Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Pain ; 164(7): 1555-1565, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633528

RESUMEN

ABSTRACT: Mounting evidence indicates that microRNAs (miRNAs) play critical roles in various pathophysiological conditions and diseases, but the physiological roles of extracellular miRNAs on the disease-related ion channels remain largely unknown. Here, we showed that miR-1306-3p evoked action potentials and induced inward currents of the acutely isolated rat dorsal root ganglion (DRG) neurons. The miR-1306-3p-induced effects were significantly inhibited by A317491, a potent inhibitor of the P2X3 receptor (P2X3R), or disappeared after the knockdown of P2X3Rs in DRG neurons. We further identified R180, K315, and R52 as the miR-1306-3p interaction sites on the extracellular domain of P2X3Rs, which were distinct from the orthosteric ATP-binding sites. Intrathecal injection of miR-1306-3p produced visceral pain but not somatic pain in normal control rats. Conversely, intrathecal application of a miR-1306-3p antagomir and A317491 significantly alleviated visceral pain in a rat model of chronic visceral pain. Together, our findings suggest that miR-1306-3p might function as an endogenous ligand to activate P2X3Rs, eventually leading to chronic visceral pain.


Asunto(s)
MicroARNs , Dolor Visceral , Ratas , Animales , Hiperalgesia , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Ganglios Espinales , MicroARNs/genética , Células Receptoras Sensoriales
2.
Zhongguo Zhen Jiu ; 42(11): 1263-8, 2022 Nov 12.
Artículo en Chino | MEDLINE | ID: mdl-36397224

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Ciliao" (BL 32) and "Huiyang" (BL 35) on the pain, urodynamic and the expressions of transient receptor poteintial vanilloid 1 (TRPV1) and P2X3 receptors in bladder of rats with interstitial bladder (IC), and to explore the possible mechanism on EA for IC. METHODS: A total of 24 Wistar female rats were randomly divided into a blank group, a model group and an EA group, 8 rats in each group. In the model group and the EA group, IC model was established by intraperitoneal injection of cyclophosphamide by 150 mg/kg at once. EA was applied at "Ciliao" (BL 32) and "Huiyang" (BL 35) in the EA group for 20 min, with continuous wave, 30 Hz in frequency, once a day for 3 consecutive days. Mechanical pain threshold of bladder and urodynamic indexes (first urination time, bladder effective volume and urination pressure) were observed after model establishment and after intervention, the expressions of TRPV1 and P2X3 receptors in the bladder were detected by Western blot. RESULTS: After model establishment, the mechanical pain threshold of bladder was decreased in the model group and the EA group compared with that in the blank group (P<0.01). After intervention, the mechanical pain threshold of bladder in the model group was lower than the blank group (P<0.01), and that in the EA group was higher than the model group (P<0.01). The urodynamic of the rats in the blank group was normal, obvious abnormal contraction during the filling period of bladder was found in the rats of the model group, while no abnormal contraction during the filling period was found in the rats of the EA group. After model establishment, in the model group and the EA group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.01). After intervention, in the model group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.05); in the EA group, the first urination time was later than the model group (P<0.05), while bladder effective volume and urination pressure were higher than the model group (P<0.05). Compared with the blank group, the protein expressions of TRPV1 and P2X3 receptors in bladder were up-regulated in the model group (P<0.01); compared with the model group, the protein expressions of TRPV1 and P2X3 receptors in bladder were down-regulated in the EA group (P<0.05). CONCLUSION: EA can relieve bladder pain and improve urodynamic in IC rats. The mechanism may be related to the down-regulation on the expressions of TRPV1 and P2X3 receptors and the further inhibition on the abnormal input of bladder signal.


Asunto(s)
Antineoplásicos , Cistitis Intersticial , Electroacupuntura , Ratas , Femenino , Animales , Cistitis Intersticial/genética , Cistitis Intersticial/terapia , Vejiga Urinaria , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Dolor , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
3.
Zhongguo Zhen Jiu ; 42(3): 291-7, 2022 Mar 12.
Artículo en Chino | MEDLINE | ID: mdl-35272407

RESUMEN

OBJECTIVE: To observe the effect of moxibustion at "Guanyuan" (CV 4) and "Shenque" (CV 8) on acetylcholine (Ach), adenosine triphosphate (ATP) and muscarinic-type choline receptor (M2) and purine receptor P2X3 in bladder tissue in the rats with neurogenic bladder (NB) of detrusor areflexia after lumbar-sacral spinal cord injury and explore the underlying mechanism of moxibustion for promoting detrusor contraction. METHODS: Sixty SD rats were randomly divided into a model preparation group (n=45) and a sham-operation group (n=15). In the model preparation group, the modified Hassan Shaker spinal cord transection method was used to prepare the model of NB. In the sham-operation group, the spinal cord transection was not exerted except laminectomy and spinal cord exposure. Among the rats with successfully modeled, 30 rats were selected and divided randomly into a model group and a moxibustion group, with 15 rats in each one. On the 15th day after the operation, moxibustion was applied at "Guanyuan" (CV 4) and "Shenque" (CV 8) in the moxibustion group, 10 min at each acupoint, once a day. The consecutive 7-day treatment was as one course and the intervention for 2 courses was required. Urodynamic test was adopted to evaluate bladder function in rats. Using HE staining, the morphological changes in bladder tissue were observed. The content of Ach and ATP in bladder tissue was measured with biochemical method, and the protein and mRNA expression levels of M2 and P2X3 receptors in bladder tissue were detected with Western blot and real-time fluorescence quantification PCR method. RESULTS: Compared with the sham-operation group, the maximum bladder capacity, leakage point pressure and bladder compliance were increased in the rats of the model group (P<0.05). Compared with the model group, the maximum bladder capacity, the leakage point pressure and bladder compliance were decreased in the rats of the moxibustion group (P<0.05). In the model group, the detrusor fibres were arranged irregularly, bladder epithelial tissues were not tightly connected and cell arrangement was disordered, combined with a large number of vacuolar cells. In the moxibustion group, compared with the model group, the detrusor fibres were arranged regularly, bladder epithelial cells were well distributed and vacuolar cells were reduced. Compared with the sham-operation group, the content of Ach and ATP in bladder tissue was decreased (P<0.05), the protein and mRNA expression levels of M2 and P2X3 receptors were reduced (P<0.05) in the model group. In the moxibustion group, the content of Ach and ATP in bladder tissue was increased (P<0.05) and the protein and mRNA expression levels of M2 and P2X3 receptors were increased (P<0.05) as compared with the model group. CONCLUSION: Moxibustion at "Guanyuan" (CV 4) and "Shenque" (CV 8) may effectively improve bladder function in the rats with NB of detrusor areflexia after lumbar-sacral spinal cord injury and its underlying mechanism is related to promoting the release of Ach and up-regulating the expression of M2 receptor, thereby enhancing the release of ATP and increasing the expression of P2X3 receptor. Eventually, detrusor contraction is improved.


Asunto(s)
Moxibustión , Traumatismos de la Médula Espinal , Vejiga Urinaria Neurogénica , Animales , Moxibustión/métodos , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Vejiga Urinaria , Vejiga Urinaria Neurogénica/etiología , Vejiga Urinaria Neurogénica/terapia
4.
J Ethnopharmacol ; 284: 114780, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34728318

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: ShexiangZhuifeng Analgesic Plaster (SZAP) is a traditional Chinese medicine and transdermal formulation composed of many Chinese herbs and active compounds. SZAP was recently approved by the China Food and Drug Administration for the treatment of pain associated with osteoarticular diseases and is preferred by most rheumatoid arthritis patients in China. However, its mechanism has not been elucidated in detail. AIM OF THE STUDY: We sought to determine the analgesic effect of SZAP in collagen-induced arthritis (CIA) rats and explore the underlying mechanisms of pain transmission, such as via the TRPV1 and P2X3 receptors. METHODS: After CIA was established, rats were treated with SZAP for 7 days. Paw thickness, arthritis score, and haematoxylin and eosin staining were used to evaluate the effectiveness of SZAP. Paw withdrawal threshold (PWT) and tail-flick latency (TFL) were used to estimate the analgesic effect of SZAP. The levels of PGE2, BK, 5-HT, SP, and CGRP in the serum and synovium were determined using ELISA kits, and ATP in the synovium was measured using HPLC. The expression of TRPV1 and P2X3 in the DRG was detected using western blotting and immunofluorescence. TRPV1 and P2X3 agonists were further used to determine the analgesic effects of SZAP on CIA rats based on PWT and TFL. RESULTS: SZAP not only significantly ameliorated arthritis scores and paw thickness by improving the pathological damage of synovial joints, but also remarkably alleviated pain in CIA rats. Further, treatment with SZAP significantly reduced peripheral 5-HT, PGE2 BK, SP, CGRP, and ATP. Additionally, the expression of TRPV1 and P2X3 in the DRG was markedly downregulated by SZAP. Interestingly, the analgesic effect of SZAP was weakened (reduction of PWT and TFL) when TRPV1 and P2X3 were activated by capsaicin or α,ß-meATP, respectively. CONCLUSION: SZAP ameliorates rheumatalgia by suppressing hyperalgesia and pain transmission through the inhibition of TRPV1 and P2X3 in the DRG of CIA rats.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Colágeno/toxicidad , Medicamentos Herbarios Chinos/farmacología , Fitoterapia , Receptores Purinérgicos P2X3/metabolismo , Canales Catiónicos TRPV/metabolismo , Administración Tópica , Animales , Capsaicina/farmacología , Diclofenaco/administración & dosificación , Diclofenaco/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Canales Catiónicos TRPV/genética
5.
Sci Rep ; 11(1): 19877, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615939

RESUMEN

ATP-dependent P2X3 receptors play a crucial role in the sensitization of nerve fibers and pathological pain pathways. They are also involved in pathways triggering cough and may contribute to the pathophysiology of endometriosis and overactive bladder. However, despite the strong therapeutic rationale for targeting P2X3 receptors, preliminary antagonists have been hampered by off-target effects, including severe taste disturbances associated with blocking the P2X2/3 receptor heterotrimer. Here we present a P2X3 receptor antagonist, eliapixant (BAY 1817080), which is both highly potent and selective for P2X3 over other P2X subtypes in vitro, including P2X2/3. We show that eliapixant reduces inflammatory pain in relevant animal models. We also provide the first in vivo experimental evidence that P2X3 antagonism reduces neurogenic inflammation, a phenomenon hypothesised to contribute to several diseases, including endometriosis. To test whether eliapixant could help treat endometriosis, we confirmed P2X3 expression on nerve fibers innervating human endometriotic lesions. We then demonstrate that eliapixant reduces vaginal hyperalgesia in an animal model of endometriosis-associated dyspareunia, even beyond treatment cessation. Our findings indicate that P2X3 antagonism could alleviate pain, including non-menstrual pelvic pain, and modify the underlying disease pathophysiology in women with endometriosis. Eliapixant is currently under clinical development for the treatment of disorders associated with hypersensitive nerve fibers.


Asunto(s)
Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X3/metabolismo , Trastornos Somatosensoriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratas , Receptores Purinérgicos P2X3/genética , Trastornos Somatosensoriales/tratamiento farmacológico , Trastornos Somatosensoriales/etiología
6.
Acupunct Med ; 39(5): 478-490, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33334124

RESUMEN

BACKGROUND: Whether electroacupuncture (EA) stimulation at different frequencies has a similar effect on spared nerve injury (SNI) as other neuropathic pain models, and how EA at different frequencies causes distinct analgesic effects on neuropathic pain is still not clear. METHODS: Adult male Sprague-Dawley rats were randomly divided into sham SNI, SNI, 2 Hz, 100 Hz and sham EA groups. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were measured. EA was performed once a day on days 1 to 14 after SNI. The expressions of transient receptor potential cation subfamily V member 1 (TRPV1) and peripheral purinergic P2X receptor 3 (P2X3) were determined by western blotting and immunofluorescence. TRPV1 siRNA and P2X3 siRNA were administered by intrathecal injection. TRPV1 or P2X3 agonists were combined with EA. RESULTS: There were significant decreases in PWT, but no changes in PWL in the 14 days after SNI. EA using 2- or 100-Hz stimulation similarly increased PWT at every time point. The cytosol protein expression of P2X3 in the L4-L6 dorsal root ganglia (DRG) increased, but the expression of TRPV1 decreased in the SNI model. Both these effects were ameliorated by EA, with 2-Hz stimulation having a stronger effect than 100-Hz stimulation. Blocking either TRPV1 or P2X3 specific siRNAs attenuated the decreased PWT induced by SNI. Administration of either a TRPV1 or P2X3 agonist inhibited EA analgesia. CONCLUSION: 2- and 100-Hz EA similarly induced analgesic effects in SNI. This effect was related to up-regulation and down-regulation, respectively, of cytosol protein expression of P2X3 and TRPV1 in L4-L6 DRG, with 2 Hz having a better effect than 100 Hz.


Asunto(s)
Analgesia por Acupuntura/métodos , Electroacupuntura/métodos , Traumatismos de los Nervios Periféricos/terapia , Receptores Purinérgicos P2X3/metabolismo , Canales Catiónicos TRPV/metabolismo , Analgesia por Acupuntura/instrumentación , Animales , Electroacupuntura/instrumentación , Humanos , Masculino , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Canales Catiónicos TRPV/genética
7.
Genes Brain Behav ; 19(8): e12691, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32761745

RESUMEN

P2X2 and P2X3 receptors are widely expressed in both the peripheral nervous system and the central nervous system and have been proven to participate in different peripheral sensory functions, but there are few studies on the involvement of P2X2 and P2X3 receptors in animal behaviors. Here we used P2X2 and P2X3 knockout mice to address this issue. P2X2 knockout mice showed normal motor function, exploratory behavior, anxiety-like behaviors, learning and memory behaviors and passive coping response to behavioral challenge. Nevertheless, the effect of ATP infusion in the medial prefrontal cortex (mPFC) on the passive coping response was blocked by P2X2 but not P2X3 receptor deletion. Additionally, no deficits in a wide variety of behavioral tests were observed in P2X3 knockout mice. These findings demonstrate a role of P2X2 receptor in the mPFC in adenosine-5'-triphosphate modulation of the passive coping response to behavioral challenge and show that the P2X2/P2X3 receptor is dispensable for behaviors.


Asunto(s)
Adaptación Psicológica , Adenosina Trifosfato/metabolismo , Corteza Prefrontal/metabolismo , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X3/genética , Adenosina Trifosfato/farmacología , Animales , Conducta Exploratoria , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Movimiento , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo
8.
Cell Rep ; 31(9): 107704, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492420

RESUMEN

Fast purinergic signaling is mediated by ATP and ATP-gated ionotropic P2X receptors (P2XRs), and it is implicated in pain-related behaviors. The properties exhibited by P2XRs vary between those expressed in heterologous cells and in vivo. Several modulators of ligand-gated ion channels have recently been identified, suggesting that there are P2XR functional modulators in vivo. Here, we establish a genome-wide open reading frame (ORF) collection and perform functional screening to identify modulators of P2XR activity. We identify TMEM163, which specifically modulates the channel properties and pharmacology of P2XRs. We also find that TMEM163 is required for full function of the neuronal P2XR and a pain-related ATP-evoked behavior. These results establish TMEM163 as a critical modulator of P2XRs in vivo and a potential target for the discovery of drugs for treating pain.


Asunto(s)
Adenosina Trifosfato/farmacología , Conducta Animal/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Receptores Purinérgicos P2X/metabolismo , Animales , Calcio/metabolismo , Potenciales Evocados/efectos de los fármacos , Femenino , Genoma , Células HEK293 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Sistemas de Lectura Abierta/genética , Dolor/patología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X3/deficiencia , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo
9.
Mol Med Rep ; 22(2): 957-963, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468070

RESUMEN

Mechanical allodynia, which develops in patients of diabetes mellitus as a neuropathic manifestation, remains without an effective treatment. The aim of the present study was to investigate the effects and potential mechanisms underlying resveratrol (RES) in a rat model of streptozocin (STZ)­induced diabetic mechanical allodynia (DMA). The rat model of DMA was established by the administration of an intraperitoneal injection of STZ. From day 8 post­STZ injection, rats were administered with an intragastric injection of various doses of RES for 14 consecutive days. The von Frey filaments were applied to detect the paw withdrawal threshold and evaluate the analgesic effects of RES. Based on the dose­effect curve, the ED50 of RES was calculated. Immunofluorescence staining and western blotting were performed to detect the expression of purinergic receptor P2X3 (P2X3R) in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) following RESED50 treatment. The results indicated that RES significantly alleviated mechanical allodynia in DMA model rats in a dose­dependent manner. Compared with the control group, the expression of P2X3R in DRG neurons and SDH terminals was markedly decreased following the administration of RESED50 (P<0.05). Collectively, the results indicated that RES displayed a dose­dependent analgesic effect on DMA model rats. Furthermore, P2X3R expression downregulation in the DRG and SDH may be a mechanism underlying the analgesic effects of RES on DMA­related behaviors.


Asunto(s)
Analgésicos/farmacología , Diabetes Mellitus Experimental/metabolismo , Hiperalgesia/metabolismo , Receptores Purinérgicos P2X3/biosíntesis , Resveratrol/farmacología , Animales , Conducta Animal/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Regulación hacia Abajo , Vías de Administración de Medicamentos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Masculino , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Resveratrol/administración & dosificación , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/patología , Estómago/efectos de los fármacos , Estreptozocina
10.
Am J Physiol Cell Physiol ; 318(6): C1123-C1135, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267716

RESUMEN

Praja2 (Pja2), a member of the growing family of mammalian RING E3 ubiquitin ligases, is reportedly involved in not only several types of cancer but also neurological diseases and disorders, but the genetic mechanism underlying the regulation of Pja2 in the nervous system remains unclear. To study the cellular and molecular functions of Pja2 in mouse hippocampal neuronal cells (MHNCs), we used gain- and loss-of-function manipulations of Pja2 in HT-22 cells and tested their regulatory effects on three Alzheimer's disease (AD) genes and cell proliferation. The results revealed that the expression of AD markers, including amyloid beta precursor protein (App), microtubule-associated protein tau (Mapt), and gamma-secretase activating protein (Gsap), could be inhibited by Pja2 overexpression and activated by Pja2 knockdown. In addition, HT-22 cell proliferation was enhanced by Pja2 upregulation and suppressed by its downregulation. We also evaluated and quantified the targets that responded to the enforced expression of Pja2 by RNA-Seq, and the results showed that purinergic receptor P2X, ligand-gated ion channel 3 and 7 (P2rx3 and P2rx7), which show different expression patterns in the critical calcium signaling pathway, mediated the regulatory effect of Pja2 in HT-22 cells. Functional studies indicated that Pja2 regulated HT-22 cells development and AD marker genes by inhibiting P2rx3 but promoting P2rx7, a gene downstream of P2rx3. In conclusion, our results provide new insights into the regulatory function of the Pja2 gene in MHNCs and thus underscore the potential relevance of this molecule to the pathophysiology of AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Proliferación Celular , Hipocampo/enzimología , Neuronas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Hipocampo/patología , Humanos , Ratones , Neuronas/patología , Proteínas/genética , Proteínas/metabolismo , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Int J Biol Macromol ; 142: 484-491, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593721

RESUMEN

P2X3 is a ligand-gated nonselective cation channel and permeable to Na+, K+ and Ca2+. Adenosine triphosphate (ATP) activation of the P2X3 on primary sensory ganglion neurons is involved in nociceptive transmission. Puerarin is a major active ingredient extracted from the traditional Chinese medicine Ge-gen. Puerarin inhibits nociceptive signal transmission by inhibiting the P2X3 in the dorsal root ganglia (DRG) and sympathetic ganglia, but its molecular mechanism is unclear. The aim of this study was to explore the molecular mechanism of puerarin on the P2X3. Here, molecular docking results revealed that puerarin binds well to the human P2X3 protein in the vicinity of the ATP binding pocket. Protein-ligand docking showed that the V64A mutation reduced the effect of puerarin but had little effect on ATP. V64A site-directed mutagenesis of P2X3 was performed using an overlap extension PCR technique. The wild-type and V64A mutant pEGFP-C1-P2X3 recombinant plasmids were transfected into HEK 293 cells. The electrophysiology results demonstrated that puerarin exerted an obvious inhibitory effect on ATP-activated currents in HEK 293 cells transfected with the wild-type P2X3, while little inhibition was observed in HEK 293 cells transfected with the mutant P2X3. These studies suggest that puerarin inhibits the P2X3 by binding to V64A.


Asunto(s)
Isoflavonas/farmacología , Receptores Purinérgicos P2X3/metabolismo , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Fenómenos Electrofisiológicos/efectos de los fármacos , Células HEK293 , Humanos , Isoflavonas/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/genética
12.
J Cell Biochem ; 120(9): 15776-15789, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31074048

RESUMEN

Traumatic brain injury (TBI) is a serious public health problem as well as a leading cause of severe posttraumatic disability. Numerous studies indicate that the differentially expressed genes (DEGs) of neural signaling pathways are strongly correlated with brain injury. To further analyze the roles of the DGEs in the central nervous system, here we systematically investigated TBI on the hippocampus and its injury mechanism at the whole genome level. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Analyses, we revealed that the DEGs were involved in many signaling pathways related to the nervous system, especially neuronal survival-related pathways. Finally, we verified the microarray results and detected the gene expression of neuronal survival-related genes in the hippocampus by using real-time quantitative polymerase chain reaction. With Western blot and axon growth assay, the expression of P2rx3 was upregulated in rats subjected to TBI, and overexpression of P2rx3 promoted neurite growth of NG108 cells. Our results suggested that the DEGs (especially P2rx3) and several signaling pathways might play a pivotal role in TBI. We also provided several targeted genes related to TBI for future investigation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Perfilación de la Expresión Génica/métodos , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
13.
Int J Mol Sci ; 20(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609840

RESUMEN

We have tested the hypothesis that neuropathic pain acting as a stressor drives functional plasticity in the sympathoadrenal system. The relation between neuropathic pain and adrenal medulla function was studied with behavioral, immunohistochemical and electrophysiological techniques in rats subjected to chronic constriction injury of the sciatic nerve. In slices of the adrenal gland from neuropathic animals, we have evidenced increased cholinergic innervation and spontaneous synaptic activity at the splanchnic nerve⁻chromaffin cell junction. Likewise, adrenomedullary chromaffin cells displayed enlarged acetylcholine-evoked currents with greater sensitivity to α-conotoxin RgIA, a selective blocker of α9 subunit-containing nicotinic acetylcholine receptors, as well as increased exocytosis triggered by voltage-activated Ca2+ entry. Altogether, these adaptations are expected to facilitate catecholamine output into the bloodstream. Last, but most intriguing, functional and immunohistochemical data indicate that P2X3 and P2X7 purinergic receptors and transient receptor potential vanilloid-1 (TRPV1) channels are overexpressed in chromaffin cells from neuropathic animals. These latter observations are reminiscent of molecular changes characteristic of peripheral sensitization of nociceptors following the lesion of a peripheral nerve, and suggest that similar phenomena can occur in other tissues, potentially contributing to behavioral manifestations of neuropathic pain.


Asunto(s)
Neuralgia/patología , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Canales Catiónicos TRPV/metabolismo , Acetilcolina/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Médula Suprarrenal/metabolismo , Médula Suprarrenal/patología , Animales , Capsaicina/farmacología , Catecolaminas/metabolismo , Células Cromafines/citología , Células Cromafines/efectos de los fármacos , Células Cromafines/metabolismo , Modelos Animales de Enfermedad , Potenciales Evocados/efectos de los fármacos , Exocitosis/efectos de los fármacos , Ganglios Espinales/patología , Ganglios Espinales/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuralgia/metabolismo , Neuronas/patología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Canales Catiónicos TRPV/genética
14.
Biomed Res Int ; 2019: 1873859, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31950033

RESUMEN

Electroacupuncture (EA) has effective analgesic effects. Our previous study demonstrated that the upregulation of P2X3 receptors in the dorsal root ganglia (DRG) might participate in heroin withdrawal-induced hyperalgesia. The aim of this study is to further explore whether 2 Hz EA reduces heroin relapse associated with its analgesic effect and whether P2X3 receptors in the DRG are involved in this process. 2 Hz EA was adopted to treat the heroin SA rats in the present study. Heroin-seeking and pain sensitivity were evaluated. The expression of P2X3 receptors in the DRG was detected. Our results showed that compared with the control group, the reinstatement, thermal hyperalgesia, and mechanical allodynia of the heroin-addicted group were increased significantly. The expression of P2X3 receptors in the DRG was increased markedly. After being treated using 2 Hz EA, reinstatement was reduced, hyperalgesia was decreased, and the upregulated expression of P2X3 receptors in the DRG had decreased significantly compared to that in the heroin-addicted group. Consequently, our results indicated that 2 Hz EA was an effective method for treating heroin-induced hyperalgesia and helping prevent relapse, and the potential mechanism might be related to the downregulation of P2X3 receptor expression in the DRG.


Asunto(s)
Electroacupuntura/métodos , Heroína/efectos adversos , Hiperalgesia/terapia , Receptores Purinérgicos P2X3/genética , Síndrome de Abstinencia a Sustancias/terapia , Animales , Ganglios Espinales/patología , Ganglios Espinales/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Hiperalgesia/patología , Neuralgia/patología , Neuralgia/terapia , Neuronas/patología , Neuronas/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Síndrome de Abstinencia a Sustancias/patología
16.
Neurochem Int ; 120: 206-212, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30196147

RESUMEN

Diabetic cardiac autonomic neuropathy (DCAN) is a common and serious complication of diabetes mellitus (DM), is manifested by nerve fiber injury in the sympathetic and parasympathetic nerve of the autonomic nervous system, and causes hypertension, cardiac arrhythmias, silent myocardial infarction, and sudden death. Our previous study observed that P2X3 receptor in superior cervical ganglia in rat was associated with sympathetic neuropathy caused by myocardial ischemia. However, whether the P2X3 receptor is involved in the diabetic cardiac autonomic neuropathy and the underlying mechanisms remain unclear. The aim of this research was explored the effect of P2X3 short hairpin RNA (shRNA) on information transmission of sympathetic nerve induced by DCAN. Sprague-Dawley (SD) male rats were randomly divided into four groups: Control, DM, DM treated with P2X3 shRNA and DM treated with scramble shRNA. Blood pressure, heart rate and heart rate variability were measured in each group. The expression of P2X3 in stellate ganglion (SG) was detected by immunohistochemistry, western blotting and QPCR. Results showed that P2X3 shRNA alleviated blood pressure and heart rate, improved heart rate variability, decreased the up-regulated expression levels of P2X3, interleukin-1beta and tumor necrosis factor alpha in stellate ganglion (SG) of diabetic rats. P2X3 shRNA also reduced the incremental concentration of serum epinephrine and the phosphorylation level of extracellular regulated protein kinases1/2 in diabetic rats. These results indicated that P2X3 shRNA could decrease sympathetic activity via inhibiting P2X3 receptor in the SG to alleviate DCAN.


Asunto(s)
Neuropatías Diabéticas/genética , Técnicas de Silenciamiento del Gen , Receptores Purinérgicos P2X3/genética , Ganglio Estrellado/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Interleucina-1beta/metabolismo , Masculino , Isquemia Miocárdica/metabolismo , ARN Interferente Pequeño/genética , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/metabolismo , Ganglio Cervical Superior/metabolismo , Sistema Nervioso Simpático/metabolismo
17.
J Recept Signal Transduct Res ; 38(3): 198-203, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29932348

RESUMEN

OBJECTIVES: Here, using rat model, we investigated the roles of gardenoside in the chronic constriction injury (CCI) of the ischiadic nerve. METHODS: Bennett and Xie's unilateral sciatic nerve CCI model was used in this study. A total of 60 rats were divided into control group (CN), sham group (Sham), CCI group, and gardenoside administrated CCI group. An aliquot of 5 mL gardenoside solution was administrated through gavage once per day for 14 d. Mechanical withdrawal threshold (MWT) and the thermal withdrawal latency (TWL) were detected. The levels of inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in spinal fluid were detected by ELISA. By using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot, we analyzed the expression of P2X purinoceptor 3 and 7 (P2X3 and P2X7 receptors) in different groups. The expression of p-ERK/ERK and p-p38/p38 were also detected by western blot. RESULTS: We found out that gardenoside could significantly improve the sciatica by partially restore the decrease of MWT and TWL in CCI rats. The levels of iNOS, IL-1ß, and TNF-α were higher in CCI group (p < .05). The expressions of P2X3 and P2X7 were significantly increased in the CCI rats compared to control rats (p < .05). The levels of p-ERK/ERK and p-p38/p38 were also obviously increased in CCI group (p < .05). After treated with the gardenoside, these increases were decreased. CONCLUSIONS: These results indicated that gardenoside may be able to relief CCI-induced neuropathic pain by regulating the P2X3 and the P2X7 expression on the ischiadic nerve.


Asunto(s)
Iridoides/administración & dosificación , Neuralgia/tratamiento farmacológico , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/lesiones , Ganglios Espinales/patología , Regulación de la Expresión Génica , Humanos , Interleucina-1beta , Neuralgia/genética , Neuralgia/fisiopatología , Óxido Nítrico Sintasa de Tipo II , Umbral del Dolor , Ratas , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Nervio Ciático/fisiopatología , Factor de Necrosis Tumoral alfa
18.
Nat Commun ; 9(1): 1354, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636447

RESUMEN

Two subclasses of acid-sensing ion channels (ASIC3) and of ATP-sensitive P2X receptors (P2X3Rs) show a partially overlapping expression in sensory neurons. Here we report that both recombinant and native receptors interact with each other in multiple ways. Current measurements with the patch-clamp technique prove that ASIC3 stimulation strongly inhibits the P2X3R current partly by a Ca2+-dependent mechanism. The proton-binding site is critical for this effect and the two receptor channels appear to switch their ionic permeabilities during activation. Co-immunoprecipation proves the close association of the two protein structures. BN-PAGE and SDS-PAGE analysis is also best reconciled with the view that ASIC3 and P2X3Rs form a multiprotein structure. Finally, in vivo measurements in rats reveal the summation of pH and purinergically induced pain. In conclusion, the receptor subunits do not appear to form a heteromeric channel, but tightly associate with each other to form a protein complex, mediating unidirectional inhibition.


Asunto(s)
Canales Iónicos Sensibles al Ácido/genética , Calcio/metabolismo , Ganglios Espinales/metabolismo , Hiperalgesia/genética , Dolor/genética , Protones , Receptores Purinérgicos P2X3/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Animales Recién Nacidos , Células CHO , Cricetulus , Ganglios Espinales/citología , Concentración de Iones de Hidrógeno , Hiperalgesia/metabolismo , Hiperalgesia/patología , Activación del Canal Iónico , Masculino , Oocitos/citología , Oocitos/metabolismo , Dolor/metabolismo , Dolor/patología , Técnicas de Placa-Clamp , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Xenopus laevis
19.
Mol Pain ; 14: 1744806918764731, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29560791

RESUMEN

Aims Insular cortex is a brain region critical for processing of the sensation. Purinergic receptors are involved in the formation of chronic pain. The aim of the present study was to explore the role and mechanism of P2X3 receptors (P2X3Rs) in insular cortex in chronic visceral pain. Methods Chronic visceral pain in adult rats was induced by neonatal maternal deprivation and measured by detecting the threshold of colorectal distension. Western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction techniques were used to detect the expression and distribution of P2X3Rs. Synaptic transmission in insular cortex was recorded in brain slices by patch clamp techniques. Results Expression of P2X3Rs both at mRNA and protein levels in right hemisphere of insular cortex was significantly increased in neonatal maternal deprivation rats. In addition, P2X3Rs were expressed with NeuN or synaptophysin but not with glial fibrillary acidic protein and CD11b. The co-localization of P2X3Rs with NeuN or synaptophysin was greatly enhanced in right hemisphere of insular cortex in neonatal maternal deprivation rats. Furthermore, neonatal maternal deprivation markedly increased both the frequency and amplitude of miniature excitatory postsynaptic current in right hemisphere of insular cortex. Incubation of A347091 significantly decreased the frequency of spontaneous excitatory postsynaptic current and miniature excitatory postsynaptic current of insular cortex neurons of neonatal maternal deprivation rats. Incubation of P2X3Rs agonists α,ß-mATP remarkably increased the frequency of spontaneous excitatory postsynaptic current and miniature excitatory postsynaptic current of the right hemisphere of insular cortex neurons of healthy control rats. Importantly, injection of A317491 significantly enhanced the colorectal distension threshold of neonatal maternal deprivation rats, while injection of α,ß-mATP into right but not left insular cortex markedly decreased the colorectal distension threshold in healthy control rats. Conclusions Overall, our data provide integrated pharmacological, biochemical, and functional evidence demonstrating that P2X3Rs are physically and functionally interconnected at the presynaptic level to control synaptic activities in the right insular cortex, thus contributing to visceral pain of neonatal maternal deprivation rats.


Asunto(s)
Envejecimiento/metabolismo , Corteza Cerebral/metabolismo , Privación Materna , Receptores Purinérgicos P2X3/metabolismo , Dolor Visceral/metabolismo , Dolor Visceral/patología , Animales , Animales Recién Nacidos , Antígenos Nucleares/metabolismo , Corteza Cerebral/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenoles/farmacología , Compuestos Policíclicos/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinaptofisina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Dolor Visceral/genética
20.
Br J Pharmacol ; 175(10): 1760-1769, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29500928

RESUMEN

BACKGROUND AND PURPOSE: The P2X3 receptor is a major receptor in the processing of nociceptive information in dorsal root ganglia. We investigated the role of the P2X3 receptor and the detailed mechanisms underlying chronic morphine-induced analgesic tolerance in rats. EXPERIMENTAL APPROACH: Repeated i.t. morphine treatment was used to induce anti-nociceptive tolerance. The expression of spinal P2X3 receptor, phosphorylated PKCε and exchange factor directly activated by cAMP (Epac) were evaluated. Effects of A-317491 (P2X3 antagonist), ε-V1-2 (PKCε inhibitor) and ESI-09 (Epac inhibitor) on mechanical pain thresholds and tail-flick latency after chronic morphine treatment were determined. Co-localization of P2X3 receptor with NeuNs (marker of neuron), IB4 (marker of small DRG neurons), peripherin, PKCε and Epac were performed by double immunofluorescence staining. KEY RESULTS: Chronic morphine time-dependently increased the expression of P2X3 receptor, phosphorylated PKCε and Epac in DRGs. ε-V1-2 prevented chronic morphine-induced expression of P2X3 receptor. ESI-09 decreased the phosphorylation of PKCε and up-regulated expression of Epac after chronic morphine exposure. Mechanical pain thresholds and tail-flick latency showed that A317491, ε-V1-2 and ESI-09 significantly attenuated the loss of morphine's analgesic potency. Morphine-induced P2X3 receptor expression mainly occurred in neurons staining for IB4 and peripherin. Co-localization of P2X3 receptor with PKCε and Epac was demonstrated in the same neurons. CONCLUSIONS AND IMPLICATIONS: Chronic morphine exposure increased the expression of P2X3 receptor, and i.t. P2X3 receptor antagonists attenuated the loss of morphine's analgesic effect. Inhibiting Epac/PKCε signalling was shown to play a significant inhibitory role in chronic morphine-induced P2X3 receptor expression and attenuate morphine-induced tolerance.


Asunto(s)
Analgésicos/farmacología , AMP Cíclico/metabolismo , Ganglios Espinales/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Morfina/farmacología , Proteína Quinasa C-epsilon/metabolismo , Receptores Purinérgicos P2X3/genética , Analgésicos/administración & dosificación , Animales , Ganglios Espinales/metabolismo , Masculino , Morfina/administración & dosificación , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA