Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.407
Filtrar
1.
CNS Neurosci Ther ; 30(8): e14890, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39097910

RESUMEN

AIMS: To explore the role of voltage-gated calcium channels (VGCC) in 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride's improvement of spinal cord injury (SCI) induced detrusor sphincter dyssynergia and the expressions of the 5-hydroxy tryptamine (5-HT) 2A receptors and VGCCs in lumbosacral cord after SCI. METHODS: Female Sprague-Dawley rats were randomized into normal control group and SCI group (N = 15 each). Cystometrogram (CMG), simultaneous CMG, and external urethral sphincter electromyography (EUS-EMG) were conducted in all groups under urethane anesthesia. Drugs were administered intrathecally during CMG and EUS-EMG. Rats were euthanized and L6-S1 spinal cord were acquired for immunofluorescence. RESULTS: In SCI rats, intrathecal administration of 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride or L-type VGCC blocker, nifedipine, could significantly increase voiding volume, voiding efficiency, and the number of high-frequency oscillations. They could also prolong EUS bursting activity duration on EUS-EMG. Moreover, the effect of 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride can be eliminated with the combined administration of L-type VGCC agonist, (±)-Bay K 8644. No significant differences were observed in CMG after intrathecal administration of T-type VGCC blocker TTA-P2. Additionally, immunofluorescence of the lumbosacral cord in control and SCI rats showed that the 5-HT2A receptor and Cav1.2 immunolabeling-positive neurons in the anterior horn of the lumbosacral cord were increased in SCI rats. CONCLUSIONS: Our study demonstrated that 5-HT2A/2C agonist 2,5-dimethoxy-4-iodophenyl-2-aminopropane hydrochloride may improve SCI-induced DSD by inhibiting the L-type voltage-gated calcium channel in lumbosacral cord motoneurons.


Asunto(s)
Canales de Calcio Tipo L , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/complicaciones , Femenino , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Ratas , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Anfetaminas
2.
Dev Psychobiol ; 66(6): e22524, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973227

RESUMEN

Alloparenting refers to the practice of caring for the young by individuals other than their biological parents. The relationship between the dynamic changes in psychological functions underlying alloparenting and the development of specific neuroreceptors remains unclear. Using a classic 10-day pup sensitization procedure, together with a pup preference and pup retrieval test on the EPM (elevated plus maze), we showed that both male and female adolescent rats (24 days old) had significantly shorter latency than adult rats (65 days old) to be alloparental, and their motivation levels for pups and objects were also significantly higher. In contrast, adult rats retrieved more pups than adolescent rats even though they appeared to be more anxious on the EPM. Analysis of mRNA expression using real-time-PCR revealed a higher dopamine D2 receptor (DRD2) receptor expression in adult hippocampus, amygdala, and ventral striatum, along with higher dopamine D1 receptor (DRD1) receptor expression in ventral striatum compared to adolescent rats. Adult rats also showed significantly higher levels of 5-hydroxytryptamine receptor 2A (HTR2A) receptor expression in the medial prefrontal cortex, amygdala, ventral striatum, and hypothalamus. These results suggest that the faster onset of alloparenting in adolescent rats compared to adult rats, along with the psychological functions involved, may be mediated by varying levels of dopamine DRD1, DRD2, and HTR2A in different forebrain regions.


Asunto(s)
Prosencéfalo , ARN Mensajero , Receptor de Serotonina 5-HT2A , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animales , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Masculino , Ratas , Femenino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/genética , Prosencéfalo/metabolismo , Empatía/fisiología , Factores de Edad , Caracteres Sexuales , Ratas Sprague-Dawley , Conducta Animal/fisiología , Amígdala del Cerebelo/metabolismo
3.
Nihon Yakurigaku Zasshi ; 159(4): 214-218, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38945903

RESUMEN

Major Depressive Disorder (MDD) poses a significant global health burden, with 30-40% patients developing resistance to standard clinical antidepressants, such as selective serotonin reuptake inhibitors and tricyclic antidepressants. In 2016, Carhart-Harris and colleagues reported that psilocybin, the hallucinogenic compound derived from magic mushrooms, exhibits rapid and enduring antidepressant effects in patients with treatment-resistant depression. Subsequent clinical studies have found the therapeutic potential of psilocybin in MDD, depressive episode in bipolar disorder, anorexia, and drug addiction. In 2018 and 2019, the U.S. Food and Drug Administration designated psilocybin as a "breakthrough medicine" for treatment-resistant depression and MDD, respectively. Notably, the side effects of psilocybin are limited to transient and mild issues, such as headache and fatigue, suggesting its safety. In 2023, we published a review on the role of serotonin 5-HT2A receptors in the antidepressant effects of serotonergic psychedelics (Nihon Yakurigaku Zasshi, Volume 158, Issue 3, Page 229-232). Here, we present our study alongside the latest clinical and preclinical research on the antidepressant effects of psilocybin and provide an overview of the potential and issues related to psilocybin therapy.


Asunto(s)
Psilocibina , Psilocibina/uso terapéutico , Psilocibina/farmacología , Humanos , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Receptor de Serotonina 5-HT2A/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38879068

RESUMEN

BACKGROUND: Interactions between the serotonin (5-HT) and endocannabinoid (eCB) systems have been reported in the psychopathology of stress-related symptoms, while their interplay in regulating the relationship between childhood trauma and burnout remains unclear. In this study, we investigated the interaction of childhood trauma with genetic polymorphisms in these two systems in predicting burnout. METHODS: Burnout, childhood trauma, and job stress were assessed using rating scales in 992 general occupational individuals. Genetic polymorphisms including HTR2A rs6313, 5-HTT rs6354 and FAAH rs324420, were genotyped. Linear hierarchical regression analysis and PROCESS macro in SPSS were used to examine two- and three-way interactions. RESULTS: There were significant interactions of job stress × HTR2A rs6313 and childhood abuse × FAAH rs324420 on reduced personal accomplishment. Moreover, we found significant three-way interactions of childhood abuse × FAAH rs324420 × HTR2A rs6313 on cynicism and reduced personal accomplishment, childhood abuse × FAAH rs324420 × 5-HTT rs6354 on emotional exhaustion, and childhood neglect × FAAH rs324420 × 5-HTT rs6354 on reduced personal accomplishment. These results suggest that the FAAH rs324420 A allele carriers, when with some specific genetic polymorphisms of 5-HT system, would show more positive associations between childhood trauma and burnout. CONCLUSIONS: Genetic polymorphisms in the 5-HT and eCB systems may jointly moderate the impact of childhood trauma on burnout.


Asunto(s)
Amidohidrolasas , Endocannabinoides , Receptor de Serotonina 5-HT2A , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Humanos , Masculino , Femenino , Endocannabinoides/genética , Endocannabinoides/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Adulto , Amidohidrolasas/genética , Receptor de Serotonina 5-HT2A/genética , Polimorfismo de Nucleótido Simple , Persona de Mediana Edad , Agotamiento Profesional/genética , Agotamiento Profesional/psicología , Serotonina/metabolismo , Serotonina/genética , Experiencias Adversas de la Infancia/psicología , Maltrato a los Niños/psicología
5.
Biomed Pharmacother ; 177: 116867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889634

RESUMEN

The aim of this study was to determine the anti-hypersensitivity activity of novel non-hallucinogenic compounds derived from iboga alkaloids (i.e., ibogalogs), including tabernanthalog (TBG), ibogainalog (IBG), and ibogaminalog (DM506), using mouse models of neuropathic (Chronic Constriction Injury; CCI) and visceral pain (dextrane sulfate sodium; DSS). Ibogalogs decreased mechanical hyperalgesia and allodynia induced by CCI in a dose- and timeframe-dependent manner, where IBG showed the longest anti-hyperalgesic activity at a comparatively lower dose, whereas DM506 displayed the quickest response. These compounds also decreased hypersensitivity induced by colitis, where DM506 showed the longest activity. To understand the mechanisms involved in these effects, two approaches were utilized: ibogalogs were challenged with the 5-HT2A receptor antagonist ketanserin and the pharmacological activity of these compounds was assessed at the respective 5-HT2A, 5-HT6, and 5-HT7 receptor subtypes. The behavioral results clearly demonstrated that ketanserin abolishes the pain-relieving activity of ibogalogs without inducing any effect per se, supporting the concept that 5-HT2A receptor activation, but not inhibition, is involved in this process. The functional results showed that ibogalogs potently activate the 5-HT2A and 5-HT6 receptor subtypes, whereas they behave as inverse agonists (except TBG) at the 5-HT7 receptor. Considering previous studies showing that 5-HT6 receptor inhibition, but not activation, and 5-HT7 receptor activation, but not inhibition, relieved chronic pain, we can discard these two receptor subtypes as participating in the pain-relieving activity of ibogalogs. The potential involvement of 5-HT2B/2 C receptor subtypes was also ruled out. In conclusion, the anti-hypersensitivity activity of ibogalogs in mice is mediated by a mechanism involving 5-HT2A receptor activation.


Asunto(s)
Alcaloides , Neuralgia , Receptor de Serotonina 5-HT2A , Dolor Visceral , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Masculino , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Ratones , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/metabolismo , Alcaloides/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Modelos Animales de Enfermedad , Analgésicos/farmacología , Relación Dosis-Respuesta a Droga
6.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38904079

RESUMEN

Serotonin (5-HT) regulates working memory within the prefrontal cortex network, which is crucial for understanding obsessive-compulsive disorder. However, the mechanisms how network dynamics and serotonin interact in obsessive-compulsive disorder remain elusive. Here, we incorporate 5-HT receptors (5-HT1A, 5-HT2A) and dopamine receptors into a multistable prefrontal cortex network model, replicating the experimentally observed inverted U-curve phenomenon. We show how the two 5-HT receptors antagonize neuronal activity and modulate network multistability. Reduced binding of 5-HT1A receptors increases global firing, while reduced binding of 5-HT2A receptors deepens attractors. The obtained results suggest reward-dependent synaptic plasticity mechanisms may attenuate 5-HT related network impairments. Integrating serotonin-mediated dopamine release into circuit, we observe that decreased serotonin concentration triggers the network into a deep attractor state, expanding the domain of attraction of stable nodes with high firing rate, potentially causing aberrant reverse learning. This suggests a hypothesis wherein elevated dopamine concentrations in obsessive-compulsive disorder might result from primary deficits in serotonin levels. Findings of this work underscore the pivotal role of serotonergic dysregulation in modulating synaptic plasticity through dopamine pathways, potentially contributing to learned obsessions. Interestingly, serotonin reuptake inhibitors and antidopaminergic potentiators can counteract the over-stable state of high-firing stable points, providing new insights into obsessive-compulsive disorder treatment.


Asunto(s)
Trastorno Obsesivo Compulsivo , Corteza Prefrontal , Serotonina , Corteza Prefrontal/metabolismo , Trastorno Obsesivo Compulsivo/fisiopatología , Trastorno Obsesivo Compulsivo/metabolismo , Serotonina/metabolismo , Humanos , Dopamina/metabolismo , Modelos Neurológicos , Receptores Dopaminérgicos/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Simulación por Computador , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Serotonina/metabolismo , Plasticidad Neuronal/fisiología , Receptor de Serotonina 5-HT1A/metabolismo
7.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38777263

RESUMEN

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Conducta Exploratoria , Reconocimiento en Psicología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Masculino , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Ratas , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Emociones/efectos de los fármacos , Emociones/fisiología , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Ratas Wistar
8.
Nature ; 630(8015): 237-246, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720072

RESUMEN

Psychedelic substances such as lysergic acid diethylamide (LSD) and psilocybin show potential for the treatment of various neuropsychiatric disorders1-3. These compounds are thought to mediate their hallucinogenic and therapeutic effects through the serotonin (5-hydroxytryptamine (5-HT)) receptor 5-HT2A (ref. 4). However, 5-HT1A also plays a part in the behavioural effects of tryptamine hallucinogens5, particularly 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a psychedelic found in the toxin of Colorado River toads6. Although 5-HT1A is a validated therapeutic target7,8, little is known about how psychedelics engage 5-HT1A and which effects are mediated by this receptor. Here we map the molecular underpinnings of 5-MeO-DMT pharmacology through five cryogenic electron microscopy (cryo-EM) structures of 5-HT1A, systematic medicinal chemistry, receptor mutagenesis and mouse behaviour. Structure-activity relationship analyses of 5-methoxytryptamines at both 5-HT1A and 5-HT2A enable the characterization of molecular determinants of 5-HT1A signalling potency, efficacy and selectivity. Moreover, we contrast the structural interactions and in vitro pharmacology of 5-MeO-DMT and analogues to the pan-serotonergic agonist LSD and clinically used 5-HT1A agonists. We show that a 5-HT1A-selective 5-MeO-DMT analogue is devoid of hallucinogenic-like effects while retaining anxiolytic-like and antidepressant-like activity in socially defeated animals. Our studies uncover molecular aspects of 5-HT1A-targeted psychedelics and therapeutics, which may facilitate the future development of new medications for neuropsychiatric disorders.


Asunto(s)
5-Metoxitriptamina , Ansiolíticos , Antidepresivos , Metoxidimetiltriptaminas , Receptor de Serotonina 5-HT1A , Receptor de Serotonina 5-HT2A , Animales , Humanos , Masculino , Ratones , 5-Metoxitriptamina/análogos & derivados , 5-Metoxitriptamina/química , 5-Metoxitriptamina/farmacología , 5-Metoxitriptamina/uso terapéutico , Ansiolíticos/química , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/química , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Microscopía por Crioelectrón , Alucinógenos , Dietilamida del Ácido Lisérgico/química , Dietilamida del Ácido Lisérgico/farmacología , Metoxidimetiltriptaminas/química , Metoxidimetiltriptaminas/farmacología , Metoxidimetiltriptaminas/uso terapéutico , Modelos Moleculares , Receptor de Serotonina 5-HT1A/química , Receptor de Serotonina 5-HT1A/genética , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/ultraestructura , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/ultraestructura , Agonistas de Receptores de Serotonina/química , Agonistas de Receptores de Serotonina/farmacología , Agonistas de Receptores de Serotonina/uso terapéutico , Relación Estructura-Actividad
9.
FEBS Lett ; 598(14): 1783-1791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757247

RESUMEN

Certain amino acid sites of 5-HT2AR play crucial roles in interacting with various G proteins. Hallucinogens and non-hallucinogens both act on 5-HT2AR but mediate different pharmacological effects, possibly due to the coupling of different G proteins. Therefore, this study identified the binding sites of hallucinogens and non-hallucinogens with 5-HT2AR through molecular docking. We conducted site mutation to examine the impact of these sites on G proteins, in order to find out the sites that can distinguish the pharmacological effects of hallucinogens and non-hallucinogens. Our results indicate that I4.60A and S3.39A did not affect the ability of hallucinogens to activate Gq signaling, but significantly reduced Gs signaling activation by hallucinogens. These results suggest that S3.39 and I4.60 are important for the activation of Gs signaling by hallucinogens.


Asunto(s)
Receptor de Serotonina 5-HT2A , Serina , Transducción de Señal , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/química , Humanos , Células HEK293 , Serina/metabolismo , Serina/química , Sitios de Unión , Isoleucina/metabolismo , Isoleucina/química , Simulación del Acoplamiento Molecular , Alucinógenos/farmacología , Alucinógenos/metabolismo , Alucinógenos/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Unión Proteica
10.
Science ; 384(6702): eadn6354, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753765

RESUMEN

AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Receptor de Serotonina 5-HT2A , Agonistas del Receptor de Serotonina 5-HT2 , Antagonistas del Receptor de Serotonina 5-HT2 , Humanos , Microscopía por Crioelectrón , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Ligandos , Conformación Proteica , Pliegue de Proteína , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/ultraestructura , Receptores sigma/química , Receptores sigma/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/química , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
11.
Nat Commun ; 15(1): 4307, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811567

RESUMEN

G protein-coupled receptors (GPCRs) are sophisticated signaling machines able to simultaneously elicit multiple intracellular signaling pathways upon activation. Complete (in)activation of all pathways can be counterproductive for specific therapeutic applications. This is the case for the serotonin 2 A receptor (5-HT2AR), a prominent target for the treatment of schizophrenia. In this study, we elucidate the complex 5-HT2AR coupling signature in response to different signaling probes, and its physiological consequences by combining computational modeling, in vitro and in vivo experiments with human postmortem brain studies. We show how chemical modification of the endogenous agonist serotonin dramatically impacts the G protein coupling profile of the 5-HT2AR and the associated behavioral responses. Importantly, among these responses, we demonstrate that memory deficits are regulated by Gαq protein activation, whereas psychosis-related behavior is modulated through Gαi1 stimulation. These findings emphasize the complexity of GPCR pharmacology and physiology and open the path to designing improved therapeutics for the treatment of stchizophrenia.


Asunto(s)
Trastornos de la Memoria , Trastornos Psicóticos , Receptor de Serotonina 5-HT2A , Serotonina , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Células HEK293 , Trastornos de la Memoria/metabolismo , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/tratamiento farmacológico , Receptor de Serotonina 5-HT2A/metabolismo , Esquizofrenia/metabolismo , Serotonina/metabolismo , Transducción de Señal
12.
Mol Pharmacol ; 106(2): 92-106, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38821630

RESUMEN

Bipolar disorder impacts millions of patients in the United States but the mechanistic understanding of its pathophysiology and therapeutics is incomplete. Atypical antipsychotic serotonin2A (5-HT2A) receptor antagonists, such as quetiapine and olanzapine, and mood-stabilizing voltage-gated sodium channel (VGSC) blockers, such as lamotrigine, carbamazepine, and valproate, show therapeutic synergy and are often prescribed in combination for the treatment of bipolar disorder. Combination therapy is a complex task for clinicians and patients, often resulting in unexpected difficulties with dosing, drug tolerances, and decreased patient compliance. Thus, an unmet need for bipolar disorder treatment is to develop a therapeutic agent that targets both 5-HT2A receptors and VGSCs. Toward this goal, we developed a novel small molecule that simultaneously antagonizes 5-HT2A receptors and blocks sodium current. The new compound, N-(4-bromo-2,5-dimethoxyphenethyl)-6-(4-phenylbutoxy)hexan-1-amine (XOB) antagonizes 5-HT-stimulated, Gq-mediated, calcium flux at 5-HT2A receptors at low micromolar concentrations while displaying negligible affinity and activity at 5-HT1A, 5-HT2B, and 5-HT2C receptors. At similar concentrations, XOB administration inhibits sodium current in heterologous cells and results in reduced action potential (AP) firing and VGSC-related AP properties in mouse prefrontal cortex layer V pyramidal neurons. Thus, XOB represents a new, proof-of-principle tool that can be used for future preclinical investigations and therapeutic development. This polypharmacology approach of developing a single molecule to act upon two targets, which are currently independently targeted by combination therapies, may lead to safer alternatives for the treatment of psychiatric disorders that are increasingly being found to benefit from the simultaneous targeting of multiple receptors. SIGNIFICANCE STATEMENT: The authors synthesized a novel small molecule (XOB) that simultaneously antagonizes two key therapeutic targets of bipolar disorder, 5-HT2A receptors and voltage-gated sodium channels, in heterologous cells, and inhibits the intrinsic excitability of mouse prefrontal cortex layer V pyramidal neurons in brain slices. XOB represents a valuable new proof-of-principle tool for future preclinical investigations and provides a novel molecular approach to the pharmacological treatment of complex neuropsychiatric disease, which often requires a combination of therapeutics for sufficient patient benefit.


Asunto(s)
Receptor de Serotonina 5-HT2A , Animales , Ratones , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Humanos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Células HEK293 , Cricetulus
13.
Behav Brain Res ; 467: 115019, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677331

RESUMEN

Nicotine smoking contributes to many preventable disabilities, diseases and deaths. Targeting nicotine reward and withdrawal is a basis for the majority of smoking cessation pharmacotherapies. Due to the emergence of interest in 5-HT2A receptor modulators for numerous psychiatric disorders, we investigated the effect of nelotanserin, a 5-HT2A receptor inverse agonist, on nicotine reward and withdrawal in ICR mice. In nicotine-dependent mice, nelotanserin dose-dependently reduced somatic signs of nicotine withdrawal and thermal hyperalgesia as measured in the hot plate test. However, nelotanserin had no effect on anxiety-like behavior and failed to reduce nicotine reward as measured in the conditioned place preference test. Our results suggest that inverse agonism of the 5-HT2A receptor may be a feasible novel mechanism for smoking cessation by reducing both physical withdrawal and thermal hyperalgesia associated with nicotine abstinence but may require complementary pharmacotherapies targeting affective and reward-associated decrements to improve cessation outcomes.


Asunto(s)
Ratones Endogámicos ICR , Nicotina , Recompensa , Agonistas del Receptor de Serotonina 5-HT2 , Síndrome de Abstinencia a Sustancias , Animales , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Nicotina/farmacología , Nicotina/administración & dosificación , Masculino , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Ratones , Relación Dosis-Respuesta a Droga , Tabaquismo/tratamiento farmacológico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/administración & dosificación
14.
Neuropsychopharmacology ; 49(8): 1227-1235, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38671147

RESUMEN

Stress affects brain serotonin (5HT) and dopamine (DA) function, and the effectiveness of 5HT and DA to regulate stress and emotional responses. However, our understanding of the long-term impact of early life adversity (ELA) on primate brain monoaminergic systems during adolescence is scarce and inconsistent. Filling this gap in the literature is critical, given that the emergence of psychopathology during adolescence has been related to deficits in these systems. Here, we use a translational nonhuman primate (NHP) model of ELA (infant maltreatment by the mother) to examine the long-term impact of ELA on adolescent 5HT1A, 5HT2A and D2 receptor systems. These receptor systems were chosen based on their involvement in stress/emotional control, as well as reward and reinforcement. Rates of maternal abuse, rejection, and infant's vocalizations were obtained during the first three postnatal months, and hair cortisol concentrations obtained at 6 months postnatal were examined as early predictors of binding potential (BP) values obtained during adolescence using positron emission tomography (PET) imaging. Maltreated animals demonstrated significantly lower 5HT1A receptor BP in prefrontal cortical areas as well as the amygdala and hippocampus, and lower 5HT2A receptor BP in striatal and prefrontal cortical areas. Maltreated animals also demonstrated significantly lower D2 BP in the amygdala. None of the behavioral and neuroendocrine measurements obtained early in life predicted any changes in BP data. Our findings suggest that early caregiving experiences regulate the development of brain 5HT and DA systems in primates, resulting in long-term effects evident during adolescence.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Receptor de Serotonina 5-HT1A , Receptor de Serotonina 5-HT2A , Receptores de Dopamina D2 , Estrés Psicológico , Animales , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Masculino , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Dopamina D2/metabolismo , Femenino , Receptor de Serotonina 5-HT1A/metabolismo , Estrés Psicológico/metabolismo , Macaca mulatta , Modelos Animales de Enfermedad , Hidrocortisona/metabolismo , Privación Materna
15.
ChemMedChem ; 19(14): e202400080, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619283

RESUMEN

The 5-HT2A receptor is a molecular target of high pharmacological importance. Ligands of this protein, particularly atypical antipsychotics, are useful in the treatment of numerous mental disorders, including schizophrenia and major depressive disorder. Structure-based virtual screening using a 5-HT2A receptor complex was performed to identify novel ligands for the 5-HT2A receptor, serving as potential antidepressants. From the Enamine screening library, containing over 4 million compounds, 48 molecules were selected for subsequent experimental validation. These compounds were tested against the 5-HT2A receptor in radioligand binding assays. From the tested batch, six molecules were identified as ligands of the main molecular target and were forwarded to a more detailed in vitro profiling. This included radioligand binding assays at 5-HT1A, 5-HT7, and D2 receptors and functional studies at 5-HT2A receptors. These compounds were confirmed to show a binding affinity for at least one of the targets tested in vitro. The success rate for the inactive template-based screening reached 17 %, while it was 9 % for the active template-based screening. Similarity and fragment analysis indicated the structural novelty of the identified compounds. Pharmacokinetics for these molecules was determined using in silico approaches.


Asunto(s)
Receptor de Serotonina 5-HT2A , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/química , Ligandos , Humanos , Relación Estructura-Actividad , Evaluación Preclínica de Medicamentos , Descubrimiento de Drogas , Estructura Molecular , Simulación del Acoplamiento Molecular
16.
Clin Exp Med ; 24(1): 84, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662111

RESUMEN

The study of neuroimmune crosstalk and the involvement of neurotransmitters in inflammation and bone health has illustrated their significance in joint-related conditions. One important mode of cell-to-cell communication in the synovial fluid (SF) is through extracellular vesicles (EVs) carrying microRNAs (miRNAs). The role of neurotransmitter receptors in the pathogenesis of inflammatory joint diseases, and whether there are specific miRNAs regulating differentially expressed HTR2A, contributing to the inflammatory processes and bone metabolism is unclear. Expression of neurotransmitter receptors and their correlated inflammatory molecules were identified in rheumatoid arthritis (RA) and osteoarthritis (OA) synovium from a scRNA-seq dataset. Immunohistochemistry staining of synovial tissue (ST) from RA and OA patients was performed for validation. Expression of miRNAs targeting HTR2A carried by SF EVs was screened in low- and high-grade inflammation RA from a public dataset and validated by qPCR. HTR2A reduction by target miRNAs was verified by miRNAs mimics transfection into RA fibroblasts. HTR2A was found to be highly expressed in fibroblasts derived from RA synovial tissue. Its expression showed a positive correlation with the degree of inflammation observed. 5 miRNAs targeting HTR2A were decreased in RA SF EVs compared to OA, three of which, miR-214-3p, miR-3120-5p and miR-615-3p, mainly derived from monocytes in the SF, were validated as regulators of HTR2A expression. The findings suggest that fibroblast HTR2A may play a contributory role in inflammation and the pathogenesis of RA. Additionally, targeting miRNAs that act upon HTR2A could present novel therapeutic strategies for alleviating inflammation in RA.


Asunto(s)
Artritis Reumatoide , Fibroblastos , MicroARNs , Osteoartritis , Humanos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/genética , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Inflamación/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/patología , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/genética , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
17.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673988

RESUMEN

In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.


Asunto(s)
Hipercapnia , Enfermedad de Parkinson , Receptor de Serotonina 5-HT1A , Receptor de Serotonina 5-HT2A , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Dopamina/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Norepinefrina/metabolismo , Norepinefrina/farmacología , Oxidopamina/farmacología , Enfermedad de Parkinson/metabolismo , Ratas Wistar , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Respiración/efectos de los fármacos , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacología
18.
Genet Test Mol Biomarkers ; 28(4): 159-164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38657123

RESUMEN

Introduction: Sleep is one of the most significant parts of everyone's life. Most people sleep for about one-third of their lives. Sleep disorders negatively impact the quality of life. Obstructive sleep apnea (OSA) is a severe sleep disorder that significantly impacts the patient's life and their family members. This study aimed to investigate the relationship between rs6313 and rs6311 polymorphisms in the serotonin receptor type 2A gene and OSA in the Kurdish population. Materials and Methods: The study's population comprises 100 OSA sufferers and 100 healthy people. Polysomnography diagnostic tests were done on both the patient and control groups. The polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used to investigate the relationship between OSA and LEPR gene polymorphisms. Results: Statistical analysis showed a significant relationship between genotype frequencies of patient and control groups of rs6311 with OSA in dominant [odds ratio (OR) = 5.203, p < 0.001) and codominant models (OR = 9.7, p < 0.001). Also, there was a significant relationship between genotype frequencies of patient and control groups of rs6313 with OSA in dominant (OR = 10.565, p < 0.001) and codominant models (OR = 5.938, p < 0.001). Conclusions: Findings from the study demonstrated that the two polymorphisms rs6311 and rs6313 could be effective at causing OSA; however, there was no correlation between the severity of the disease and either of the two polymorphisms.


Asunto(s)
Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Receptor de Serotonina 5-HT2A , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/genética , Irán , Masculino , Femenino , Adulto , Persona de Mediana Edad , Receptor de Serotonina 5-HT2A/genética , Polimorfismo de Nucleótido Simple/genética , Frecuencia de los Genes/genética , Estudios de Casos y Controles , Genotipo , Polisomnografía/métodos , Alelos , Polimorfismo de Longitud del Fragmento de Restricción , Receptores de Leptina/genética , Estudios de Asociación Genética/métodos
19.
Eat Weight Disord ; 29(1): 31, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668826

RESUMEN

PURPOSE: Several studies have investigated the association between anorexia nervosa and polymorphisms of genes regulating serotonin neurotransmission, with a focus on the rs6311 polymorphism of 5-HTR2A. However, inconsistent results of these studies and conflicting conclusions of existing meta-analyses complicate the understanding of a possible association. We have updated these results and evaluated the involvement of other serotonin receptor gene polymorphisms in anorexia nervosa. METHODS: Adhering to PRISMA guidelines, we have searched studies on anorexia nervosa and serotonin-regulating genes published from 1997 to 2022, selected those concerning receptor genes and meta-analyzed the results from twenty candidate gene studies on the 5-HTR2A rs6311 polymorphism and the 5-HTR2C rs6318 polymorphism. RESULTS: Present analyses reveal an association for the 5-HTR2A rs6311 polymorphism, with G and A alleles, across eighteen studies (2049 patients, 2877 controls; A vs. G allele, Odds Ratio = 1.24; 95% Confidence Interval = 1.06-1.47; p = 0.009). However, after geographic subgrouping, an association emerged only in a Southern European area, involving five studies (722 patients, 773 controls; A vs. G allele, Odds Ratio = 1.82; 95% Confidence Interval = 1.41-2.37; p < 0.00001). No association was observed for the 5-HTR2C rs6318 polymorphism across three studies. CONCLUSIONS: To date, the involvement in the pathophysiology of anorexia nervosa of the 5-HTR2A rs6311 polymorphism appears limited to a specific genetic and/or environmental context, while that of the 5-HTR2C rs6318 polymorphism seems excluded. Genome-wide association studies and epigenetic studies will likely offer deeper insights of genetic and environmental factors possibly contributing to the disorder. LEVEL OF EVIDENCE: III Evidence obtained from well-designed cohort or case-control analytic studies. Clinical trial registration PROSPERO registration number: CRD42021246122.


Asunto(s)
Anorexia Nerviosa , Polimorfismo de Nucleótido Simple , Receptor de Serotonina 5-HT2A , Receptor de Serotonina 5-HT2C , Humanos , Anorexia Nerviosa/genética , Predisposición Genética a la Enfermedad/genética , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2C/genética
20.
J Med Chem ; 67(9): 7224-7244, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38648420

RESUMEN

Classical psychedelics such as psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) are showing promising results in clinical trials for a range of psychiatric indications, including depression, anxiety, and substance abuse disorder. These compounds are characterized by broad pharmacological activity profiles, and while the acute mind-altering effects can be ascribed to their shared agonist activity at the serotonin 2A receptor (5-HT2AR), their apparent persistent therapeutic effects are yet to be decidedly linked to activity at this receptor. We report herein the discovery of 2,5-dimethoxyphenylpiperidines as a novel class of selective 5-HT2AR agonists and detail the structure-activity investigations leading to the identification of LPH-5 [analogue (S)-11] as a selective 5-HT2AR agonist with desirable drug-like properties.


Asunto(s)
Piperidinas , Receptor de Serotonina 5-HT2A , Agonistas del Receptor de Serotonina 5-HT2 , Animales , Humanos , Ratas , Descubrimiento de Drogas , Piperidinas/farmacología , Piperidinas/química , Piperidinas/síntesis química , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/síntesis química , Relación Estructura-Actividad , Dietilamida del Ácido Lisérgico/síntesis química , Dietilamida del Ácido Lisérgico/química , Dietilamida del Ácido Lisérgico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA