Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.800
Filtrar
1.
Sci Rep ; 14(1): 15855, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982271

RESUMEN

Dendritic spines are the postsynaptic compartments of excitatory synapses, however, a substantial subset of spines additionally receives inhibitory input. In such dually innervated spines (DiSs), excitatory long-term potentiation (LTP) mechanisms are suppressed, but can be enabled by blocking tonic inhibitory GABAB receptor signaling. Here we show that LTP mechanisms at DiSs are also enabled by two other excitatory LTP stimuli. In hippocampal neurons, these chemical LTP (cLTP) stimuli induced robust movement of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to DiSs. Such synaptic CaMKII accumulation is an essential LTP mechanism at singly innervated spines (SiSs). Indeed, CaMKII accumulation at DiSs was also accompanied by other readouts for successful LTP induction: spine growth and surface insertion of GluA1. Thus, DiSs are capable of the same LTP mechanisms as SiSs, although induction of these mechanism additionally requires either reduced inhibitory signaling or increased excitatory stimulation. This additional regulation may provide further computational control.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Espinas Dendríticas , Potenciación a Largo Plazo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Receptores AMPA/metabolismo , Ratas , Neuronas/metabolismo , Neuronas/fisiología
2.
Transl Psychiatry ; 14(1): 269, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956048

RESUMEN

Addiction is a complex behavioral disorder characterized by compulsive drug-seeking and drug use despite harmful consequences. The prefrontal cortex (PFC) plays a crucial role in cocaine addiction, involving decision-making, impulse control, memory, and emotional regulation. The PFC interacts with the brain's reward system, including the ventral tegmental area (VTA) and nucleus accumbens (NAc). The PFC also projects to the lateral habenula (LHb), a brain region critical for encoding negative reward and regulating the reward system. In the current study, we examined the role of PFC-LHb projections in regulating cocaine reward-related behaviors. We found that optogenetic stimulation of the PFC-LHb circuit during cocaine conditioning abolished cocaine preference without causing aversion. In addition, increased c-fos expression in LHb neurons was observed in animals that received optic stimulation during cocaine conditioning, supporting the circuit's involvement in cocaine preference regulation. Molecular analysis in animals that received optic stimulation revealed that cocaine-induced alterations in the expression of GluA1 subunit of AMPA receptor was normalized to saline levels in a region-specific manner. Moreover, GluA1 serine phosphorylation on S845 and S831 were differentially altered in LHb and VTA but not in the PFC. Together these findings highlight the critical role of the PFC-LHb circuit in controlling cocaine reward-related behaviors and shed light on the underlying mechanisms. Understanding this circuit's function may provide valuable insights into addiction and contribute to developing targeted treatments for substance use disorders.


Asunto(s)
Cocaína , Habénula , Neuronas , Optogenética , Corteza Prefrontal , Receptores AMPA , Recompensa , Animales , Corteza Prefrontal/metabolismo , Cocaína/farmacología , Masculino , Habénula/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/metabolismo , Vías Nerviosas , Ratas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Fosforilación , Área Tegmental Ventral/metabolismo , Conducta Animal
3.
Molecules ; 29(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38999182

RESUMEN

An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer's, and Autism. One of the critical agents mediating excitatory neurotransmission is α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, which are concerned with synaptic plasticity, memory, and learning. An imbalance in neurotransmission finally results in excitotoxicity and neurological pathologies that should be corrected through specific compounds. Hence, the current study will prove to be an evaluation of new thiazole-carboxamide derivatives concerning AMPAR-modulating activity and extended medicinal potential. In the current project, five previously synthesized thiazole-carboxamide derivatives, i.e., TC-1 to TC-5, were used to interact with the AMPARs expressed in HEK293T cells, which overexpress different subunits of the AMPAR. Patch-clamp analysis was carried out while the effect of the drugs on AMPAR-mediated currents was followed with a particular emphasis on the kinetics of inhibition, desensitization, and deactivation. All tested TC compounds, at all subunits, showed potent inhibition of AMPAR-mediated currents, with TC-2 being the most powerful for all subunits. These compounds shifted the receptor kinetics efficiently, mainly enhancing the deactivation rates, and hence acted as a surrogate for their neuroprotective potentials. Additionally, recently published structure-activity relationship studies identified particular substituent groups as necessary for improving the pharmacologic profiles of these compounds. In this regard, thiazole-carboxamide derivatives, particularly those classified as TC-2, have become essential negative allosteric modulators of AMPAR function and potential therapeutics in neurological disturbances underlain by the dysregulation of excitatory neurotransmission. Given their therapeutic effectiveness and safety profiles, these in vivo studies need to be further validated, although computational modeling can be further developed for drug design and selectivity. This will open possibilities for new drug-like AMPAR negative allosteric modulators with applications at the clinical level toward neurology.


Asunto(s)
Fármacos Neuroprotectores , Receptores AMPA , Tiazoles , Humanos , Receptores AMPA/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Tiazoles/química , Tiazoles/farmacología , Células HEK293 , Relación Estructura-Actividad
4.
J Chem Inf Model ; 64(13): 5140-5150, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973304

RESUMEN

Beta-N-methylamino-l-alanine (BMAA) is a potential neurotoxic nonprotein amino acid, which can reach the human body through the food chain. When BMAA interacts with bicarbonate in the human body, carbamate adducts are produced, which share a high structural similarity with the neurotransmitter glutamate. It is believed that BMAA and its l-carbamate adducts bind in the glutamate binding site of ionotropic glutamate receptor 2 (GluR2). Chronic exposure to BMAA and its adducts could cause neurological illness such as neurodegenerative diseases. However, the mechanism of BMAA action and its carbamate adducts bound to GluR2 has not yet been elucidated. Here, we investigate the binding modes and the affinity of BMAA and its carbamate adducts to GluR2 in comparison to the natural agonist, glutamate, to understand whether these can act as GluR2 modulators. Initially, we perform molecular dynamics simulations of BMAA and its carbamate adducts bound to GluR2 to examine the stability of the ligands in the S1/S2 ligand-binding core of the receptor. In addition, we utilize alchemical free energy calculations to compute the difference in the free energy of binding of the beta-carbamate adduct of BMAA to GluR2 compared to that of glutamate. Our findings indicate that carbamate adducts of BMAA and glutamate remain stable in the binding site of the GluR2 compared to BMAA. Additionally, alchemical free energy results reveal that glutamate and the beta-carbamate adduct of BMAA have comparable binding affinity to the GluR2. These results provide a rationale that BMAA carbamate adducts may be, in fact, the modulators of GluR2 and not BMAA itself.


Asunto(s)
Aminoácidos Diaminos , Carbamatos , Toxinas de Cianobacterias , Receptores AMPA , Receptores AMPA/metabolismo , Receptores AMPA/química , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Simulación de Dinámica Molecular , Humanos , Sitios de Unión , Unión Proteica , Ácido Glutámico/metabolismo , Ácido Glutámico/química , Ligandos
5.
Proc Natl Acad Sci U S A ; 121(28): e2317833121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968112

RESUMEN

Parkinson's disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in Lrrk2 also exhibit deficits in fronto-striatal-based cognitive tasks. In mice and humans, cognitive functions require dynamic adjustments in glutamatergic synapse strength through cell-surface trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs), but it is unknown how LRRK2 mutation impacts dynamic features of AMPAR trafficking in striatal projection neurons (SPNs). Here, we used Lrrk2G2019S knockin mice to show that surface AMPAR subunit stoichiometry is altered biochemically and functionally in mutant SPNs in dorsomedial striatum to favor the incorporation of GluA1 over GluA2. GluA1-containing AMPARs were resistant to internalization from the cell surface, leaving an excessive accumulation of GluA1 on the surface within and outside synapses. This negatively impacted trafficking dynamics that normally support synapse strengthening, as GluA1-containing AMPARs failed to increase at synapses in response to a potentiating stimulus and showed significantly reduced surface mobility. Surface GluA2-containing AMPARs were expressed at normal levels in synapses, indicating subunit-selective impairment. Abnormal surface accumulation of GluA1 was independent of PKA activity and was limited to D1R SPNs. Since LRRK2 mutation is thought to be part of a common PD pathogenic pathway, our data suggest that sustained, striatal cell-type specific changes in AMPAR composition and trafficking contribute to cognitive or other impairments associated with PD.


Asunto(s)
Cuerpo Estriado , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Transporte de Proteínas , Receptores AMPA , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Receptores AMPA/metabolismo , Receptores AMPA/genética , Ratones , Cuerpo Estriado/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Mutación Missense , Humanos , Sinapsis/metabolismo
6.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961250

RESUMEN

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Asunto(s)
Cerebelo , Receptores de Glutamato Metabotrópico , Sinapsis , Animales , Cerebelo/metabolismo , Cerebelo/fisiología , Cerebelo/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Ratones , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones Noqueados , Ratones Endogámicos C57BL
7.
Mol Brain ; 17(1): 35, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858726

RESUMEN

The brain responds to experience through modulation of synaptic transmission, that is synaptic plasticity. An increase in the strength of synaptic transmission is manifested as long-term potentiation (LTP), while a decrease in the strength of synaptic transmission is expressed as long-term depression (LTD). Most of the studies of synaptic plasticity have been carried out by induction via electrophysiological stimulation. It is largely unknown in which behavioural tasks such synaptic plasticity occurs. Moreover, some stimuli can induce both LTP and LTD, thus making it difficult to separately study the different forms of synaptic plasticity. Two studies have shown that an aversive memory task - inhibitory avoidance learning and contextual fear conditioning - physiologically and selectively induce LTP and an LTP-like molecular change, respectively, in the hippocampus in vivo. Here, we show that a non-aversive behavioural task - exploration of new space - physiologically and selectively elicits a biochemical change in the hippocampus that is a hallmark of LTP. Specifically, we found that exploration of new space induces an increase in the phosphorylation of GluA1(Ser831), without affecting the phosphorylation of GluA1(Ser845), which are biomarkers of early-LTP and not NMDAR-mediated LTD. We also show that exploration of new space engenders the phosphorylation of the translational regulator S6K and the expression of Arc, which are features of electrophysiologically-induced late-LTP in the hippocampus. Therefore, our results show that exploration of new space is a novel non-aversive behavioural paradigm that elicits molecular changes in vivo that are analogous to those occurring during early- and late-LTP, but not during NMDAR-mediated LTD.


Asunto(s)
Proteínas del Citoesqueleto , Hipocampo , Potenciación a Largo Plazo , Proteínas del Tejido Nervioso , Receptores AMPA , Animales , Potenciación a Largo Plazo/fisiología , Fosforilación , Hipocampo/metabolismo , Hipocampo/fisiología , Receptores AMPA/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Citoesqueleto/metabolismo , Conducta Exploratoria/fisiología , Serina/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(26): e2322978121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38900791

RESUMEN

MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.


Asunto(s)
Hipocampo , Sinapsis , Transmisión Sináptica , Animales , Sinapsis/metabolismo , Ratones , Hipocampo/metabolismo , Hipocampo/citología , Transmisión Sináptica/fisiología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Ratones Noqueados , Receptores AMPA/metabolismo , Receptores AMPA/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Cultivadas
9.
Elife ; 122024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941139

RESUMEN

Homeostatic plasticity represents a set of mechanisms that are thought to recover some aspect of neural function. One such mechanism called AMPAergic scaling was thought to be a likely candidate to homeostatically control spiking activity. However, recent findings have forced us to reconsider this idea as several studies suggest AMPAergic scaling is not directly triggered by changes in spiking. Moreover, studies examining homeostatic perturbations in vivo have suggested that GABAergic synapses may be more critical in terms of spiking homeostasis. Here, we show results that GABAergic scaling can act to homeostatically control spiking levels. We found that perturbations which increased or decreased spiking in cortical cultures triggered multiplicative GABAergic upscaling and downscaling, respectively. In contrast, we found that changes in AMPA receptor (AMPAR) or GABAR transmission only influence GABAergic scaling through their indirect effect on spiking. We propose that GABAergic scaling represents a stronger candidate for spike rate homeostat than AMPAergic scaling.


Asunto(s)
Potenciales de Acción , Receptores AMPA , Receptores AMPA/metabolismo , Animales , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Plasticidad Neuronal/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Transmisión Sináptica/fisiología , Células Cultivadas , Ácido gamma-Aminobutírico/metabolismo , Homeostasis
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230220, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853553

RESUMEN

This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Potenciación a Largo Plazo , Receptores AMPA , Potenciación a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Animales , Sinapsis/fisiología , Sinapsis/metabolismo , Difusión , Humanos , Densidad Postsináptica/metabolismo
11.
Phytomedicine ; 131: 155802, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852473

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a serious neurodegenerative disease and brings a serious burden to society and families. Due to lack of effective drugs for the treatment of AD, it's urgent to develop new and effective drug for the treatment of AD. PURPOSE: The study aimed to investigate the potential of Zexieyin formula (ZXYF), a Chinese medicine formula, for the treatment of AD and its potential mechanism of action. METHODS: We used chronic scopolamine (SCOP) induction mice model and APP/PS1 mice to reveal and confirm ZXYF for the treatment of AD with donepezil (DON) as a positive reference. The learning and memory function were detected by morris water maze test (MWM) and y-maze test. Moreover, western blot and immunofluorescence were used to detect the molecular mechanism of ZXYF for the alleviation of AD in hippocampus. Lastly, pharmacological technology was applied to evaluate AMPA receptor involved in the role of ZXYF in the treatment of AD. RESULTS: The results showed that ZXYF could improve memory and learning deficits both in two AD models including scopolamine (SCOP)-induced mice model and APP/PS1mice. Moreover, ZXYF or not DON increased expressions of BrdU/DCX and Ki67 positive cells in dentate gyrus (DG), up-regulated the levels of AMPA subunit type (GluA1) and PKA in hippocampus in SCOP-induced mice model, although ZXYF and DON activated CaMKII, CaMKII-phosphorylation, CREB, CREB-phosphorylation and PSD95 in hippocampus in SCOP-induced mice model. ZXYF also activated CaMKII, CaMKII-phosphorylation and GluA1 in HT22 cells. Furthermore, transient inhibiting AMPA receptor was capable of blocking the effects of ZXYF to treat AD in MWM and suppressing the number of BrdU/DCX positive cells increased by ZXYF in DG in SCOP-induced mice model, but had no effect on the alteration of Ki67 positive cells. CONCLUSION: ZXYF had the therapeutic effects on AD-treatment, which activated CaMKII to promote AMPA receptor (GluA1) and subsequently up-regulated PKA/CREB signaling to facilitate neurogenesis to achieve enhanced postsynaptic protein.


Asunto(s)
Enfermedad de Alzheimer , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Hipocampo , Neurogénesis , Plasticidad Neuronal , Receptores AMPA , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Receptores AMPA/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Medicamentos Herbarios Chinos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Neurogénesis/efectos de los fármacos , Ratones , Masculino , Plasticidad Neuronal/efectos de los fármacos , Escopolamina , Ratones Transgénicos , Aprendizaje por Laberinto/efectos de los fármacos , Donepezilo/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Memoria/efectos de los fármacos , Ratones Endogámicos C57BL
12.
J Neurosci ; 44(23)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839340

RESUMEN

A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.


Asunto(s)
Receptores AMPA , Sinapsis , Receptores AMPA/metabolismo , Receptores AMPA/química , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Humanos , Transmisión Sináptica/fisiología , Nanoestructuras/química
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853554

RESUMEN

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Adiponectina , Giro Dentado , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones Noqueados , Plasticidad Neuronal , Animales , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/metabolismo , Giro Dentado/metabolismo , Giro Dentado/efectos de los fármacos , Ratones , Plasticidad Neuronal/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Adiponectina/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Receptores AMPA/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853555

RESUMEN

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Giro del Cíngulo , Potenciación a Largo Plazo , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Tupaiidae , Animales , Potenciación a Largo Plazo/fisiología , Giro del Cíngulo/fisiología , Tupaiidae/fisiología , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores AMPA/metabolismo , Adenilil Ciclasas/metabolismo , Ácido Glutámico/metabolismo , Masculino
15.
Artículo en Ruso | MEDLINE | ID: mdl-38884426

RESUMEN

Depression is a leading cause of disability and reduced work capacity worldwide. The monoamine theory of the pathogenesis of depression has remained dominant for many decades, however, drugs developed on its basis have limited efficacy. Exploring alternative mechanisms underlying this pathology could illuminate new avenues for pharmacological intervention. Targeting glutamatergic pathways in the CNS, particularly through modulation of NMDA and AMPA receptors, demonstrates promising results. This review presents some existing drugs with glutamatergic activity and novel developments based on it to enhance the efficacy of pharmacotherapy for depressive disorders.


Asunto(s)
Trastorno Depresivo , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores AMPA/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Antidepresivos/uso terapéutico , Animales
16.
Mol Autism ; 15(1): 28, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877552

RESUMEN

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Asunto(s)
Modelos Animales de Enfermedad , Potenciación a Largo Plazo , Proteínas Serina-Treonina Quinasas , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Espasmos Infantiles , Animales , Masculino , Ratas , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Potenciales Postsinápticos Excitadores , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Hipocampo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Células Piramidales/metabolismo , Células Piramidales/patología , Receptores AMPA/metabolismo , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Sinapsis/metabolismo
17.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891774

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder. While there are five FDA-approved drugs for treating this disease, each has only modest benefits. To design new and more effective therapies for ALS, particularly for sporadic ALS of unknown and diverse etiologies, we must identify key, convergent mechanisms of disease pathogenesis. This review focuses on the origin and effects of glutamate-mediated excitotoxicity in ALS (the cortical hyperexcitability hypothesis), in which increased glutamatergic signaling causes motor neurons to become hyperexcitable and eventually die. We characterize both primary and secondary contributions to excitotoxicity, referring to processes taking place at the synapse and within the cell, respectively. 'Primary pathways' include upregulation of calcium-permeable AMPA receptors, dysfunction of the EAAT2 astrocytic glutamate transporter, increased release of glutamate from the presynaptic terminal, and reduced inhibition by cortical interneurons-all of which have been observed in ALS patients and model systems. 'Secondary pathways' include changes to mitochondrial morphology and function, increased production of reactive oxygen species, and endoplasmic reticulum (ER) stress. By identifying key targets in the excitotoxicity cascade, we emphasize the importance of this pathway in the pathogenesis of ALS and suggest that intervening in this pathway could be effective for developing therapies for this disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ácido Glutámico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Humanos , Ácido Glutámico/metabolismo , Animales , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Envejecimiento/metabolismo , Receptores AMPA/metabolismo , Estrés del Retículo Endoplásmico , Mitocondrias/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Astrocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
Methods Cell Biol ; 187: 57-72, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705630

RESUMEN

Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15µm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.


Asunto(s)
Hipocampo , Receptores AMPA , Sinapsis , Animales , Ratones , Hipocampo/metabolismo , Hipocampo/citología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Proteínas de la Membrana/metabolismo , Oro/química , Microscopía Electrónica/métodos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo
19.
Cancer Lett ; 593: 216925, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38718887

RESUMEN

Alternative polyadenylation (APA), an important post-transcriptional regulatory mechanism, is aberrantly activated in cancer,but how APA functions in tumorigenesis remains elusive. We analyzed APA events in RNA-seq data in TCGA and reported 3'UTR alterations associated with esophageal squamous cell carcinoma (ESCC) patient prognosis and gene expression changes involving loss of tumor-suppressive miRNA binding sites. Moreover, we investigated the expression and function of cleavage and polyadenylation specific factor 3 (CPSF3), a key APA regulator in ESCC. By immunohistochemistry and qRT-PCR, we found that CPSF3 was highly expressed in ESCC tissues and associated with poor patient prognosis. Overexpression of CPSF3 enhanced, while knockdown of CPSF3 inhibited ESCC cell proliferation and migration in vitro and in vivo, as determined by colony formation, transwell assays and animal experiments. Iso-Seq and RNA-seq data analysis indicated that knockdown of CPSF3 favored use of the distal poly (A) site in the 3'UTR of Cornichon family AMPA receptor auxiliary protein 2 (CNIH2), resulting in a long-3'UTR CNIH2 isoform that produced less CNIH2 protein due to miR-125a-5p targeting and downregulating CNIH2 mRNA through a miR-125a-5p binding site in the long CNIH2 mRNA 3'UTR. Moreover, CPSF3-induced ESCC tumorigenicity was mediated by CNIH2. Taken together, CPSF3 promotes ESCC progression by upregulating CNIH2 expression through loss of miR-125a-5p-mediated CNIH2 repression through alternative splicing and polyadenylation of the CNIH2 mRNA 3'UTR.


Asunto(s)
Proliferación Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación , Progresión de la Enfermedad , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Poliadenilación , Animales , Femenino , Humanos , Masculino , Ratones , Regiones no Traducidas 3' , Línea Celular Tumoral , Movimiento Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Receptores AMPA/genética , Receptores AMPA/metabolismo
20.
Hippocampus ; 34(7): 342-356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38780087

RESUMEN

Although the phenomenon of memory formation and recall associated with the use of psychotropic drugs has been extensively studied, mechanisms underlying memories for natural reward have not been clarified. Herein, we test the hypothesis that glutamatergic receptors in the dentate gyrus play a role in memories associated with sucrose. We used pellet self-administration protocol to generate memories in two-port nose-poke discrimination task using male Wistar rats. During non-rewarded probe trial, the conditioned animals readily discriminated the active port versus inactive port and showed massive increase in mRNA expression of AMPA receptor subunit genes (gria2, gria3) as well as c-Fos protein in the DG. Access to sweet pellet further enhanced c-Fos expression in the DG. However, animals pre-treated with AMPA receptor antagonist CNQX (intra-DG), on exposure to operant chamber (no pellet), showed decreased discrimination as well as c-Fos expression. We suggest that AMPA receptors in DG mediate recall and consolidation of memories associated with sucrose consumption. CNQX pre-treated animals, if presented with sweet pellet on nose poke, exhibited high discrimination index coupled with increased c-Fos expression. In these CNQX treated rats, the DI was again decreased following administration of NMDA receptor antagonist AP5. We suggest that, although AMPA receptors are blocked, the access to sweet pellet may induce surge of glutamate in the DG, which in turn may reinstate memories via activation of erstwhile silent synapses in NMDA dependant manner.


Asunto(s)
Giro Dentado , Ratas Wistar , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Sacarosa , Animales , Masculino , Receptores AMPA/metabolismo , Receptores AMPA/antagonistas & inhibidores , Sacarosa/administración & dosificación , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Memoria/fisiología , Memoria/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Autoadministración , ARN Mensajero/metabolismo , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA