Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.502
Filtrar
1.
Sci Rep ; 14(1): 15878, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982113

RESUMEN

Apoptosis inhibitor of macrophage (AIM) is known to induce apoptosis resistance in macrophages and to exacerbate chronic inflammation, leading to arteriosclerosis. The role of AIM in aortic aneurysm (AA) remains unknown. This study examined the effects of an anti-AIM antibody in preventing AA formation and progression. In apolipoprotein E-deficient mice, AA was induced by subcutaneous angiotensin II infusion. Mice were randomly divided into two groups: (i) AIM group; weekly anti-murine AIM monoclonal antibody injection (n = 10), and (ii) IgG group; anti-murine IgG antibody injection as control (n = 14). The AIM group, compared with the IgG group, exhibited reduced AA enlargement (aortic diameter at 4 weeks: 2.1 vs. 2.7 mm, respectively, p = 0.012); decreased loss of elastic lamellae construction; reduced expression levels of IL-6, TNF-α, and MCP-1; decreased numbers of AIM-positive cells and inflammatory M1 macrophages (AIM: 1.4 vs. 8.0%, respectively, p = 0.004; M1 macrophages: 24.5 vs. 55.7%, respectively, p = 0.017); and higher expression of caspase-3 in the aortic wall (22.8 vs. 10.5%, respectively, p = 0.019). Our results suggest that administration of an anti-AIM antibody mitigated AA progression by alleviating inflammation and promoting M1 macrophage apoptosis.


Asunto(s)
Aneurisma de la Aorta , Apoptosis , Progresión de la Enfermedad , Macrófagos , Animales , Ratones , Aneurisma de la Aorta/prevención & control , Aneurisma de la Aorta/patología , Aneurisma de la Aorta/tratamiento farmacológico , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/administración & dosificación , Aorta/patología , Aorta/metabolismo , Aorta/efectos de los fármacos , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Reguladoras de la Apoptosis , Receptores Depuradores
2.
Semin Arthritis Rheum ; 67: 152483, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843569

RESUMEN

OBJECTIVES: Rapidly progressive interstitial lung disease (RPILD) in patients with dermatomyositis (DM) significantly impacts prognosis, leading to high mortality rates. Although several indicators have been demonstrated to strongly correlate with the risk of developing RPILD, their clinical utility still needs to be investigated. The objective of this study was to investigate the clinical significance of soluble CXCL16 (sCXCL16) in DM patients complicated with RPILD. METHODS: Serum sCXCL16 was measured by enzyme-linked immunosorbent assay in 96 patients with DM and 55 matching healthy donors. Correlations between sCXCL16 levels and clinical features, laboratory examinations and the predictive value of baseline sCXCL16 level for RPILD were analysed. RESULTS: The serum sCXCL16 levels were significantly higher in patients with DM (n = 96, 3.264 ± 1.516 ng/mL) compared with healthy donors (n = 55, 1.781 ± 0.318 ng/mL), especially in DM complicated with RPILD (n = 31, 4.441 ± 1.706 ng/mL). The sCXCL16 levels were positively correlated with levels of serum ferritin, C reactive protein, erythrocyte sedimentation rate, lactate dehydrogenase, hydroxybutyrate dehydrogenase, and negatively correlated with peripheral lymphocytes percentage, but showed no correlation with levels of anti-melanoma differentiation-associated gene 5 antibody, Krebs von den Lungen-6 or creatine kinase. Multivariable analysis showed that elevated sCXCL16 was an independent prognostic factor for poor prognosis of RPILD in patients with DM. The 2-year survival rate was significantly lower in patients with high sCXCL16 level than in those with low sCXCL16 level. CONCLUSION: A higher serum sCXCL16 level was identified as a predictive biomarker of RPILD in patients with DM, and closely associated with poor prognosis.


