Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.923
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 147, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256776

RESUMEN

Maladaptive changes of metabolic patterns in the lumbar dorsal root ganglion (DRG) are critical for nociceptive hypersensitivity genesis. The accumulation of branched-chain amino acids (BCAAs) in DRG has been implicated in mechanical allodynia and thermal hyperalgesia, but the exact mechanism is not fully understood. This study aimed to explore how BCAA catabolism in DRG modulates pain sensitization. Wildtype male mice were fed a high-fat diet (HFD) for 8 weeks. Adult PP2Cmfl/fl mice of both sexes were intrathecally injected with pAAV9-hSyn-Cre to delete the mitochondrial targeted 2 C-type serine/threonine protein phosphatase (PP2Cm) in DRG neurons. Here, we reported that BCAA catabolism was impaired in the lumbar 4-5 (L4-L5) DRGs of mice fed a high-fat diet (HFD). Conditional deletion of PP2Cm in DRG neurons led to mechanical allodynia, heat and cold hyperalgesia. Mechanistically, the genetic knockout of PP2Cm resulted in the upregulation of C-C chemokine ligand 5/C-C chemokine receptor 5 (CCL5/CCR5) axis and an increase in transient receptor potential ankyrin 1 (TRPA1) expression. Blocking the CCL5/CCR5 signaling or TRPA1 alleviated pain behaviors induced by PP2Cm deletion. Thus, targeting BCAA catabolism in DRG neurons may be a potential management strategy for pain sensitization.


Asunto(s)
Aminoácidos de Cadena Ramificada , Dieta Alta en Grasa , Ganglios Espinales , Hiperalgesia , Animales , Ganglios Espinales/metabolismo , Masculino , Hiperalgesia/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Femenino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Canal Catiónico TRPA1/metabolismo , Canal Catiónico TRPA1/genética , Ratones Noqueados , Receptores CCR5/metabolismo , Receptores CCR5/genética
2.
PLoS One ; 19(9): e0307024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39231199

RESUMEN

Radiotherapy is a commonly used method in the treatment of bladder cancers (BC). Radiation-induced immunogenic cell death (ICD) is related to the immune response against cancers and their prognoses. Even though dendritic cells (DC) act as powerful antigen-presenting cells in the body, their precise role in this ICD process remains unclear. Accordingly, an in vitro study was undertaken to ascertain whether high-dose radiation-induced ICD of BC cells could regulate the immune response of DC. The results indicated that high-dose radiation treatments of BC cells significantly increased their levels of apoptosis, blocked their cell cycle in the G2/M phase, increased their expression of ICD-related proteins, and upregulated their secretion of CCL5 and CCL21 which control the directed migration of DC. It was also noted that expression of CD80, CD86, CCR5, and CCR7 on DC was upregulated in the medium containing the irradiated cells. In conclusion, the present findings illustrate that high-dose radiation can induce the occurrence of ICD within BC cells, concomitantly resulting in the activation of DC. Such findings could be of great significance in increasing the understanding how radiotherapy of BC may work to bring about reductions in cell activity and how these processes in turn lead to immunoregulation of the function of DC.


Asunto(s)
Apoptosis , Células Dendríticas , Muerte Celular Inmunogénica , Neoplasias de la Vejiga Urinaria , Células Dendríticas/inmunología , Células Dendríticas/efectos de la radiación , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/radioterapia , Neoplasias de la Vejiga Urinaria/patología , Humanos , Línea Celular Tumoral , Apoptosis/efectos de la radiación , Muerte Celular Inmunogénica/efectos de la radiación , Quimiocina CCL21/metabolismo , Receptores CCR7/metabolismo , Quimiocina CCL5/metabolismo , Receptores CCR5/metabolismo , Antígeno B7-2/metabolismo , Movimiento Celular/efectos de la radiación , Antígeno B7-1/metabolismo , Relación Dosis-Respuesta en la Radiación
3.
Front Immunol ; 15: 1327040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104520

RESUMEN

Background: The proximity of activated T cells and mast cells in the lesional skin of patients with chronic spontaneous urticaria (CSU) is held to contribute to the development of wheals and angioedema. In a previous study, we demonstrated that increased IL-17 expression in T cells and mast cells in skin lesions of patients with CSU is associated with T/mast cell proximity, but the mechanisms that drive T cell/mast cell co-localization remain unknown. Objectives: To assess if chemokines expressed in lesional CSU skin contribute to T cell/mast cell proximity. Patients and methods: Biopsies from lesional CSU skin were compared to biopsies from healthy skin for expression of CCR5 and its ligand CCL3 by CD4+ T cells and mast cells, respectively. Results: Numbers of CCR5-positive CD4+ T cells in lesional CSU skin were significantly increased as compared to healthy normal skin (p < 0.0001). The number of mast cells expressing CCL3 (ligand for CCR5) in CSU skin was also increased (p < 0.0002) and significant association with T-cell close proximity (p < 0.0001) is noticed. Conclusions: The close proximity of T cells and mast cells in the skin of severe CSU may be driven, at least in part by increased CCR5 and CCL3 expression. Therapies that target CCL3 interaction with CCR5 should be assessed for their effects in CSU.


Asunto(s)
Linfocitos T CD4-Positivos , Quimiocina CCL3 , Urticaria Crónica , Mastocitos , Receptores CCR5 , Piel , Humanos , Mastocitos/inmunología , Mastocitos/metabolismo , Piel/inmunología , Piel/patología , Piel/metabolismo , Urticaria Crónica/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Quimiocina CCL3/metabolismo , Adulto , Masculino , Receptores CCR5/metabolismo , Femenino , Persona de Mediana Edad , Biopsia
4.
CNS Neurosci Ther ; 30(8): e14924, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39143678

RESUMEN

AIMS: Postoperative cognitive dysfunction (POCD) is prevalent among the elderly, characterized primarily by cognitive decline after surgery. This study aims to explore how extracellular vesicles (EVs) derived from BV2 microglial cells, with and without the C-C chemokine receptor type 5 (CCR5), affect neuroinflammation, neuronal integrity, and cognitive function in a POCD mouse model. METHODS: We collected EVs from LPS-stimulated BV2 cells expressing CCR5 (EVsM1) and from BV2 cells with CCR5 knockdown (EVsM1-CCR5). These were administered to POCD-induced mice. Protein interactions between CCR5, G-protein-coupled receptors (GPCRs), and Ras were analyzed using structure-based docking and co-immunoprecipitation (Co-IP). We assessed the phosphorylation of p38 and Erk, the expression of synaptic proteins PSD95 and MAP2, and conducted Morris Water Maze tests to evaluate cognitive function. RESULTS: Structure-based docking and Co-IP confirmed interactions between CCR5, GPR, and Ras, suggesting a CCR5-GPCRs-Ras-MAPK pathway involvement in neuroinflammation. EVsM1 heightened neuroinflammation, reduced synaptic integrity, and impaired cognitive function in POCD mice. In contrast, EVsM1-CCR5 reduced neuroinflammatory markers, preserved synaptic proteins, enhanced dendritic spine structure, and improved cognitive outcomes. CONCLUSION: EVsM1 induced neuroinflammation via the CCR5-GPCRs-Ras-MAPK pathway, with EVsM1-CCR5 showing protective effects on POCD progression, suggesting a new therapeutic strategy for POCD management via targeted modification of microglial EVs.


Asunto(s)
Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , Complicaciones Cognitivas Postoperatorias , Receptores CCR5 , Animales , Microglía/metabolismo , Ratones , Receptores CCR5/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Masculino , Vesículas Extracelulares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas ras/metabolismo , Cognición/fisiología , Cognición/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Disfunción Cognitiva/metabolismo
5.
J Cell Mol Med ; 28(15): e18501, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088353

RESUMEN

Inflammatory bowel disease (IBD) is a chronic systemic inflammatory condition regarded as a major risk factor for colitis-associated cancer. However, the underlying mechanisms of IBD remain unclear. First, five GSE data sets available in GEO were used to perform 'batch correction' and Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs). Candidate molecules were identified using CytoHubba, and their diagnostic effectiveness was predicted. The CIBERSORT algorithm evaluated the immune cell infiltration in the intestinal epithelial tissues of patients with IBD and controls. Immune cell infiltration in the IBD and control groups was determined using the least absolute shrinkage selection operator algorithm and Cox regression analysis. Finally, a total of 51 DEGs were screened, and nine hub genes were identified using CytoHubba and Cytoscape. GSE87466 and GSE193677 were used as extra data set to validate the expression of the nine hub genes. CD4-naïve T cells, gamma-delta T cells, M1 macrophages and resting dendritic cells (DCs) are the main immune cell infiltrates in patients with IBD. Signal transducer and activator of transcription 1, CCR5 and integrin subunit beta 2 (ITGB2) were significantly upregulated in the IBD mouse model, and suppression of ITGB2 expression alleviated IBD inflammation in mice. Additionally, the expression of ITGB2 was upregulated in IBD-associated colorectal cancer (CRC). The silence of ITGB2 suppressed cell proliferation and tumour growth in vitro and in vivo. ITGB2 resting DCs may provide a therapeutic strategy for IBD, and ITGB2 may be a potential diagnostic marker for IBD-associated CRC.


Asunto(s)
Biología Computacional , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Biología Computacional/métodos , Ratones , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Antígenos CD18/genética , Antígenos CD18/metabolismo , Mapas de Interacción de Proteínas , Receptores CCR5/genética , Receptores CCR5/metabolismo
6.
Sci Immunol ; 9(98): eadk2612, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093956

RESUMEN

Aberrant activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway causes autoimmunity in humans and mice; however, the exact mechanism by which the cGAS-STING pathway initiates adaptive immunity and tissue pathology is still not fully understood. Here, we used a cGAS knockin (KI) mouse model that develops systemic autoimmunity. In the lungs of cGAS-KI mice, blood vessels were enclosed by organized lymphoid tissues that resemble tertiary lymphoid structures (TLSs). Cell-intrinsic cGAS induction promoted up-regulation of CCR5 in CD8+ T cells and led to CCL5 production in vascular endothelial cells. Peripheral CD8+ T cells were recruited to the lungs and produced CXCL13 and interferon-γ. The latter triggered endothelial cell death, potentiated CCL5 production, and was essential for TLS establishment. Blocking CCL5 or CCR5, or depleting CD8+ T cells, impaired TLS formation. cGAS-mediated TLS formation also enhanced humoral and antitumor responses. These data demonstrate that cGAS signaling drives a specialized lymphoid structure that underlies autoimmune tissue pathology.


Asunto(s)
Linfocitos T CD8-positivos , Células Endoteliales , Nucleotidiltransferasas , Estructuras Linfoides Terciarias , Animales , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Ratones , Células Endoteliales/inmunología , Estructuras Linfoides Terciarias/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CCL5/inmunología , Quimiocina CCL5/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/inmunología , Receptores CCR5/inmunología , Receptores CCR5/genética , Receptores CCR5/metabolismo , Autoinmunidad/inmunología
7.
Neuroscience ; 557: 51-55, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39137869

RESUMEN

Subarachnoid hemorrhage due to rupture of intracranial aneurysms has a poor outcome, making this disease being the social problem. Inflammation evoked by the increase in intracranial pressure and the clot in the subarachnoid space after the onset of SAH exacerbates neuronal death and vasospasm, resulting in the poor outcome and severe aftereffects. Here, FROUNT mediates CCR2 and CCR5 signaling as an intracellular molecule binding to these chemoattractant receptors which facilitate the migration of inflammatory cells, such as macrophages, in situ to trigger inflammation there. Animal model of subarachnoid hemorrhage was established in rats through intrathecal injection of autologous blood. The effect of the FROUNT inhibitor, disulfiram, on survival rate, neuronal death in hippocampus or vasospasm was then examined. The intrathecal administration of disulfiram significantly suppressed the infiltration of CD68-positive macrophages and myeloperoxidase-positive neutrophils toward the clot in the cistern in situ. In this condition, disulfiram ameliorated the death of animals after the onset of subarachnoid hemorrhage in rats. In addition, disulfiram suppressed both the two major events after subarachnoid hemorrhage, the neuronal death in hippocampus and vasospasm. The pharmacological inhibition of CCR2 and CCR5 signaling by disulfiram could thus be the therapeutic strategy to improve the outcome of subarachnoid hemorrhage.


Asunto(s)
Disulfiram , Ratas Sprague-Dawley , Hemorragia Subaracnoidea , Animales , Disulfiram/farmacología , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Masculino , Vasoespasmo Intracraneal/tratamiento farmacológico , Vasoespasmo Intracraneal/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inhibidores , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores CCR5/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratas , Pronóstico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Antígenos de Diferenciación Mielomonocítica/metabolismo
8.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201584

RESUMEN

Monocytes are circulating macrophage precursors generated from bone marrow hematopoietic stem cells. In adults, monocytes continuously replenish cerebral border-associated macrophages under physiological conditions. Monocytes also rapidly infiltrate the brain in pathological settings. The mechanisms of recruiting monocyte-derived macrophages into the brain under pathological conditions have been extensively studied. However, it remains unclear how monocytes enter the brain to renew border-associated macrophages under physiological conditions. Using both in vitro and in vivo approaches, this study reveals that a combination of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF), complementarily and synergistically enhances the adhesion of monocytes to cerebral endothelial cells in a dose-dependent manner. Cysteine-cysteine chemokine receptor 5 (CCR5) in brain endothelial cells, but not the cell adhesion molecules mediating neuroinflammation-related infiltration of monocyte-derived macrophages, modulates SCF+G-CSF-enhanced monocyte-endothelial cell adhesion. Blocking CCR5 or genetically deleting CCR5 reduces monocyte-endothelial cell adhesion induced by SCF+G-CSF. The SCF+G-CSF-enhanced recruitment of bone marrow-derived monocytes/macrophages into the cerebral perivascular space is also reduced in adult CCR5 knockout mice. This study demonstrates the role of SCF and G-CSF in regulating the entry of monocytes into the adult brain to replenish perivascular macrophages.


Asunto(s)
Encéfalo , Adhesión Celular , Factor Estimulante de Colonias de Granulocitos , Monocitos , Receptores CCR5 , Receptores CCR5/metabolismo , Receptores CCR5/genética , Animales , Monocitos/metabolismo , Ratones , Encéfalo/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Ratones Noqueados , Células Endoteliales/metabolismo , Factor de Células Madre/metabolismo , Factor de Células Madre/farmacología , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL
9.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000516

RESUMEN

The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.


Asunto(s)
Antagonistas de los Receptores CCR5 , Neuropatías Diabéticas , Modelos Animales de Enfermedad , Receptores CCR2 , Receptores CCR5 , Animales , Ratones , Neuropatías Diabéticas/tratamiento farmacológico , Masculino , Receptores CCR2/antagonistas & inhibidores , Receptores CCR2/metabolismo , Femenino , Receptores CCR5/metabolismo , Receptores CCR5/genética , Antagonistas de los Receptores CCR5/farmacología , Antagonistas de los Receptores CCR5/uso terapéutico , Morfina/farmacología , Morfina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Imidazoles , Sulfóxidos
10.
J Phys Chem B ; 128(29): 7086-7101, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39016126

RESUMEN

BACKGROUND: Human immunodeficiency virus (HIV) infection continues to pose a major global health challenge. HIV entry into host cells via membrane fusion mediated by the viral envelope glycoprotein gp120/gp41 is a key step in the HIV life cycle. CCR5, expressed on CD4+ T cells and macrophages, acts as a coreceptor facilitating HIV-1 entry. The CCR5 antagonist maraviroc is used to treat HIV infection. However, it can cause adverse effects and has limitations such as only inhibiting CCR5-tropic viruses. There remains a need to develop alternative CCR5 inhibitors with improved safety profiles. PROBLEM STATEMENT: Natural products may offer advantages over synthetic inhibitors including higher bioavailability, binding affinity, effectiveness, lower toxicity, and molecular diversity. However, screening the vast chemical space of natural compounds to identify novel CCR5 inhibitors presents challenges. This study aimed to address this gap through a hybrid ligand-based pharmacophore modeling and molecular docking approach to virtually screen large natural product databases. METHODS: A reliable pharmacophore model was developed based on 311 known CCR5 antagonists and validated against an external data set. Five natural product databases containing over 306,000 compounds were filtered based on drug-likeness rules. The validated pharmacophore model screened the databases to identify 611 hits. Key residues of the CCR5 receptor crystal structure were identified for docking. The top hits were docked, and interactions were analyzed. Molecular dynamics simulations were conducted to examine complex stability. Computational prediction evaluated pharmacokinetic properties. RESULTS: Three compounds exhibited similar interactions and binding energies to maraviroc. MD simulations demonstrated complex stability comparable to maraviroc. One compound showed optimal predicted absorption, minimal metabolism, and a lower likelihood of interactions than maraviroc. CONCLUSION: This computational screening workflow identified three natural compounds with promising CCR5 inhibition and favorable pharmacokinetic profiles. One compound emerged as a lead based on bioavailability potential and minimal interaction risk. These findings present opportunities for developing alternative CCR5 antagonists and warrant further experimental investigation. Overall, the hybrid virtual screening approach proved effective for mining large natural product spaces to discover novel molecular entities with drug-like properties.


Asunto(s)
Productos Biológicos , Antagonistas de los Receptores CCR5 , VIH-1 , Receptores CCR5 , Humanos , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Antagonistas de los Receptores CCR5/química , Antagonistas de los Receptores CCR5/farmacología , Evaluación Preclínica de Medicamentos , VIH-1/efectos de los fármacos , Maraviroc/química , Maraviroc/farmacología , Simulación del Acoplamiento Molecular , Receptores CCR5/metabolismo , Receptores CCR5/química
11.
Viruses ; 16(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39066226

RESUMEN

Both bacteria product flagellin and macrophages are implicated in HIV-1 infection/disease progression. However, the impact of their interaction on HIV-1 infection and the associated mechanisms remain to be determined. We thus examined the effect of the flagellins on HIV-1 infection of primary human macrophages. We observed that the pretreatment of macrophages with the flagellins from the different bacteria significantly inhibited HIV-1 infection. The mechanistic investigation showed that the flagellin treatment of macrophages downregulated the major HIV-1 entry receptors (CD4 and CCR5) and upregulated the CC chemokines (MIP-1α, MIP-1ß and RANTES), the ligands of CCR5. These effects of the flagellin could be compromised by a toll-like receptor 5 (TLR5) antagonist. Given the important role of flagellin as a vaccine adjuvant in TLR5 activation-mediated immune regulation and in HIV-1 infection of macrophages, future investigations are necessary to determine the in vivo impact of flagellin-TLR5 interaction on macrophage-mediated innate immunity against HIV-1 infection and the effectiveness of flagellin adjuvant-based vaccines studies.


Asunto(s)
Flagelina , Infecciones por VIH , VIH-1 , Macrófagos , Internalización del Virus , Humanos , Bacterias/química , Antígenos CD4/metabolismo , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CCL5/inmunología , Quimiocinas CC/metabolismo , Quimiocinas CC/inmunología , Flagelina/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/fisiología , Macrófagos/inmunología , Macrófagos/virología , Receptores CCR5/metabolismo , Receptor Toll-Like 5/metabolismo , Internalización del Virus/efectos de los fármacos
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1098-1108, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-38977339

RESUMEN

OBJECTIVE: To identify the biomarkers for early rheumatoid arthritis (RA) diagnosis and explore the possible immune regulatory mechanisms. METHODS: The differentially expressed genesin RA were screened and functionally annotated using the limma, RRA, batch correction, and clusterProfiler. The protein-protein interaction network was retrieved from the STRING database, and Cytoscape 3.8.0 and GeneMANIA were used to select the key genes and predicting their interaction mechanisms. ROC curves was used to validate the accuracy of diagnostic models based on the key genes. The disease-specific immune cells were selected via machine learning, and their correlation with the key genes were analyzed using Corrplot package. Biological functions of the key genes were explored using GSEA method. The expression of STAT1 was investigated in the synovial tissue of rats with collagen-induced arthritis (CIA). RESULTS: We identified 9 core key genes in RA (CD3G, CD8A, SYK, LCK, IL2RG, STAT1, CCR5, ITGB2, and ITGAL), which regulate synovial inflammation primarily through cytokines-related pathways. ROC curve analysis showed a high predictive accuracy of the 9 core genes, among which STAT1 had the highest AUC (0.909). Correlation analysis revealed strong correlations of CD3G, ITGAL, LCK, CD8A, and STAT1 with disease-specific immune cells, and STAT1 showed the strongest correlation with M1-type macrophages (R=0.68, P=2.9e-08). The synovial tissues of the ankle joints of CIA rats showed high expressions of STAT1 and p-STAT1 with significant differential expression of STAT1 between the nucleus and the cytoplasm of the synovial fibroblasts. The protein expressions of p-STAT1 and STAT1 in the cell nuclei were significantly reduced after treatment. CONCLUSION: CD3G, CD8A, SYK, LCK, IL2RG, STAT1, CCR5, ITGB2, and ITGAL may serve as biomarkers for early diagnosis of RA. Gene-immune cell pathways such as CD3G/CD8A/LCK-γδ T cells, ITGAL-Tfh cells, and STAT1-M1-type macrophages may be closely related with the development of RA.


Asunto(s)
Artritis Reumatoide , Biomarcadores , Mapas de Interacción de Proteínas , Factor de Transcripción STAT1 , Membrana Sinovial , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Animales , Ratas , Factor de Transcripción STAT1/metabolismo , Biomarcadores/metabolismo , Membrana Sinovial/metabolismo , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Humanos , Antígenos CD8/metabolismo , Receptores CCR5/metabolismo , Receptores CCR5/genética , Quinasa Syk/metabolismo , Quinasa Syk/genética , Curva ROC
13.
Front Cell Infect Microbiol ; 14: 1415123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994006

RESUMEN

The high proportion of AIDS cases and mortality rates in Guangxi underscores the urgency to investigate the influence of HIV-1 genetic diversity on disease progression in this region. Newly diagnosed HIV-1 patients were enrolled from January 2016 to December 2021, and the follow-up work and detection of CD4+T lymphocytes were carried out every six months until December 2022. Multivariate logistic regression was used to analyze the factors affecting pre-treatment CD4+T lymphocyte counts, while local weighted regression models (LOESS) and generalized estimating equation models (GEE) were conducted to assess factors influencing CD4+T Lymphocyte Recovery. Cox regression analysis was utilized to examine the impact of subtypes on survival risk. Additionally, HIV-1 env sequences were utilized for predicting CXCR4 and CCR5 receptors. The study encompassed 1867 individuals with pol sequences and 281 with env sequences. Our findings indicate that age over 30, divorced/widowed, peasant, heterosexual infection, CRF01_AE, long-term infection, and Pre-treatment Viral load >10000 copies/ml were factors associated with higher risk for pre-treatment CD4+T lymphocyte decline. Specifically, male gender, age over 30, heterosexual infection (HETs), long-term infection, CRF01_AE, and Pre-treatment CD4 T cell counts below 350/µL were identified as risk factors impeding CD4+T lymphocyte recovery. Pre-treatment CD4+T lymphocyte counts and recovery in individuals infected with CRF01_AE were lower compared to CRF07_BC and CRF55_01B. Additionally, CRF01_AE and CRF08_BC subtypes exhibited higher mortality rates than CRF07_BC, CRF55_01B, and other subtypes. Notably, CRF01_AE demonstrated the highest percentage of CXCR4 affinity ratios. This research unveils the intricate influence of HIV-1 gene diversity on CD4+T lymphocyte dynamics and clinical outcomes. It highlights the multifaceted nature of HIV infection in Guangxi, providing novel insights into subtype-specific disease progression among HIV-infected individuals in this region.


Asunto(s)
Progresión de la Enfermedad , Variación Genética , Infecciones por VIH , VIH-1 , Carga Viral , Humanos , VIH-1/genética , Masculino , Femenino , Adulto , China/epidemiología , Infecciones por VIH/virología , Estudios Prospectivos , Recuento de Linfocito CD4 , Persona de Mediana Edad , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Adulto Joven , Linfocitos T CD4-Positivos/inmunología , Factores de Riesgo
14.
Front Cell Infect Microbiol ; 14: 1408245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006742

RESUMEN

While simian immunodeficiency virus (SIV) infection is non-pathogenic in naturally infected African nonhuman primate hosts, experimental or accidental infection in rhesus macaques often leads to AIDS. Baboons, widely distributed throughout Africa, do not naturally harbor SIV, and experimental infection of baboons with SIVmac results in transient low-level viral replication. Elucidation of mechanisms of natural immunity in baboons could uncover new targets of antiviral intervention. We tested the hypothesis that an SIVmac adapted to replicate in baboon primary cells will gain the capacity to establish chronic infections in vivo. Here, we generated SIVmac variants in baboon cells through serial passage in PBMC from different donors (SIVbn-PBMC s1), in PBMC from the same donors (SIVbn-PBMC s2), or in isolated CD4 cells from the same donors used for series 2 (SIVbn-CD4). While SIVbn-PBMC s1 and SIVbn-CD4 demonstrated increased replication capacity, SIVbn-PBMC s2 did not. Pharmacological blockade of CCR5 revealed SIVbn-PBMC s1 could more efficiently use available CCR5 than SIVmac, a trait we hypothesize arose to circumvent receptor occupation by chemokines. Sequencing analysis showed that all three viruses accumulated different types of mutations, and that more non-synonymous mutations became fixed in SIVbn-PBMC s1 than SIVbn-PBMC s2 and SIVbn-CD4, supporting the notion of stronger fitness pressure in PBMC from different genetic backgrounds. Testing the individual contribution of several newly fixed SIV mutations suggested that is the additive effect of these mutations in SIVbn-PBMC s1 that contributed to its enhanced fitness, as recombinant single mutant viruses showed no difference in replication capacity over the parental SIVmac239 strain. The replicative capacity of SIVbn-PBMC passage 4 (P4) s1 was tested in vivo by infecting baboons intravenously with SIVbn-PBMC P4 s1 or SIVmac251. While animals infected with SIVmac251 showed the known pattern of transient low-level viremia, animals infected with SIVbn-PBMC P4 s1 had undetectable viremia or viral DNA in lymphoid tissue. These studies suggest that adaptation of SIV to grow in baboon primary cells results in mutations that confer increased replicative capacity in the artificial environment of cell culture but make the virus unable to avoid the restrictive factors generated by a complex multicellular organism.


Asunto(s)
Papio , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Replicación Viral , Animales , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Leucocitos Mononucleares/virología , Leucocitos Mononucleares/inmunología , Receptores CCR5/metabolismo , Receptores CCR5/genética , Linfocitos T CD4-Positivos/virología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Pase Seriado
15.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000519

RESUMEN

The aim of the present study was to investigate the impact of CCR5 Δ32 and CTLA-4 polymorphisms on the response to IFN-ß treatment in our cohort of MS patients from Croatia and Slovenia. Genomic DNA was obtained from 295 MS patients (230 female; 65 male) classified as responders (n = 173) and non-responders (n = 122) based on clinical criteria for treatment efficacy. Genotyping was performed via PCR/PCR-RFLP. No significant differences in the genotype/allele frequencies of CCR5Δ32 and CTLA-4 +49 A/G were detected between male responders and non-responders. A significantly higher prevalence (p = 0.039) of the CTLA-4 +49 AA genotype was found in female responders (42.1%) compared to non-responders (28.9%). Using multiple forward regression analysis, the CTLA-4 +49 AA genotype significantly predicted a positive response to IFN-ß therapy in females (p = 0.011) and contributed to 4.5% of response variability. Furthermore, the combined presence of the CCR5Δ32 wtwt/CTLA-4 +49 AA genotype significantly predicted a positive response to treatment in females (p = 0.025). The age at disease onset, pretreatment relapse rate, and baseline EDSS score were not reliable predictors of treatment response in MS patients. Our results indicate that the presence of the CCR5Δ32 polymorphism was not associated with the response to IFN-ß treatment, whereas the CTLA-4 +49 polymorphism showed a positive correlation with an optimal response in female patients.


Asunto(s)
Antígeno CTLA-4 , Frecuencia de los Genes , Interferón beta , Esclerosis Múltiple , Polimorfismo de Nucleótido Simple , Receptores CCR5 , Humanos , Femenino , Masculino , Antígeno CTLA-4/genética , Receptores CCR5/genética , Interferón beta/uso terapéutico , Eslovenia , Adulto , Croacia , Esclerosis Múltiple/genética , Esclerosis Múltiple/tratamiento farmacológico , Persona de Mediana Edad , Genotipo , Resultado del Tratamiento
16.
J Reprod Immunol ; 164: 104261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865895

RESUMEN

Infertility affects 15 % of couples in the US, and many turn to assisted reproductive technologies, including in vitro fertilization and subsequent frozen embryo transfer (FET) to become pregnant. This study aimed to perform a broad assessment of the maternal immune system to determine if there are systemic differences on the day of FET in cycles that result in a live birth compared to those that do not. Women undergoing FET of euploid embryos were recruited and blood was collected on the day of FET as well as at early timepoints in pregnancy. Sixty immune and angiogenic proteins were measured in plasma, and gene expression of 92 immune-response related genes were evaluated in peripheral blood mononuclear cells (PBMCs). We found plasma concentrations of interleukin-13 (IL-13) and macrophage derived chemokine (MDC) were significantly lower on the day of FET in cycles that resulted in a live birth. We also found genes encoding C-C chemokine receptor type 5 (CCR5), CD8 subunit alpha (CD8A) and SMAD family member 3 (SMAD3) were upregulated in PBMCs on the day of FET in cycles that resulted in live birth. Measurements of immune mediators from maternal blood could serve as prognostic markers during FET to guide clinical decision making and further our understanding of implantation failure.


Asunto(s)
Criopreservación , Transferencia de Embrión , Fertilización In Vitro , Humanos , Femenino , Embarazo , Transferencia de Embrión/métodos , Adulto , Fertilización In Vitro/métodos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Interleucina-13/metabolismo , Interleucina-13/sangre , Proteína smad3/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Implantación del Embrión/inmunología , Nacimiento Vivo
17.
Monoclon Antib Immunodiagn Immunother ; 43(4): 96-100, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38836505

RESUMEN

C-C chemokine receptor 5 (CCR5), a member of the G protein-coupled receptor family, is the most common coreceptor for the human immunodeficiency virus type 1. CCR5 is also involved in the pathogenesis of tumors and inflammatory diseases. The CCR5 antagonists including monoclonal antibodies (mAbs) have been developed and evaluated in clinical trials. In this study, we developed novel mAbs for mouse CCR5 (mCCR5) using the Cell-Based Immunization and Screening (CBIS) method. One of the established anti-mCCR5 mAbs, C5Mab-2 (rat IgG2b, kappa), reacted with mCCR5-overexpressed Chinese hamster ovary-K1 (CHO/mCCR5) and an endogenously mCCR5-expressing cell line (L1210) by flow cytometry. Using flow cytometry, the dissociation constant (KD) of C5Mab-2 for CHO/mCCR5 was determined as 4.3 × 10-8 M. These results indicated that C5Mab-2 is useful for the detection of mCCR5 in flow cytometry and may be applicable to obtain the proof of concept in preclinical studies.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Citometría de Flujo , Receptores CCR5 , Animales , Receptores CCR5/inmunología , Células CHO , Ratones , Anticuerpos Monoclonales/inmunología , Cricetinae , Humanos
18.
Monoclon Antib Immunodiagn Immunother ; 43(4): 112-118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38868984

RESUMEN

One of the G protein-coupled receptors, C-C chemokine receptor 5 (CCR5), is an important regulator for the activation of T and B lymphocytes, dendritic cells, natural killer cells, and macrophages. Upon binding to its ligands, CCR5 activates downstream signaling, which is an important regulator in the innate and adaptive immune response through the promotion of lymphocyte migration and the secretion of proinflammatory cytokines. Anti-CCR5 monoclonal antibodies (mAbs) have been developed and evaluated in clinical trials for tumors and inflammatory diseases. In this study, we developed novel mAbs for mouse CCR5 (mCCR5) using the N-terminal peptide immunization. Among the established anti-mCCR5 mAbs, C5Mab-4 (rat IgG2a, kappa) and C5Mab-8 (rat IgG1, kappa), recognized mCCR5-overexpressing Chinese hamster ovary-K1 (CHO/mCCR5) and an endogenously mCCR5-expressing cell line (L1210) by flow cytometry. The dissociation constant (KD) values of C5Mab-4 and C5Mab-8 for CHO/mCCR5 were determined as 3.5 × 10-8 M and 7.3 × 10-9 M, respectively. Furthermore, both C5Mab-4 and C5Mab-8 could detect mCCR5 by western blotting. These results indicated that C5Mab-4 and C5Mab-8 are useful for detecting mCCR5 by flow cytometry and western blotting and provide a possibility to obtain the proof of concept in preclinical studies.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Inmunización , Receptores CCR5 , Animales , Receptores CCR5/inmunología , Células CHO , Ratones , Anticuerpos Monoclonales/inmunología , Péptidos/inmunología , Humanos , Cricetinae , Ratas
19.
Int J Immunopathol Pharmacol ; 38: 3946320241265265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889772

RESUMEN

Introduction: Exceedingly high levels of the chemokine CCL5/RANTES have been found in fatty degenerated osteonecrotic alveolar bone cavities (FDOJ) and aseptic ischemic osteolysis of the jaw (AIOJ) from toothless regions. Because CCL5/RANTES seems to have a prominent role in creating the COVID-19 "cytokine storm", some researchers have used the monoclonal antibody Leronlimab to block the CCR5 on inflammatory cells.Objective: Is preexisting FDOJ/AIOJ jaw marrow pathology a "hidden" co-morbidity affecting some COVID-19 infections? To what extent does the chronic CCL5/RANTES expression from preexisting FDOJ/AIOJ areas contribute to the progression of the acute cytokine storm in COVID-19 patients?Methods: Authors report on reducing the COVID-19 "cytokine storm" by treating infected patients through targeting the chemokine receptor 5 (CCR5) with Leronlimab and interrupting the activation of CCR5 by high CCL5/RANTES signaling, thus dysregulating the inflammatory phase of the viremia. Surgical removal of FDOJ/AIOJ lesions with high CCL5/RANTES from patients with inflammatory diseases may be classified as a co-morbid disease.Results: Both multiplex analysis of 249 FDOJ/AIOJ bone tissue samples as well as serum levels of CCL5/RANTES displayed exceedingly high levels in both specimens.Discussion: By the results the authors hypothesize that chronic CCL5/RANTES induction from FDOJ/AIOJ areas may sensitize CCR5 throughout the immune system, thus, enabling it to amplify its response when confronted with the virus. As conventional intraoral radiography does little to assess the quality of the alveolar bone, ultrasonography units are available to help dentists locate the FDOJ/AIOJ lesions in an office setting.Conclusion: The authors propose a new approach to containment of the COVID-19 cytokine storm by a prophylactic focus for future viral-related pandemics, which may be early surgical clean-up of CCL5/RANTES expression sources in the FDOJ/AIOJ areas, thus diminishing a possible pre-sensitization of CCR5. A more complete dental examination includes trans-alveolar ultrasono-graphy (TAU) for hidden FDOJ/AIOJ lesions.


Asunto(s)
COVID-19 , Quimiocina CCL5 , Humanos , COVID-19/inmunología , COVID-19/epidemiología , Comorbilidad , Masculino , Femenino , Persona de Mediana Edad , Receptores CCR5/metabolismo , Anciano , Enfermedades Maxilomandibulares/epidemiología , Enfermedades Maxilomandibulares/inmunología , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Anticuerpos Monoclonales Humanizados/uso terapéutico , Adulto
20.
Adv Sci (Weinh) ; 11(29): e2400611, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38873823

RESUMEN

Immunosuppression is a major hallmark of tumor progression in non-small cell lung cancer (NSCLC). Cluster of differentiation 147 (CD147), an important pro-tumorigenic factor, is closely linked to NSCLC immunosuppression. However, the role of CD147 di-methylation in the immunosuppressive tumor microenvironment (TME) remains unclear. Here, di-methylation of CD147 at Lys148 (CD147-K148me2) is identified as a common post-translational modification (PTM) in NSCLC that is significantly associated with unsatisfying survival outcomes among NSCLC sufferers, especially those in the advanced stages of the disease. The methyltransferase NSD2 catalyzes CD147 to generate CD147-K148me2. Further analysis demonstrates that CD147-K148me2 reestablishes the immunosuppressive TME and promotes NSCLC progression. Mechanistically, this modification promotes the interaction between cyclophilin A (CyPA) and CD147, and in turn, increases CCL5 gene transcription by activating p38-ZBTB32 signaling, leading to increased NSCLC cell-derived CCL5 secretion. Subsequently, CD147-K148me2-mediated CCL5 upregulation facilitates M2-like tumor-associated macrophage (TAM) infiltration in NSCLC tissues via CCL5/CCR5 axis-dependent intercellular crosstalk between tumor cells and macrophages, which is inhibited by blocking CD147-K148me2 with the targeted antibody 12C8. Overall, this study reveals the role of CD147-K148me2-driven intercellular crosstalk in the development of NSCLC immunosuppression, and provides a potential interventional strategy for PTM-targeted NSCLC therapy.


Asunto(s)
Basigina , Carcinoma de Pulmón de Células no Pequeñas , Quimiocina CCL5 , Neoplasias Pulmonares , Receptores CCR5 , Microambiente Tumoral , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Basigina/metabolismo , Basigina/genética , Ratones , Animales , Receptores CCR5/metabolismo , Receptores CCR5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Microambiente Tumoral/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Línea Celular Tumoral , Terapia de Inmunosupresión , Modelos Animales de Enfermedad , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA