RESUMEN
Tropane-containing small molecules like scopolamine are a promising class of psychoplastogens. However, their potent antagonism of all muscarinic receptor subtypes presents the potential for undesirable anticholinergic side effects. In an effort to decouple their neuroplasticity-promoting effects from their muscarinic activity, we performed phenotypic structure-activity relationship studies across a variety of structurally distinct subclasses of tropanes. We discovered several novel tropanes capable of significantly increasing cortical neuronal growth while exhibiting drastically reduced activity at all muscarinic receptor subtypes compared to scopolamine.
Asunto(s)
Receptores Muscarínicos , Tropanos , Animales , Relación Estructura-Actividad , Tropanos/química , Tropanos/farmacología , Tropanos/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/química , Escopolamina/farmacología , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/química , Humanos , Ratones , Ratas , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismoRESUMEN
A new series of muscarinic acetylcholine receptor (mAChR) ligands obtained by inserting different substituents in position 2 of the potent 6,6-diphenyl-1,4-dioxane antagonists 4 and 5 was designed and synthesized to investigate the influence of steric bulk on the mAChR affinity. Specifically, the insertion of a 2-methyl group, affording compounds 6 and 9, resulted as the most favorable modification in terms of affinity for all muscarinic subtypes. As supported by computational studies performed on the hM1 receptor, this substituent may contribute to stabilize the ligand within the binding site by favoring the formation of stable interactions between the cationic head of the ligand and the residue D105. The increase of steric bulk, obtained by replacing the methyl group with an ethyl (7 and 10) and especially a phenyl substituent (8 and 11), caused a marked decrease of mAChR affinity, demonstrating the crucial role played by the steric bulk of the 2-substituent in the mAChR interaction. The most intriguing result was obtained with the tertiary amine 9, which, surprisingly, showed two different pKi values for all mAChRs, with preferential subpicomolar affinities for the M1, M3, and M4 subtypes. Interestingly, biphasic curves were also observed with both the eutomer (S)-(-)-9 and the distomer (R)-( + )-9.
Asunto(s)
Dioxanos , Receptores Muscarínicos , Ligandos , Dioxanos/química , Dioxanos/farmacología , Dioxanos/síntesis química , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/química , Relación Estructura-Actividad , Animales , Estructura Molecular , Antagonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/síntesis química , Humanos , Sitios de Unión , Células CHO , Cricetulus , Relación Dosis-Respuesta a DrogaRESUMEN
Muscarinic acetylcholine receptor M3 (M3) and its downstream effector Gq/11 are critical drug development targets due to their involvement in physiopathological processes. Although the structure of the M3-miniGq complex was recently published, the lack of information on the intracellular loop 3 (ICL3) of M3 and extensive modification of Gαq impedes the elucidation of the molecular mechanism of M3-Gq coupling under more physiological condition. Here, we describe the molecular mechanism underlying the dynamic interactions between full-length wild-type M3 and Gq using hydrogen-deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cell systems. We propose a detailed analysis of M3-Gq coupling through examination of previously well-defined binding interfaces and neglected regions. Our findings suggest potential binding interfaces between M3 and Gq in pre-assembled and functionally active complexes. Furthermore, M3 ICL3 negatively affected M3-Gq coupling, and the Gαq AHD underwent unique conformational changes during M3-Gq coupling.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Receptores Muscarínicos , Receptores Muscarínicos/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/químicaRESUMEN
Background: The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; <EDGPIPP) from Bothrops jararaca snake, on oxidative stress-induced toxicity in neuronal PC12 cells and astrocyte-like C6 cells. Methods: Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results: PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions: For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.(AU)
Asunto(s)
Oligopéptidos/efectos adversos , Receptores Muscarínicos/química , Venenos de Crotálidos/síntesis química , Prolina , Estrés OxidativoRESUMEN
A drug's selectivity for target receptors is essential to its therapeutic utility, but achieving selectivity between similar receptors is challenging. The serendipitous discovery of ligands that stimulate target receptors more strongly than closely related receptors, despite binding with similar affinities, suggests a solution. The molecular mechanism of such 'efficacy-driven selectivity' has remained unclear, however, hindering design of such ligands. Here, using atomic-level simulations, we reveal the structural basis for the efficacy-driven selectivity of a long-studied clinical drug candidate, xanomeline, between closely related muscarinic acetylcholine receptors (mAChRs). Xanomeline's binding mode is similar across mAChRs in their inactive states but differs between mAChRs in their active states, with divergent effects on active-state stability. We validate this mechanism experimentally and use it to design ligands with altered efficacy-driven selectivity. Our results suggest strategies for the rational design of ligands that achieve efficacy-driven selectivity for many pharmaceutically important G-protein-coupled receptors.
Asunto(s)
Receptores Muscarínicos , Tiadiazoles , Ligandos , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Piridinas , Tiadiazoles/química , Receptores Acoplados a Proteínas G/químicaRESUMEN
Muscarinic acetylcholine receptors (mAChRs) which are G protein-coupled receptors play key roles in insect physiology. Whereas vertebrate mAChRs are important targets for pharmaceutical drugs, insect mAChRs are under-exploited by the agro-chemical industry. Moreover, insect mAChRs have been less well studied than their vertebrate counterparts. Their critical functions mean that a better knowledge of the insect mAChRs is crucial for the effort to develop a new molecular-level strategy for insect pest management. Almost all insects possess three mAChRs named A, B and C which differ according to their coupling effector systems and their pharmacological profile. The aim of this study was to characterize the A-type mAChR (mAChR-A) from Anopheles gambiae which is the major vector of malaria in order to develop new strategies in pest management. In this paper, we reported that mAChR-A is more expressed in adult mosquitoes than in larvae. Furthermore, using calcium imaging recordings, we found that the An. gambiae mAChR-A expressed in Sf9 cells is activated by specific muscarinic agonists acetylcholine, muscarine and oxotremorine M and blocked by several mAChR antagonists. Moreover, using inhibitors of phosphoinositide pathway such as Gαq/11 protein blocker, we have shown that an increased intracellular calcium concentration elicited by the acetylcholine application was mediated by PLC/IP3R pathway. As a rise in intracellular calcium concentration could lead to an increase in the insecticide target sensitivity, these results suggest that An. gambiae mAChR-A should not be only considered as a potential target for new molecules but also as a key element to optimize the efficacy of insecticide in vector control.
Asunto(s)
Anopheles , Insecticidas , Acetilcolina/metabolismo , Animales , Anopheles/genética , Anopheles/metabolismo , Calcio/metabolismo , Mosquitos Vectores , Receptores Muscarínicos/químicaRESUMEN
Context affects the salience and visibility of image elements in visual scenes. Collinear flankers can enhance or decrease the perceptual and neuronal sensitivity to flanked stimuli. These effects are mediated through lateral interactions between neurons in the primary visual cortex (area V1), in conjunction with feedback from higher visual areas. The strength of lateral interactions is affected by cholinergic neuromodulation. Blockade of muscarinic receptors should increase the strength of lateral intracortical interactions, while nicotinic blockade should reduce thalamocortical feed-forward drive. Here we test this proposal through local iontophoretic application of the muscarinic receptor antagonist scopolamine and the nicotinic receptor antagonist mecamylamine, while recording single cells in parafoveal representations in awake fixating macaque V1. Collinear flankers generally reduced neuronal contrast sensitivity. Muscarinic and nicotinic receptor blockade equally reduced neuronal contrast sensitivity. Contrary to our hypothesis, flanker interactions were not systematically affected by either receptor blockade.
Asunto(s)
Sensibilidad de Contraste/fisiología , Antagonistas Muscarínicos/farmacología , Neuronas/fisiología , Antagonistas Nicotínicos/farmacología , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Corteza Visual/fisiología , Animales , Sensibilidad de Contraste/efectos de los fármacos , Macaca mulatta , Masculino , Neuronas/efectos de los fármacos , Estimulación Luminosa , Receptores Muscarínicos/química , Receptores Nicotínicos/química , Corteza Visual/efectos de los fármacosRESUMEN
BACKGROUND: Protective effects of Ruscus extract on macromolecular permeability depend on its capacity to stimulate muscarinic receptors on endothelial cells and induce the release of endothelium derived relaxing factors (EDRFs). OBJECTIVE: To investigate if these effects depend only on activation of muscarinic receptors or if EDRFs release are also necessary. We have also investigated the participation of Ruscus extract on muscarinic-induced release of EDRFs on microvascular diameters. METHODS: Hamsters were treated daily during two weeks with Ruscus extract (50, 150 and 450âmg/kg/day) and then macromolecular permeability induced by histamine and arteriolar and venular diameters after cyclooxygenase (COX) and nitric oxide synthase (NOS) inhibitors: indomethacin and Nω-Nitro-L-arginine (LNA), respectively applied topically at 10-8M, 10-6M and 10-4M were observed on the cheek pouch preparation. RESULTS: Ruscus extract decreased macromolecular permeability in a dose-dependent fashion and did not affect microvascular diameters. NOS and COX inhibitors enhanced its effect on microvascular permeability. NOS inhibition reduced arteriolar diameter and COX blocking decreased arteriolar and venular diameters at the lowest dose and increased them at higher doses of Ruscus extract. CONCLUSION: The protective effect of Ruscus extract on macromolecular permeability seems to be mediated only via muscarinic receptors. Muscarinic activation attenuated vasoconstrictive tone through cyclooxygenase-independent endothelium derived relaxing factors.
Asunto(s)
Células Endoteliales/metabolismo , Factores Relajantes Endotelio-Dependientes/uso terapéutico , Extractos Vegetales/química , Receptores Muscarínicos/química , Ruscus/química , Animales , Factores Relajantes Endotelio-Dependientes/farmacología , Masculino , Mesocricetus , Óxido Nítrico/farmacologíaRESUMEN
Histamine receptors belonging to the superfamily of G protein-coupled receptors (GPCRs) mediate the diverse biological effects of biogenic histamine. They are classified into four phylogenetically distinct subtypes H1-H4, each with a different binding affinity for histamine and divergent downstream signaling pathways. Here we present the evolutionary history of the histamine receptors using a phylogenetic approach complemented with comparative genomics analyses of the sequences, gene structures, and synteny of gene neighborhoods. The data indicate the earliest emergence of histamine-mediated GPCR signaling by a H2 in a prebilaterian ancestor. The analyses support a revised classification of the vertebrate H3-H4 receptor subtypes. We demonstrate the presence of the H4 across vertebrates, contradicting the currently held notion that H4 is restricted to mammals. These non-mammalian vertebrate H4 orthologs have been mistaken for H3. We also identify the presence of a new H3 subtype (H3B), distinct from the canonical H3 (H3A), and propose that the H3A, H3B, and H4 likely emerged from a H3 progenitor through the 1R/2R whole genome duplications in an ancestor of the vertebrates. It is apparent that the ability of the H1, H2, and H3-4 to bind histamine was acquired convergently. We identified genomic signatures suggesting that the H1 and H3-H4 shared a last common ancestor with the muscarinic receptor in a bilaterian predecessor whereas, the H2 and the α-adrenoreceptor shared a progenitor in a prebilaterian ancestor. Furthermore, site-specific analysis of the vertebrate subtypes revealed potential residues that may account for the functional divergence between them.
Asunto(s)
Evolución Molecular , Receptores Histamínicos H3/genética , Receptores Histamínicos H4/genética , Vertebrados/genética , Animales , Humanos , Simulación del Acoplamiento Molecular , Filogenia , Receptores Histamínicos H3/química , Receptores Histamínicos H4/química , Receptores Muscarínicos/química , Receptores Muscarínicos/genética , Homología Estructural de Proteína , Sintenía/genéticaRESUMEN
Structure-based virtual screening is a truly productive repurposing approach provided that reliable target structures are available. Recent progresses in the structural resolution of the G-Protein Coupled Receptors (GPCRs) render these targets amenable for structure-based repurposing studies. Hence, the present study describes structure-based virtual screening campaigns with a view to repurposing known drugs as potential allosteric (and/or orthosteric) ligands for the hM2 muscarinic subtype which was indeed resolved in complex with an allosteric modulator thus allowing a precise identification of this binding cavity. First, a docking protocol was developed and optimized based on binding space concept and enrichment factor optimization algorithm (EFO) consensus approach by using a purposely collected database including known allosteric modulators. The so-developed consensus models were then utilized to virtually screen the DrugBank database. Based on the computational results, six promising molecules were selected and experimentally tested and four of them revealed interesting affinity data; in particular, dequalinium showed a very impressive allosteric modulation for hM2. Based on these results, a second campaign was focused on bis-cationic derivatives and allowed the identification of other two relevant hM2 ligands. Overall, the study enhances the understanding of the factors governing the hM2 allosteric modulation emphasizing the key role of ligand flexibility as well as of arrangement and delocalization of the positively charged moieties.
Asunto(s)
Sitio Alostérico , Antiinfecciosos Locales/farmacología , Colinérgicos/farmacología , Decualinio/farmacología , Reposicionamiento de Medicamentos , Receptores Muscarínicos/química , Regulación Alostérica , Animales , Antiinfecciosos Locales/química , Células CHO , Colinérgicos/química , Cricetinae , Cricetulus , Decualinio/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores Muscarínicos/metabolismoRESUMEN
The koff values of ligands unbinding to proteins are key parameters for drug discovery. Their predictions based on molecular simulation may under- or overestimate experiment in a system- and/or technique-dependent way. Here we use an established method-infrequent metadynamics, based on the AMBER force field-to compute the koff of the ligand iperoxo (in clinical use) targeting the muscarinic receptor M2. The ligand charges are calculated by either (i) the Amber standard procedure or (ii) B3LYP-DFT. The calculations using (i) turn out not to provide a reasonable estimation of the transition-state free energy. Those using (ii) differ from experiment by 2 orders of magnitude. On the basis of B3LYP DFT QM/MM simulations, we suggest that the observed discrepancy in (ii) arises, at least in part, from the lack of electronic polarization and/or charge transfer in biomolecular force fields. These issues might be present in other systems, such as DNA-protein complexes.
Asunto(s)
Isoxazoles/química , Compuestos de Amonio Cuaternario/química , Receptores Muscarínicos/química , Cloruros/química , Teoría Funcional de la Densidad , Entropía , Ligandos , Simulación de Dinámica Molecular , Conformación Proteica , Sodio/química , Solventes/química , Electricidad Estática , AguaRESUMEN
A series of novel 1,4-dioxane analogues of the muscarinic acetylcholine receptor (mAChR) antagonist 2 was synthesized and studied for their affinity at M1-M5 mAChRs. The 6-cyclohexyl-6-phenyl derivative 3b, with a cis configuration between the CH2N+(CH3)3 chain in the 2-position and the cyclohexyl moiety in the 6-position, showed pKi values for mAChRs higher than those of 2 and a selectivity profile analogous to that of the clinically approved drug oxybutynin. The study of the enantiomers of 3b and the corresponding tertiary amine 33b revealed that the eutomers are (2S,6S)-(-)-3b and (2S,6S)-(-)-33b, respectively. Docking simulations on the M3 mAChR-resolved structure rationalized the experimental observations. The quaternary ammonium function, which should prevent the crossing of the blood-brain barrier, and the high M3/M2 selectivity, which might limit cardiovascular side effects, make 3b a valuable starting point for the design of novel antagonists potentially useful in peripheral diseases in which M3 receptors are involved.
Asunto(s)
Dioxanos/química , Antagonistas Muscarínicos/química , Receptores Muscarínicos/química , Animales , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Diseño de Fármacos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Conformación Molecular , Simulación del Acoplamiento Molecular , Antagonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/farmacología , Estructura Terciaria de Proteína , Receptor Muscarínico M2/antagonistas & inhibidores , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/antagonistas & inhibidores , Receptor Muscarínico M3/metabolismo , Receptores Muscarínicos/metabolismo , Relación Estructura-ActividadRESUMEN
The human M5 muscarinic acetylcholine receptor (mAChR) has recently emerged as an exciting therapeutic target for treating a range of disorders, including drug addiction. However, a lack of structural information for this receptor subtype has limited further drug development and validation. Here we report a high-resolution crystal structure of the human M5 mAChR bound to the clinically used inverse agonist, tiotropium. This structure allowed for a comparison across all 5 mAChR family members that revealed important differences in both orthosteric and allosteric sites that could inform the rational design of selective ligands. These structural studies, together with chimeric swaps between the extracellular regions of the M2 and M5 mAChRs, provided structural insight into kinetic selectivity, where ligands show differential residency times between related family members. Collectively, our study provides important insights into the nature of orthosteric and allosteric ligand interaction across the mAChR family that could be exploited for the design of selective drugs.
Asunto(s)
Receptor Muscarínico M5/química , Receptor Muscarínico M5/metabolismo , Regulación Alostérica , Sitio Alostérico , Sitios de Unión , Cristalización , Diseño de Fármacos , Humanos , Cinética , Ligandos , Modelos Moleculares , Conformación Proteica , Receptor Muscarínico M5/genética , Receptores Muscarínicos/química , Difracción de Rayos XRESUMEN
The neurotransmitter molecule acetylcholine is capable of activating five muscarinic acetylcholine receptors, M1 through M5, which belong to the superfamily of G-protein-coupled receptors (GPCRs). These five receptors share high sequence and structure homology; however, the M1, M3, and M5 receptor subtypes signal preferentially through the Gαq/11 subset of G proteins, whereas the M2 and M4 receptor subtypes signal through the Gαi/o subset of G proteins, resulting in very different intracellular signaling cascades and physiological effects. The structural basis for this innate ability of the M1/M3/M5 set of receptors and the highly homologous M2/M4 set of receptors to couple to different G proteins is poorly understood. In this study, we used molecular dynamics (MD) simulations coupled with thermodynamic analyses of M1 and M2 receptors coupled to both Gαi and Gαq to understand the structural basis of the M1 receptor's preference for the Gαq protein and the M2 receptor's preference for the Gαi protein. The MD studies showed that the M1 and M2 receptors can couple to both Gα proteins such that the M1 receptor engages with the two Gα proteins in slightly different orientations and the M2 receptor engages with the two Gα proteins in the same orientation. Thermodynamic studies of the free energy of binding of the receptors to the Gα proteins showed that the M1 and M2 receptors bind more strongly to their cognate Gα proteins compared to their non-cognate ones, which is in line with previous experimental studies on the M3 receptor. A detailed analysis of receptor-G protein interactions showed some cognate-complex-specific interactions for the M2:Gαi complex; however, G protein selectivity determinants are spread over a large overlapping subset of residues. Conserved interaction between transmembrane helices 5 and 6 far away from the G-protein-binding receptor interface was found only in the two cognate complexes and not in the non-cognate complexes. An analysis of residues implicated previously in G protein selectivity, in light of the cognate and non-cognate structures, shaded a more nuanced role of those residues in affecting G protein selectivity. The simulation of both cognate and non-cognate receptor-G protein complexes fills a structural gap due to difficulties in determining non-cognate complex structures and provides an enhanced framework to probe the mechanisms of G protein selectivity exhibited by most GPCRs.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Simulación de Dinámica Molecular , Receptores Muscarínicos/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores Muscarínicos/química , TermodinámicaRESUMEN
To further proceed with our previous work, novel steroid-based histamine H3 receptor antagonists were identified and characterized. Using an 'amine-to-amide' modification strategy at position 17, in vitro and in vivo potent monoamino steroid derivatives were found during the lead optimization. Usage of the non-basic amide moiety resulted in beneficial effects both in activity and selectivity. The 15α-carboxamido derivative 10 was not only highly active at human and rat H3 receptors, but also showed negligible activity at rat muscarinic receptors. Furthermore, it proved to be considerably stable in human and rat microsomes and showed significant in vivo potency in the pharmacodynamic rat dipsogenia test and in the water-labyrinth cognitive model. Based on all of these considerations, compound 10 was appointed to be a preclinical candidate.
Asunto(s)
Amidas/química , Antagonistas de los Receptores Histamínicos/química , Receptores Histamínicos H3/metabolismo , Amidas/farmacología , Animales , Antagonistas de los Receptores Histamínicos/metabolismo , Humanos , Masculino , Estructura Molecular , Contracción Muscular/efectos de los fármacos , Ratas , Ratas Wistar , Receptores Muscarínicos/química , Solubilidad , Esteroides/químicaRESUMEN
Chemogenetic technologies such as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are widely used to remotely control neuronal and non-neuronal signaling. DREADDs exist for most of the canonical G protein-coupled receptor signaling pathways, and provide a synthetic biology platform useful for elucidating the role of neuronal signaling for brain function. Here, a focused review is provided that shows how recent insights obtained from GPCR structural studies inform our understanding of these chemogenetic tools from a structural perspective.
Asunto(s)
Drogas de Diseño/metabolismo , Ingeniería de Proteínas/métodos , Animales , Humanos , Receptores Muscarínicos/química , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismoRESUMEN
Human butyrylcholinesterase (BChE) is a well-characterized bioscavenger with significant potential as a prophylactic or post-exposure treatment for organophosphate poisoning. Despite substantial efforts, BChE has proven technically challenging to produce in recombinant systems. Recombinant BChE tends to be insufficiently or incorrectly glycosylated, and consequently exhibits a truncated half-life, compromised activity, or is immunogenic. Thus, expired human plasma remains the only reliable source of the benchmark BChE tetramer, but production is costly and time intensive and presents possible blood-borne disease hazards. Here we report a human BChE production platform that produces functionally active, tetrameric BChE enzyme, without the addition of external factors such as polyproline peptides or chemical or gene modification required by other systems. Human umbilical cord perivascular cells (HUCPVCs) are a rich population of mesenchymal stromal cells (MSCs) derived from Wharton's jelly. We show that HUCPVCs naturally and stably secrete BChE during culture in xeno- and serum-free media, and can be gene-modified to increase BChE output. However, BChE secretion from HUCPVCs is limited by innate feedback mechanisms that can be interrupted by addition of miR 186 oligonucleotide mimics or by competitive inhibition of muscarinic cholinergic signalling receptors by addition of atropine. By contrast, adult bone marrow-derived mesenchymal stromal cells neither secrete measurable levels of BChE naturally, nor after gene modification. Further work is required to fully characterize and disable the intrinsic ceiling of HUCPVC-mediated BChE secretion to achieve commercially relevant enzyme output. However, HUCPVCs present a unique opportunity to produce both native and strategically engineered recombinant BChE enzyme in a human platform with the innate capacity to secrete the benchmark human plasma form.
Asunto(s)
Butirilcolinesterasa/metabolismo , Células Endoteliales/metabolismo , Antagomirs/metabolismo , Atropina/farmacología , Células de la Médula Ósea/citología , Butirilcolinesterasa/genética , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Vectores Genéticos/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Transducción de Señal , Cordón Umbilical/citologíaRESUMEN
Predicting ligand biological activity is a key challenge in drug discovery. Ligand-based statistical approaches are often hampered by noise due to undersampling: The number of molecules known to be active or inactive is vastly less than the number of possible chemical features that might determine binding. We derive a statistical framework inspired by random matrix theory and combine the framework with high-quality negative data to discover important chemical differences between active and inactive molecules by disentangling undersampling noise. Our model outperforms standard benchmarks when tested against a set of challenging retrospective tests. We prospectively apply our model to the human muscarinic acetylcholine receptor M1, finding four experimentally confirmed agonists that are chemically dissimilar to all known ligands. The hit rate of our model is significantly higher than the state of the art. Our model can be interpreted and visualized to offer chemical insights about the molecular motifs that are synergistic or antagonistic to M1 agonism, which we have prospectively experimentally verified.
Asunto(s)
Descubrimiento de Drogas/estadística & datos numéricos , Modelos Estadísticos , Antagonistas Muscarínicos/química , Receptores Muscarínicos/química , Humanos , Ligandos , Antagonistas Muscarínicos/uso terapéutico , Receptores Muscarínicos/efectos de los fármacosRESUMEN
Complex regional pain syndrome is an extremely painful condition that develops after trauma to a limb. Complex regional pain syndrome exhibits autoimmune features in part mediated by autoantibodies against muscarinic-2 acetylcholine (M2) receptor. The mechanisms underlying the M2 receptor involvement in complex regional pain syndrome remain obscure. Based on our recent work demonstrating that limb nerve trauma releases a potent proalgesic, immunodominant myelin basic protein fragment, our present sequence database analyses reveal an unexpected and previously undescribed structural homology of the proalgesic myelin basic protein fragment with the M2 receptor. As both complex regional pain syndrome and the proalgesic myelin basic protein activity are prevalent in females, this myelin basic protein/M2 homology presents an inviting hypothesis explaining the mechanisms of autoimmune pathogenesis and sexual dimorphism that underlies vulnerability toward developing complex regional pain syndrome and other pain states with neuropathic features. This hypothesis may aid in the development of novel diagnostic and therapeutic strategies to chronic pain.
Asunto(s)
Síndromes de Dolor Regional Complejo/etiología , Proteína Básica de Mielina/química , Receptores Muscarínicos/química , Homología Estructural de Proteína , Secuencia de Aminoácidos , Autoanticuerpos/metabolismo , Femenino , Humanos , Masculino , Proteína Básica de Mielina/metabolismo , Receptores Muscarínicos/metabolismo , Caracteres SexualesRESUMEN
G protein-gated inwardly rectifying K+ (GIRK) channel regulates cellular excitability upon activation of Gi/o-coupled receptors. In Gi/o-coupled muscarinic M2R, the intracellular third loop (i3) is known as a key domain for Gi/o coupling, because replacement of i3 of Gq-coupled muscarinic M1R with that of M2R enables the chimeric receptor (MC9) to activate the GIRK channel. In the present study, we showed that MC9, but not M1R, co-localizes with the GIRK channel and Gαi1 by Förster resonance energy transfer (FRET) analysis. When M1R was forced to stay adjacent to the channel through ligation with short linkers, M1R activated the GIRK channel. FRET analysis further suggested that the efficacy of channel activation is correlated with the linker length between M1R and the GIRK channel. The results show that co-localization is an important factor for activating the GIRK channel. In contrast, for MC9 and M2R, the GIRK channel was activated even when they were connected by long linkers, suggesting the formation of a molecular complex even in the absence of a linker. We also observed that replacement of 13 amino acid residues at the N-terminal end of i3 of MC9 with those of M1R impaired the co-localization with the GIRK channel as well as channel activation. These results show that localization of the receptor near the GIRK channel is a key factor in efficiently activating the channel and that the N-terminal end of i3 of M2R plays an important role in co-localization.