Asunto(s)
Biomarcadores , Quimiocina CXCL16 , Dermatomiositis , Progresión de la Enfermedad , Enfermedades Pulmonares Intersticiales , Humanos , Dermatomiositis/sangre , Dermatomiositis/complicaciones , Enfermedades Pulmonares Intersticiales/sangre , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Pronóstico , Quimiocina CXCL16/sangre , Adulto , Anciano , Receptores Depuradores/sangre
3.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928321

RESUMEN

Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Proteínas de Membrana de los Lisosomas , Receptores Depuradores , Saposinas , Glucosilceramidasa/genética , Glucosilceramidasa/deficiencia , Glucosilceramidasa/metabolismo , Humanos , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Saposinas/deficiencia , Saposinas/genética , Saposinas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Fibroblastos/metabolismo , Mutación , Lisosomas/metabolismo , Lisosomas/enzimología , Hexosaminidasas/metabolismo , Hexosaminidasas/genética , Hexosaminidasas/deficiencia , Masculino , Femenino
4.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713014

RESUMEN

Lipid distribution in an organism is mediated by the interplay between lipoprotein particles, lipoprotein receptors and class B scavenger receptors of the CD36 family. CD36 is a multifunctional protein mediating lipid uptake, mobilization and signaling at the plasma membrane and inside of the cell. The CD36 protein family has 14 members in Drosophila melanogaster, which allows for the differentiated analysis of their functions. Here, we unravel a role for the so far uncharacterized scavenger receptor Bez in lipid export from Drosophila adipocytes. Bez shares the lipid binding residue with CD36 and is expressed at the plasma membrane of the embryonic, larval and adult fat body. Bez loss of function lowers the organismal availability of storage lipids and blocks the maturation of egg chambers in ovaries. We demonstrate that Bez interacts with the APOB homolog Lipophorin at the plasma membrane of adipocytes and trace the Bez-dependent transfer of an alkyne-labeled fatty acid from adipocytes to Lipophorin. Our study demonstrates how lipids are distributed by scavenger receptor-lipoprotein interplay and contribute to the metabolic control of development.


Asunto(s)
Antígenos CD36 , Proteínas de Drosophila , Drosophila melanogaster , Cuerpo Adiposo , Metabolismo de los Lípidos , Animales , Femenino , Adipocitos/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cuerpo Adiposo/metabolismo , Lipoproteínas/metabolismo , Ovario/metabolismo , Receptores Depuradores/metabolismo , Receptores Depuradores/genética
5.
Adv Sci (Weinh) ; 11(25): e2401641, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38666485

RESUMEN

Genetic variants of GBA1 can cause the lysosomal storage disorder Gaucher disease and are among the highest genetic risk factors for Parkinson's disease (PD). GBA1 encodes the lysosomal enzyme beta-glucocerebrosidase (GCase), which orchestrates the degradation of glucosylceramide (GluCer) in the lysosome. Recent studies have shown that GluCer accelerates α-synuclein aggregation, exposing GCase deficiency as a major risk factor in PD pathology and as a promising target for treatment. This study investigates the interaction of GCase and three disease-associated variants (p.E326K, p.N370S, p.L444P) with their transporter, the lysosomal integral membrane protein 2 (LIMP-2). Overexpression of LIMP-2 in HEK 293T cells boosts lysosomal abundance of wt, E326K, and N370S GCase and increases/rescues enzymatic activity of the wt and E326K variant. Using a novel purification approach, co-purification of untagged wt, E326K, and N370S GCase in complex with His-tagged LIMP-2 from cell supernatant of HEK 293F cells is achieved, confirming functional binding and trafficking for these variants. Furthermore, a single helix in the LIMP-2 ectodomain is exploited to design a lysosome-targeted peptide that enhances lysosomal GCase activity in PD patient-derived and control fibroblasts. These findings reveal LIMP-2 as an allosteric activator of GCase, suggesting a possible therapeutic potential of targeting this interaction.


Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Enfermedad de Parkinson , Humanos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Células HEK293 , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo
6.
J Mol Neurosci ; 74(2): 37, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568322

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-ß (TGF-ß) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Encéfalo , Lóbulo Temporal , Lóbulo Frontal , Corteza Entorrinal , Enfermedades de Inicio Tardío , Colectinas , Receptores Depuradores , Carboxipeptidasas , Proteínas Represoras
7.
Parasite Immunol ; 46(4): e13034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38625016

RESUMEN

Scavenger receptors participate in a wide range of biological functions after binding to multiple non-self or altered self-ligands. Among them, CD5 and CD6 are lymphocyte scavenger receptors known to interact with different microbial-associated molecular patterns, and the administration of the recombinant soluble ectodomains of human CD5 (rshCD5) and/or CD6 (rshCD6) has shown therapeutic/prophylactic potential in experimental models of fungal, bacterial and echinococcal infections. The latter is a zoonosis caused by the larval stage of the cestode parasite Echinococcus granulosus sensu lato, which in humans can induce secondary cystic echinococcosis (CE) after the spillage of protoscoleces contained within fertile cysts, either spontaneously or during surgical removal of primary hydatid cysts. Herein, we have analysed the mechanisms behind the significant protection observed in the mouse model of secondary CE following prophylactic administration of rshCD5 or rshCD6. Our results show that both molecules exhibit intrinsic antiparasitic activities in vitro, as well as immunomodulatory functions during early secondary CE, mainly through Th1/Th17 cytokine bias and promotion of peritoneal polyreactive antibodies. These data support the relevance of the parasite components bound by rshCD5 and rshCD6, as well as the potential of their prophylactic administration as a useful strategy to reduce secondary CE in patients.


Asunto(s)
Antiinfecciosos , Equinococosis , Animales , Ratones , Humanos , Antiparasitarios , Zoonosis , Receptores Depuradores
8.
J Immunol ; 212(11): 1782-1790, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629901

RESUMEN

Enterovirus 71 (EV71) is a significant causative agent of hand, foot, and mouth disease, with potential serious neurologic complications or fatal outcomes. The lack of effective treatments for EV71 infection is attributed to its elusive pathogenicity. Our study reveals that human plasmacytoid dendritic cells (pDCs), the main type I IFN-producing cells, selectively express scavenger receptor class B, member 2 (SCARB2) and P-selectin glycoprotein ligand 1 (PSGL-1), crucial cellular receptors for EV71. Some strains of EV71 can replicate within pDCs and stimulate IFN-α production. The activation of pDCs by EV71 is hindered by Abs to PSGL-1 and soluble PSGL-1, whereas Abs to SCARB2 and soluble SCARB2 have a less pronounced effect. Our data suggest that only strains binding to PSGL-1, more commonly found in severe cases, can replicate in pDCs and induce IFN-α secretion, highlighting the importance of PSGL-1 in these processes. Furthermore, IFN-α secretion by pDCs can be triggered by EV71 or UV-inactivated EV71 virions, indicating that productive infection is not necessary for pDC activation. These findings provide new insights into the interaction between EV71 and pDCs, suggesting that pDC activation could potentially mitigate the severity of EV71-related diseases.


Asunto(s)
Células Dendríticas , Enterovirus Humano A , Interferón-alfa , Proteínas de Membrana de los Lisosomas , Glicoproteínas de Membrana , Células Dendríticas/inmunología , Células Dendríticas/virología , Humanos , Enterovirus Humano A/inmunología , Enterovirus Humano A/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/inmunología , Interferón-alfa/metabolismo , Interferón-alfa/inmunología , Receptores Depuradores/metabolismo , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/virología , Replicación Viral
9.
Autoimmunity ; 57(1): 2201412, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38425093

RESUMEN

OBJECTIVE: To explore the effect of CD5-like molecule (CD5L) on rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) and the relative molecular mechanism of CD5L in it. METHODS: Recombinant protein CD5L was used to stimulate the cultured RA-FLS cells. The inflammation-related cytokines were determined by real time-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The signal molecules and apoptosis-related molecules were detected by western blot assay (WB), and cell counting kit-8 (CCK-8) was used to detect the proliferation. RESULTS: CD5L can increase the production of IL-6, IL-8, and TNF-α and this effect can be inhibited by signal pathway inhibitor. At the same time, CD5L activated ERK1/2 MAPK signal, inhibitor treatment can weaken the intensity of phosphorylation. In addition, CD5L can enhance the proliferation ability of RA-FLS. CONCLUSION: CD5L induces the production of inflammatory cytokines in RA-FLS through the ERK1/2 MAPK pathway and increases cell survival.


Asunto(s)
Artritis Reumatoide , Membrana Sinovial , Humanos , Membrana Sinovial/metabolismo , Sistema de Señalización de MAP Quinasas , Artritis Reumatoide/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Proliferación Celular , Proteínas Reguladoras de la Apoptosis , Receptores Depuradores/metabolismo
10.
Methods Mol Biol ; 2789: 293-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507011

RESUMEN

Nanoparticles can be cleared from the circulation and taken up by tissue-resident macrophages. This property can be beneficial when drug or antigen delivery to macrophages is desired; however, rapid clearance of nanoparticles not intended for delivery to immune cells may reduce nanoparticle circulation time and affect the efficacy of nanoparticle-formulated drug products. Therefore, understanding nanoparticles' uptake by macrophages is an essential step in the preclinical development of nanotechnology-based drug products. Understanding the route of nanoparticle uptake by macrophages may also provide mechanistic insights into the immunotoxicity of nanomaterials. The protocol described herein can be used to assess the nanoparticles' uptake by macrophages and understand the involvement of scavenger receptor A1 to inform mechanistic studies.


Asunto(s)
Macrófagos , Nanopartículas , Animales , Ratones , Receptores Depuradores , Nanotecnología , Nanopartículas/toxicidad , Receptores Depuradores de Clase A
11.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338794

RESUMEN

Without general adaptative immunity, invertebrates evolved a vast number of heterogeneous non-self recognition strategies. One of those well-known adaptations is the expansion of the immune receptor gene superfamily coding for scavenger receptor cysteine-rich domain containing proteins (SRCR) in a few invertebrates. Here, we investigated the evolutionary history of the SRCR gene superfamily (SRCR-SF) across 29 metazoan species with an emphasis on invertebrates. We analyzed their domain architectures, genome locations and phylogenetic distribution. Our analysis shows extensive genome-wide duplications of the SRCR-SFs in Amphimedon queenslandica and Strongylocentrotus purpuratus. Further molecular evolution study reveals various patterns of conserved cysteines in the sponge and sea urchin SRCR-SFs, indicating independent and convergent evolution of SRCR-SF expansion during invertebrate evolution. In the case of the sponge SRCR-SFs, a novel motif with seven conserved cysteines was identified. Exon-intron structure analysis suggests the rapid evolution of SRCR-SFs during gene duplications in both the sponge and the sea urchin. Our findings across nine representative metazoans also underscore a heightened expression of SRCR-SFs in immune-related tissues, notably the digestive glands. This observation indicates the potential role of SRCR-SFs in reinforcing distinct immune functions in these invertebrates. Collectively, our results reveal that gene duplication, motif structure variation, and exon-intron divergence might lead to the convergent evolution of SRCR-SF expansions in the genomes of the sponge and sea urchin. Our study also suggests that the utilization of SRCR-SF receptor duplication may be a general and basal strategy to increase immune diversity and tissue specificity for the invertebrates.


Asunto(s)
Invertebrados , Receptores Inmunológicos , Animales , Receptores Depuradores/genética , Filogenia , Receptores Inmunológicos/genética , Invertebrados/genética , Erizos de Mar/genética , Evolución Molecular
12.
Fish Shellfish Immunol ; 147: 109433, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336143

RESUMEN

SRC gene encodes scavenger receptor class C, a member of the scavenger receptor family, and has only been identified and investigated in invertebrates. Our previous studies have revealed that SRC is a novel candidate gene associated with body weight in Pacific white shrimp (Litopenaeus vannamei). In order to comprehend the underlying mechanism by which LvSRC affects shrimp growth, we analyzed the structure, phylogeny, expression profiles and RNA interference (RNAi) of this gene in L. vannamei. We found that LvSRC contains two CCP domains and one MAM domain, with the highest expression level in the heart and relatively low expression level in other tissues. Notably, LvSRC exhibited significantly higher expression levels in the fast-growing group among groups with different growth rates, suggesting its potential involvement as a gene contributing to the growth of L. vannamei. RNAi of LvSRC inhibited body length and body weight gain compared to the control groups. Moreover, through RNA-seq analysis, we identified 598 differentially expressed genes (DEGs), including genes associated with growth, immunity, protein processing and modification, signal transduction, lipid synthesis and metabolism. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant changes in the signaling pathways related to growth, lipid metabolism and immune response, suggesting that LvSRC exhibits the potential to participate in diverse physiological processes and immune regulation. These findings deepen our understanding of the structure and function of the SRC in shrimp and lay the foundation for further research into the regulatory mechanism of LvSRC. Additionally, they provide potential applications in shrimp genetics and breeding.


Asunto(s)
Genes src , Penaeidae , Animales , Transducción de Señal , Perfilación de la Expresión Génica , Peso Corporal , Receptores Depuradores/genética
13.
Cell Commun Signal ; 22(1): 97, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308264

RESUMEN

BACKGROUND: Sepsis is a severe systemic inflammatory disorder manifested by a dysregulated immune response to infection and multi-organ failure. Numerous studies have shown that elevated ferritin levels exist as an essential feature during sepsis and are able to suggest patients' prognoses. At the same time, the specific mechanism of ferritin-induced inflammatory injury remains unclear. METHODS: Hyper-ferritin state during inflammation was performed by injecting ferritin into a mouse model and demonstrated that injection of ferritin could induce a systemic inflammatory response and increase neutrophil extracellular trap (NET) formation.Padi4-/-, Elane-/- and Cybb-/- mice were used for the NETs formation experiment. Western blot, immunofluorescence, ELISA, and flow cytometry examined the changes in NETs, inflammation, and related signaling pathways. RESULTS: Ferritin induces NET formation in a peptidylarginine deiminase 4 (PAD4), neutrophil elastase (NE), and reactive oxygen species (ROS)-dependent manner, thereby exacerbating the inflammatory response. Mechanistically, ferritin induces the expression of neutrophil macrophage scavenger receptor (MSR), which promotes the formation of NETs. Clinically, high levels of ferritin in patients with severe sepsis correlate with NETs-mediated cytokines storm and are proportional to the severity of sepsis-induced lung injury. CONCLUSIONS: In conclusion, we demonstrated that hyper-ferritin can induce systemic inflammation and increase NET formation in an MSR-dependent manner. This process relies on PAD4, NE, and ROS, further aggravating acute lung injury. In the clinic, high serum ferritin levels are associated with elevated NETs and worse lung injury, which suggests a poor prognosis for patients with sepsis. Our study indicated that targeting NETs or MSR could be a potential treatment to alleviate lung damage and systemic inflammation during sepsis. Video Abstract.


Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Sepsis , Humanos , Ratones , Animales , Trampas Extracelulares/metabolismo , Síndrome de Liberación de Citoquinas , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Inflamación/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Lesión Pulmonar Aguda/metabolismo , Receptores Depuradores/metabolismo
14.
Nat Commun ; 15(1): 1663, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396109

RESUMEN

Targeted degradation of proteins has emerged as a powerful method for modulating protein homeostasis. Identification of suitable degraders is essential for achieving effective protein degradation. Here, we present a non-covalent degrader construction strategy, based on a modular supramolecular co-assembly system consisting of two self-assembling peptide ligands that bind cell membrane receptors and the protein of interest simultaneously, resulting in targeted protein degradation. The developed lysosome-targeting co-assemblies (LYTACAs) can induce lysosomal degradation of extracellular protein IL-17A and membrane protein PD-L1 in several scavenger receptor A-expressing cell lines. The IL-17A-degrading co-assembly has been applied in an imiquimod-induced psoriasis mouse model, where it decreases IL-17A levels in the skin lesion and alleviates psoriasis-like inflammation. Extending to asialoglycoprotein receptor-related protein degradation, LYTACAs have demonstrated the versatility and potential in streamlining degraders for extracellular and membrane proteins.


Asunto(s)
Psoriasis , Piel , Animales , Ratones , Piel/patología , Interleucina-17/metabolismo , Proteolisis , Psoriasis/metabolismo , Receptores Depuradores/metabolismo , Proteínas de la Membrana/metabolismo , Lisosomas/metabolismo , Modelos Animales de Enfermedad
15.
PLoS Pathog ; 20(2): e1012022, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38359079

RESUMEN

Enterovirus A71 (EV-A71) infection involves a variety of receptors. Among them, two transmembrane protein receptors have been investigated in detail and shown to be critical for infection: P-selectin glycoprotein ligand-1 (PSGL-1) in lymphocytes (Jurkat cells), and scavenger receptor class B member 2 (SCARB2) in rhabdomyosarcoma (RD) cells. PSGL-1 and SCARB2 have been reported to be expressed on the surface of Jurkat and RD cells, respectively. In the work reported here, we investigated the roles of PSGL-1 and SCARB2 in the process of EV-A71 entry. We first examined the expression of SCARB2 in Jurkat cells, and detected it within the cytoplasm, but not on the cell surface. Further, using PSGL-1 and SCARB2 knockout cells, we found that although both PSGL-1 and SCARB2 are essential for virus infection of Jurkat cells, virus attachment to these cells requires only PSGL-1. These results led us to evaluate the cell surface expression and the roles of SCARB2 in other EV-A71-susceptible cell lines. Surprisingly, in contrast to the results of previous studies, we found that SCARB2 is absent from the surface of RD cells and other susceptible cell lines we examined, and that although SCARB2 is essential for infection of these cells, it is dispensable for virus attachment. These results indicate that a receptor other than SCARB2 is responsible for virus attachment to the cell and probably for internalization of virions, not only in Jurkat cells but also in RD cells and other EV-A71-susceptible cells. SCARB2 is highly concentrated in lysosomes and late endosomes, where it is likely to trigger acid-dependent uncoating of virions, the critical final step of the entry process. Our results suggest that the essential interactions between EV-A71 and SCARB2 occur, not at the cell surface, but within the cell.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Membrana Celular/metabolismo , Línea Celular , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Proteínas de Membrana de los Lisosomas/genética
16.
J Investig Med ; 72(4): 370-382, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38264863

RESUMEN

Morinda officinalis polysaccharide (MOP) is the bioactive ingredient extracted from the root of Morinda officinalis, and Morinda officinalis is applied to treat osteoporosis (OP). The purpose of this study was to determine the role of MOP on human bone marrow mesenchymal stem cells (hBMSCs) and the underlying mechanism. HBMSCs were isolated from bone marrow samples of patients with OP and treated with MOP. Quantitative real-time polymerase chain reaction was adopted to quantify the expression of microRNA-210-3p (miR-210-3p) and scavenger receptor class A member 3 (SCARA3) mRNA. Cell Counting Kit-8 assay was employed to detect cell viability; Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling assay and flow cytometry were adopted to detect apoptosis; Alkaline Phosphatase (ALP) activity assay kit was applied to detect ALP activity; Western blot was executed to quantify the expression levels of SCARA3, osteogenic and adipogenic differentiation markers. Ovariectomized rats were treated with MOP. Bone mineral density (BMD), serum tartrate-resistant acid phosphatase 5b (TRACP 5b), and N-telopeptide of type I collagen (NTx) levels were assessed by BMD detector and Enzyme-linked immunosorbent assay kits. It was revealed that MOP could promote hBMSCs' viability and osteogenic differentiation and inhibit apoptosis and adipogenic differentiation. MOP could also upregulate SCARA3 expression through repressing miR-210-3p expression. Treatment with MOP increased the BMD and decreased the TRACP 5b and NTx levels in ovariectomized rats. MOP may boost the osteogenic differentiation and inhibit adipogenic differentiation of hBMSCs by miR-210-3p/SCARA3 axis.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Morinda , Osteoporosis , Polisacáridos , Animales , Humanos , Ratas , Médula Ósea/metabolismo , Células Cultivadas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Morinda/química , Morinda/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteoporosis/tratamiento farmacológico , Receptores Depuradores/metabolismo , Fosfatasa Ácida Tartratorresistente/metabolismo , Polisacáridos/farmacología , Receptores Depuradores de Clase A/efectos de los fármacos , Receptores Depuradores de Clase A/metabolismo
17.
Nat Commun ; 15(1): 621, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245530

RESUMEN

Intratumoral immune status influences tumor therapeutic response, but it remains largely unclear how the status determines therapies for patients with intrahepatic cholangiocarcinoma. Here, we examine the single-cell transcriptional and TCR profiles of 18 tumor tissues pre- and post- therapy of gemcitabine plus oxaliplatin, in combination with lenvatinib and anti-PD1 antibody for intrahepatic cholangiocarcinoma. We find that high CD8 GZMB+ and CD8 proliferating proportions and a low Macro CD5L+ proportion predict good response to the therapy. In patients with a poor response, the CD8 GZMB+ and CD8 proliferating proportions are increased, but the CD8 GZMK+ proportion is decreased after the therapy. Transition of CD8 proliferating and CD8 GZMB+ to CD8 GZMK+ facilitates good response to the therapy, while Macro CD5L+-CD8 GZMB+ crosstalk impairs the response by increasing CTLA4 in CD8 GZMB+. Anti-CTLA4 antibody reverses resistance of the therapy in intrahepatic cholangiocarcinoma. Our data provide a resource for predicting response of the combination therapy and highlight the importance of CD8+T-cell status conversion and exhaustion induced by Macro CD5L+ in influencing the response, suggesting future avenues for cancer treatment optimization.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Compuestos de Fenilurea , Quinolinas , Humanos , Oxaliplatino/uso terapéutico , Gemcitabina , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Linfocitos T CD8-positivos , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Proteínas Reguladoras de la Apoptosis , Receptores Depuradores
18.
Int J Biol Macromol ; 260(Pt 2): 129387, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253150

RESUMEN

Carotenoid based body coloration are common features in fish, which depends on the diet derived carotenoids pigments deposition, employing a bunch of carotenoid uptake, absorption and processing related genes. Scavenger receptors are a large family of cell surface receptors with complex structure and diverse functions. However, the SRs genes have been insufficiently explored concerning their role in fish carotenoid coloration. Here, we systemically identified 19 SRs family genes and investigated their expression patterns of in various tissues of P. leopardus. Expression analysis unveiled the diverse involvements of SRs in the intestine of P. leopardus with different body colors and the responses to exogenous carotenoids. Notably, cd36, emerged as a pivotal factor in intestinal functions predominantly localized in the intestinal epithelial and goblet cells. Knockdown of cd36 led to the reduction in skin brightness and carotenoid levels in both intestine and skin, while overexpressing cd36 increased the carotenoids uptake of cells in vitro. Additionally, our investigations revealed that cd36 exerts regulation on genes associated with carotenoid uptake, transport, and processing. To sum up, our results provide a comprehensive view on SRs functions in carotenoid coloration of P. leopardus and will facilitate the understanding on the mechanism of carotenoids coloration of vertebrates.


Asunto(s)
Lubina , Animales , Carotenoides/análisis , Intestinos/química , Receptores Depuradores , Pigmentación
19.
Cell Mol Life Sci ; 81(1): 62, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280036

RESUMEN

Endothelial injury and dysfunction in the artery wall fuel the process of atherosclerosis. As a key epigenetic regulator, Ash2l (Absent, small, or homeotic-Like 2) is involved in regulating vascular injury and its complications. However, the role of Ash2l in atherosclerosis has not yet been fully elucidated. Here, we found increased Ash2l expression in high-cholesterol diet-fed ApoE-/- mice and oxidized LDL (oxLDL) treated endothelial cells (ECs). Furthermore, Ash2l promoted the scavenger receptors transcription by catalyzing histone H3 lysine 4 (H3K4) trimethylation at the promoter region of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) and triggered the activation of the pro-inflammatory nuclear factor-kappa B (NF-κB) by enhancing interaction between CD36 and toll-like receptor 4 (TLR4). Meanwhile, enhanced expression of scavenger receptors drove more oxLDL uptake by ECs. In vivo studies revealed that ECs-specific Ash2l knockdown reduced atherosclerotic lesion formation and promoted fibrous cap stability in the aorta of ApoE-/- mice, which was partly associated with a reduced endothelial activation by suppressing scavenger receptors and the uptake of lipids by ECs. Collectively, our findings identify Ash2l as a novel regulator that mediates endothelial injury and atherosclerosis. Targeting Ash2l may provide valuable insights for developing novel therapeutic candidates for atherosclerosis.


Asunto(s)
Aterosclerosis , Células Endoteliales , Ratones , Animales , Células Endoteliales/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Aterosclerosis/metabolismo , FN-kappa B/metabolismo , Receptores Depuradores/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA