussed. The ramifications of the MC2R/MRAP1 interaction for cartilaginous fishes are also discussed, but currently the effects of this interaction on the hypothalamus/pituitary/interrenal axis is less clear. The cartilaginous fish MC2R orthologs have apparently retained the ability to be activated by either ACTH or MSH-sized ligands, and the effect of MRAP1 on trafficking varies by species. In this regard, the possible origin of the dichotomy between cartilaginous fish and bony vertebrate MC2R orthologs with respect to ligand selectivity and trafficking properties is discussed in light of the evolution of functional amino acid motifs within MRAP1.


Asunto(s)
Sistema Hipotálamo-Hipofisario/metabolismo , Proteínas de la Membrana/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptor de Melanocortina Tipo 2/metabolismo , Animales , Humanos
14.
Theriogenology ; 174: 102-113, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34425302

RESUMEN

Stressors activate the hypothalamic-pituitary-adrenal (HPA) axis, reducing fertility by interfering with the mechanisms that regulate the timing of events within the follicular phase of the estrous cycle. In the HPA axis, melanocortin 2 receptor (MC2R) mediates responses to adrenocorticotropic hormone (ACTH) in concert with melanocortin receptor accessory protein 2 (MRAP2). The aims of the present study were: (1) to evaluate the effects of ACTH administered in cows in the preovulatory period on the expression of the MC2R/MRAP2 complex in the dominant follicle; and (2) to analyze the involvement of Extracellular signal Regulated Kinase 1 (ERK1) signaling in the activation of MC2R and the expression of key enzymes involved in the biosynthesis of glucocorticoids (GCs) in the dominant follicle. To this end, 100 IU ACTH was administered to Holstein cows from a local dairy farm during pro-estrus every 12 h for four days until ovariectomy, which was performed before ovulation. Protein immunostaining of MC2R was higher in the dominant follicles of ACTH-treated cows (p < 0.05). Also, Western blot analysis showed higher activation of the ERK1 signaling pathway in ACTH-treated cows (p < 0.05). Finally, immunohistochemistry performed in the dominant follicles of ACTH-treated cows detected higher expression of CYP17A1 and CYP21A2 (p < 0.05). These results suggest that the bovine ovary is able to respond locally to ACTH as a consequence of stress altering the expression of relevant steroidogenic enzymes. The results also confirm that the complete GC biosynthesis pathway is present in bovine dominant follicle and therefore GCs could be produced locally.


Asunto(s)
Hormona Adrenocorticotrópica , Sistema Hipotálamo-Hipofisario , Hormona Adrenocorticotrópica/metabolismo , Animales , Bovinos , Femenino , Sistema Hipotálamo-Hipofisario/metabolismo , Ovulación , Sistema Hipófiso-Suprarrenal , Receptor de Melanocortina Tipo 2/metabolismo
15.
J Int Med Res ; 49(7): 3000605211029504, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34266338

RESUMEN

OBJECTIVE: Schizophrenia is a complex mental disorder with high heritability. The hypothalamic-pituitary-adrenal (HPA) axis, which is the stress system of the neuroendocrine system, is considered to impact psychotic disorders. We hypothesized that polymorphisms of HPA axis genes might be involved in the development of schizophrenia. METHODS: A case-control study comprising 234 patients with schizophrenia and 399 matched healthy controls was conducted to investigate the association between the human melanocortin 2 receptor (MC2R) gene and schizophrenia risk. Seven tag single nucleotide polymorphisms (SNPs) (rs16941303, rs16941314, rs2186944, rs28926188, rs7230126, rs948322, and rs948331) of MC2R were genotyped by direct sequencing. RESULTS: No significant associations were observed between any of the alleles, genotypes, or haplotypes examined within the MC2R gene and the risk of schizophrenia in the total group or in subgroups stratified by smoking or alcoholism. However, a subgroup analysis stratified by sex revealed that under the additive model, the C allele of the MC2R rs948331 SNP significantly decreased the risk of schizophrenia in females (odds ratio=0.18). CONCLUSION: The C allele of the MC2R rs948331 locus may be a protective factor, reducing the risk of schizophrenia in the female Han Chinese population.


Asunto(s)
Pueblo Asiatico , Receptor de Melanocortina Tipo 2 , Esquizofrenia , Regiones no Traducidas 3' , Alelos , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Polimorfismo de Nucleótido Simple/genética , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Esquizofrenia/genética
17.
J Steroid Biochem Mol Biol ; 200: 105684, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32360359

RESUMEN

Metformin is recommended as one of the first-line drugs for the treatment of type 2 diabetes and the metabolic syndrome. In addition to its insulin sensitizing effects, it has been shown to attenuate androgen excess in women with polycystic ovary syndrome (PCOS) or congenital adrenal hyperplasia (CAH), as well as to ameliorate obesity. The mechanisms of metformin action seem manifold. Preclinical studies suggest that it inhibits the cellular stress response at the level of the mitochondrial OXPHOS system and through AMPK dependent and independent mechanisms. Recent studies have shown that metformin decreases ACTH secretion from pituitary and reduces ACTH-stimulated adrenal secretion. In this study we investigated its specific effect through the melanocortin receptor 2 (MC2R) on signaling targeting adrenal steroidogenesis. To assess this effect, we used mouse adrenal OS3 cells, which do not express the MC2R. Cells were transfected with the MC2R and stimulated by ACTH. Downstream cyclic AMP production was then assessed by a co-transfected cAMP-responsive vector producing luciferase that was measured by a dual luciferase assay. The amount of luciferase produced in this assay corresponds to the amount of receptor activation with varying amount of ACTH. The effect of metformin was then tested in this system. We found a significant inhibition of ACTH induced MC2R activation and signaling with 10 mM metformin. The ACTH concentration response curve (CRC) was half-log shifted and a ∼30 % reduction in maximum receptor response (Rmax) to ACTH in presence of metformin was observed. This effect was dose dependent with an IC50 of 4.2 mM. qRT-PCR analyses showed that metformin decreased ACTH induced MC2R expression. Metformin did not affect cell viability and basal cAMP levels. We also tested the effect of metformin on homologous melanocortin receptors (MCRs). No significant effect was found on MC1R and MC4R activity. However, a log shift of EC50 of ACTH stimulation on MC3R was observed with metformin treatment. Metformin also inhibited melanocortin stimulating hormone (αMSH) induced MC3R activity. In conclusion, we show that metformin acts on MC2R and MC3R signaling directly. The role of MC2R for steroidogenesis is well established. MC3R is involved in energy balance and seems to act as a rheostat when the metabolism is challenged. Our study may explain how metformin helps in weight loss and attenuates the excess response to ACTH in androgen excess disorders such as PCOS and CAH.


Asunto(s)
Hormona Adrenocorticotrópica/farmacología , Antagonistas de Andrógenos/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Receptor de Melanocortina Tipo 2/antagonistas & inhibidores , Receptor de Melanocortina Tipo 3/antagonistas & inhibidores , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ratones , Receptor de Melanocortina Tipo 2/genética , Receptor de Melanocortina Tipo 2/metabolismo , Receptor de Melanocortina Tipo 3/metabolismo , Pérdida de Peso
18.
Gen Comp Endocrinol ; 294: 113476, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32243958

RESUMEN

The melanocortin-2 receptor (MC2R) and the melanocortin-5 receptor (MC5R) are found on the same chromosome in most vertebrate genomes, and for the species analyzed in this study, MC2R and MC5R are co-expressed in glucocorticoid-producing cells that also express the accessory protein MRAP1. Since MRAP1 affects the ligand sensitivity of MC2R orthologs, this study tested the hypothesis that co-expression of MC5R with MRAP1 would also affect the ligand sensitivity of MC5R. The hypothesis was confirmed for stingray, rainbow trout, and chicken, MC5R orthologs. However, elephant shark MC5R was not affected in the same way by co-expression of MRAP1. It appears that, for some MC5R orthologs (i.e., stingray, rainbow trout, and chicken), a docking site for the R/KKRRP motif of ACTH(1-24) may become exposed on the receptor following co-expression with MRAP1. However, for elephant shark MC5R co-expression with MRAP1 may not affect engagement ACTH(1-24). Hence during the radiation of the chordates, the interaction between MRAP1 and MC5R has diverged.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Proteínas de la Membrana/metabolismo , Filogenia , Receptores de Melanocortina/metabolismo , Animales , Sitios de Unión , Células CHO , Pollos , Cricetinae , Cricetulus , Humanos , Ligandos , Oncorhynchus mykiss/metabolismo , Unión Proteica , Receptor de Melanocortina Tipo 2/metabolismo , Tiburones/metabolismo
19.
Gen Comp Endocrinol ; 293: 113463, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213301

RESUMEN

In the current study, the whale shark (ws; Rhincodon typus) melanocortin-2 receptor (MC2R) co-expressed with wsMRAP1 in Chinese Hamster Ovary (CHO) Cells could be stimulated in a dose dependent manner by ACTH(1-24) with an EC50 of 2.6 × 10-10 M ± 9.7 × 10-11. When the receptor was expressed alone, stimulation was only observed at [10-6 M]. A comparable increase in sensitivity to stimulation by srDes-Ac-αMSH was also observed when the receptor was co-expressed with wsMRAP1. In addition, co-expression with wsMRAP1 significantly increased the trafficking of wsMC2R to the plasma membrane of CHO cells. Surprisingly, co-expression with wsMRAP2 also increased sensitivity to stimulation by ACTH(1-24) and srDes-Ac-αMSH, and increased trafficking of the receptor to the plasma membrane. These observations are in sharp contrast to the response of MC2R orthologs of bony vertebrates which have an obligate requirement for co-expression with MRAP1 for both trafficking to the plasma membrane and activation, and while co-expression with MRAP2 increases trafficking, it has minimal effects on activation. In addition, when comparing the activation features of wsMC2R with those of the elephant shark MC2R and red stingray MC2R orthologs, both similarities and differences are observed. The spectrum of features for cartilaginous fish MC2R orthologs will be discussed. A second objective of this study was to determine whether wsMC5R has features in common with wsMC2R in terms of ligand selectivity and interaction with wsMRAP paralogs. While wsMC5R can be activated by either srACTH(1-24) or srDes-Ac-αMSH, and co-expression with wsMRAP1 enhances this activation, wsMRAP1 had no effect on the trafficking of wsMC5R. Co-expression with wsMRAP2 had no positive or negative effect on either ligand sensitivity or trafficking of wsMC5R.


Asunto(s)
Proteínas de la Membrana/metabolismo , Receptor de Melanocortina Tipo 2/metabolismo , Receptores de Melanocortina/metabolismo , Tiburones/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Unión Proteica , Transporte de Proteínas
20.
Exp Dermatol ; 29(3): 259-264, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31997403

RESUMEN

Alopecia areata (AA) is an autoimmune disease of the hair follicle. Keratinocytes of the hair follicle generate an immunosuppressive environment by the local secretion of hormones of the hypothalamic-pituitary-adrenal axis of the skin (skin HPA analog). Our objective was to measure the local production of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and α-melanocyte-stimulating hormone (α-MSH) in the scalp tissue of patients with AA before and after ultraviolet A1 (UVA-1) phototherapy to determine their role in the pathogenesis of AA and the effect of UVA-1 on the AA hormonal environment. This was a retrospective and descriptive study of skin samples from 22 patients with AA before and after UVA-1 treatment. We compared the changes in the local hormonal environment by measuring CRH, ACTH, type 2 melanocortin receptor (ACTH receptor) and α-MSH with immunohistochemical stains. The positivity of MSH was significantly higher (P = .037) in the post-treatment samples compared with the baseline value. ACTH was significantly higher in intensity (P = .032) in the post-treatment samples compared with the initial value. CRH was significantly higher in intensity (P = .013) in baseline samples compared with the final biopsies. The positivity of the ACTH receptor MC2R was not different between the two groups (P = .626). In AA, an interruption in the signalling of CRH could decrease the local concentration of ACTH and MSH, and consequently, the immunosuppressive effect of these hormones. This phenomenon is normalized in the skin treated with UVA-1. A defective signalling system in the cutaneous HPA axis may be involved in the pathogenesis of AA.


Asunto(s)
Alopecia Areata/radioterapia , Hormonas/metabolismo , Fototerapia/métodos , Cuero Cabelludo/metabolismo , Rayos Ultravioleta , alfa-MSH/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Adulto , Alopecia Areata/metabolismo , Biopsia , Hormona Liberadora de Corticotropina/metabolismo , Folículo Piloso/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/patología , Inmunohistoquímica , Persona de Mediana Edad , Sistema Hipófiso-Suprarrenal/metabolismo , Receptor de Melanocortina Tipo 2/metabolismo , Estudios Retrospectivos , Transducción de Señal , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA