Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.703
Filtrar
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000274

RESUMEN

Understanding the molecular factors involved in the development of uterine myomas may result in the use of pharmacological drugs instead of aggressive surgical treatment. ANG1, CaSR, and FAK were examined in myoma and peripheral tissue samples taken from women after myoma surgery and in normal uterine muscle tissue samples taken from the control group. Tests were performed using tissue microarray immunohistochemistry. No statistically significant differences in ANG1 expression between the tissue of the myoma, the periphery, and the normal uterine muscle tissue of the control group were recorded. The CaSR value was reduced in the myoma and peripheral tissue and normal in the group of women without myomas. FAK expression was also lower in the myoma and periphery compared to the healthy uterine myometrium. Calcium supplementation could have an effect on stopping the growth of myomas.


Asunto(s)
Quinasa 1 de Adhesión Focal , Leiomioma , Receptores Sensibles al Calcio , Neoplasias Uterinas , Humanos , Femenino , Leiomioma/metabolismo , Leiomioma/patología , Leiomioma/genética , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Adulto , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patología , Neoplasias Uterinas/genética , Persona de Mediana Edad , Miometrio/metabolismo , Miometrio/patología , Inmunohistoquímica
3.
Eur J Pharmacol ; 977: 176717, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857682

RESUMEN

The Ca2+-sensing receptor (CaSR) is a G-protein-coupled receptor activated by elevated concentrations of extracellular Ca2+, and was initially known for its regulation of parathyroid hormone (PTH) release. Ubiquitous expression of CaSR in different tissues and organs was later noted and CaSR participation in various physiological functions was demonstrated. Accumulating evidence has suggested that CaSR functionally interacts with transient receptor potential (TRP) channels, which are mostly non-selective cation channels involved in sensing temperature, pain and stress. This review describes the interactions of CaSR with TRP channels in diverse cell types to trigger a variety of biological responses. CaSR has been known to interact with different types of G proteins. Possible involvements of G proteins, other signaling and scaffolding protein intermediates in CaSR-TRP interaction are discussed. In addition, an attempt will be made to extend the current understanding of biased agonism of CaSR.


Asunto(s)
Señalización del Calcio , Receptores Sensibles al Calcio , Canales de Potencial de Receptor Transitorio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/agonistas , Humanos , Animales , Señalización del Calcio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/agonistas , Calcio/metabolismo , Proteínas de Unión al GTP/metabolismo
4.
Elife ; 132024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864841

RESUMEN

Bone releases calcium and phosphate in response to pro-inflammatory cytokine-mediated inflammation. The body develops impaired urinary excretion of phosphate with age and chronic inflammation given the reduction of the kidney protein Klotho, which is essential to phosphate excretion. Phosphate may also play a role in the development of the resistance of the parathyroid calcium-sensing receptor (CaSR) to circulating calcium thus contributing to calcium retention in the circulation. Phosphate can contribute to vascular smooth muscle dedifferentiation with manifestation of osteoblastogenesis and ultimately endovascular calcium phosphate precipitation. Thus phosphate, along with calcium, contributes to the calcification and inflammation of atherosclerotic plaques and the origin of these elements is likely the bone, which serves as storage for the majority of the body's supply of extracellular calcium and phosphate. Early cardiac evaluation of patients with chronic inflammation and attempts at up-regulating the parathyroid CaSR with calcimimetics or introducing earlier anti-resorptive treatment with bone active pharmacologic agents may serve to delay onset or reduce the quantity of atherosclerotic plaque calcification in these patients.


Asunto(s)
Calcio , Inflamación , Fosfatos , Receptores Sensibles al Calcio , Calcificación Vascular , Humanos , Calcificación Vascular/metabolismo , Fosfatos/metabolismo , Calcio/metabolismo , Inflamación/metabolismo , Receptores Sensibles al Calcio/metabolismo , Animales , Vasos Coronarios/metabolismo
5.
J Pharm Biomed Anal ; 245: 116192, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703747

RESUMEN

Calcium sensing receptor (CaSR) has become the novel target of treating osteoporosis with herbal medicine Ligustri Lucidi Fructus (LLF), however, the bioactive compounds responsible for anti-osteoporosis are hard to clarify due to the complexity and diversity of chemical constituents in it. Herein, the immobilized CaSR column was packed with stationary phase materials, which were derived from integrating CLIP-tagged CaSR directly out of crude cell lysates onto the surface of silica gels (5.83 mg/g) in a site-specific covalent manner. The column had a great specificity of recognizing agonists and kept a good stability for at least 3 weeks. The two compounds from LLF extract were screened and identified as olenuezhenoside and ligustroflavone using the immobilized CaSR column in conjunction with mass spectrometry. Molecular docking predicted that both compounds were bound in venus flytrap (VFT) domain of CaSR by the formation of hydrogen bonds. Cellular results showed that both compounds exhibited the distinct osteogenic activity by enhancing the proliferation, differentiation and mineralization of osteoblastic cells. Our study demonstrated that, the immobilized protein column enables to screen the bioactive compounds rapidly from herbal extract, and the newly discovered natural product ligands towards CaSR, including olenuezhenoside and ligustroflavone, will be the candidates for the treatment of osteoporosis.


Asunto(s)
Ligustrum , Simulación del Acoplamiento Molecular , Osteogénesis , Extractos Vegetales , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/antagonistas & inhibidores , Osteogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ligustrum/química , Humanos , Osteoblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Frutas/química , Animales , Osteoporosis/tratamiento farmacológico
6.
Technol Cancer Res Treat ; 23: 15330338241254219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780484

RESUMEN

INTRODUCTION: Breast cancer (BC) is a common cancer characterized by a high molecular heterogeneity. Therefore, understanding its biological properties and developing effective treatments for patients with different molecular features is imperative. Calcium-sensing receptor (CaSR) has been implicated in several regulatory functions in various types of human cancers. However, its underlying pathological mechanism in BC progression remains elusive. METHODS: We utilized The Cancer Genome Atlas and Gene Expression Omnibus databases to explore the function of CaSR in the metastasis of BC. Gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Gene Set Enrichment Analysis of biological processes and cell signaling pathways revealed that CaSR could be activated or inhibited. Importantly, quantitative reverse transcriptase-polymerase chain reaction and western blotting were used to verify the gene expression of the CaSR. Wound healing and transwell assays were conducted to assess the effect of CaSR on the migration of BC cells. RESULTS: We demonstrated that CaSR expression in metastatic BC was higher than that in non-metastatic BC. It is the first time that database information has been used to reveal the biological process and molecular mechanism of CaSR in BC. Moreover, the CaSR expression in normal breast epithelial cells was notably less compared to that in BC cells. The activation of CaSR by Cinacalcet (a CaSR agonist) significantly enhanced the migration of BC cells, whereas NPS-2143 (a CaSR antagonist) treatment dramatically inhibited these effects. CONCLUSION AND FUTURE PERSPECTIVE: Bioinformatics techniques and experiments demonstrated the involvement of CaSR in BC metastasis. Our findings shed new light on the receptor therapy and molecular pathogenesis of BC, and emphasize the crucial function of CaSR, facilitating the metastasis of BC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Receptores Sensibles al Calcio , Humanos , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular/genética , Bases de Datos Genéticas , Transducción de Señal , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes
7.
Curr Opin Nephrol Hypertens ; 33(4): 433-440, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690798

RESUMEN

PURPOSE OF REVIEW: Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS: Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY: These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.


Asunto(s)
Riñón , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Humanos , Animales , Riñón/metabolismo , Hipercalciuria/metabolismo , Hipercalciuria/genética , Calcio/metabolismo , Hipercalcemia/metabolismo , Hipercalcemia/genética , Claudinas/metabolismo , Claudinas/genética , Hipocalcemia , Hipoparatiroidismo/congénito
8.
Curr Opin Nephrol Hypertens ; 33(4): 375-382, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701324

RESUMEN

PURPOSE OF REVIEW: Parathyroid hormone (PTH) is the major peptide hormone regulator of blood calcium homeostasis. Abnormal PTH levels can be observed in patients with various congenital and acquired disorders, including chronic kidney disease (CKD). This review will focus on rare human diseases caused by PTH mutations that have provided insights into the regulation of PTH synthesis and secretion as well as the diagnostic utility of different PTH assays. RECENT FINDINGS: Over the past years, numerous diseases affecting calcium and phosphate homeostasis have been defined at the molecular level that are responsible for reduced or increased serum PTH levels. The underlying genetic mutations impair parathyroid gland development, involve the PTH gene itself, or alter function of the calcium-sensing receptor (CaSR) or its downstream signaling partners that contribute to regulation of PTH synthesis or secretion. Mutations in the pre sequence of the mature PTH peptide can, for instance, impair hormone synthesis or intracellular processing, while amino acid substitutions affecting the secreted PTH(1-84) impair PTH receptor (PTH1R) activation, or cause defective cleavage of the pro-sequence and thus secretion of a pro- PTH with much reduced biological activity. Mutations affecting the secreted hormone can alter detection by different PTH assays, thus requiring detailed knowledge of the utilized diagnostic test. SUMMARY: Rare diseases affecting PTH synthesis and secretion have offered helpful insights into parathyroid biology and the diagnostic utility of commonly used PTH assays, which may have implications for the interpretation of PTH measurements in more common disorders such as CKD.


Asunto(s)
Mutación , Hormona Paratiroidea , Humanos , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/sangre , Hormona Paratiroidea/genética , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Glándulas Paratiroides/metabolismo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Animales , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Calcio/metabolismo , Predisposición Genética a la Enfermedad , Valor Predictivo de las Pruebas , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética
9.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715976

RESUMEN

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Asunto(s)
Macrófagos , Receptores Sensibles al Calcio , Remodelación Ventricular , Animales , Masculino , Ratones , Ratas , Presión Sanguínea , Fibrosis/metabolismo , Hipertensión/metabolismo , Hipertensión/patología , Macrófagos/metabolismo , Miocardio/patología , Miocardio/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Endogámicas SHR , Receptores Sensibles al Calcio/metabolismo , Remodelación Ventricular/fisiología
10.
Br J Pharmacol ; 181(15): 2676-2696, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38627101

RESUMEN

BACKGROUND AND PURPOSE: Neuropathic pain, a debilitating condition with unmet medical needs, can be characterised as hyperexcitability of nociceptive neurons caused by dysfunction of ion channels. Voltage-gated potassium channels type 7 (Kv7), responsible for maintaining neuronal resting membrane potential and thus excitability, reside under tight control of G protein-coupled receptors (GPCRs). Calcium-sensing receptor (CaSR) is a GPCR that regulates the activity of numerous ion channels, but whether CaSR can control Kv7 channel function has been unexplored until now. EXPERIMENTAL APPROACH: Experiments were conducted in recombinant cell models, mouse dorsal root ganglia (DRG) neurons and human induced pluripotent stem cell (hiPSC)-derived nociceptive-like neurons using patch-clamp electrophysiology and molecular biology techniques. KEY RESULTS: Our results demonstrate that CaSR is expressed in recombinant cell models, hiPSC-derived nociceptive-like neurons and mouse DRG neurons, and its activation induced depolarisation via Kv7.2/7.3 channel inhibition. The CaSR-Kv7.2/7.3 channel crosslink was mediated via the Gi/o protein-adenylate cyclase-cyclicAMP-protein kinase A signalling cascade. Suppression of CaSR function demonstrated a potential to rescue hiPSC-derived nociceptive-like neurons from algogenic cocktail-induced hyperexcitability. CONCLUSION AND IMPLICATIONS: This study demonstrates that the CaSR-Kv7.2/7.3 channel crosslink, via a Gi/o protein signalling pathway, effectively regulates neuronal excitability, providing a feasible pharmacological target for neuronal hyperexcitability management in neuropathic pain.


Asunto(s)
Ganglios Espinales , Células Madre Pluripotentes Inducidas , Receptores Sensibles al Calcio , Transducción de Señal , Humanos , Receptores Sensibles al Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Ratones , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Nociceptores/metabolismo , Células Cultivadas , Células HEK293
11.
Intern Med J ; 54(6): 852-860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38665051

RESUMEN

Calcium-sensing receptors (CaSRs) are G protein-coupled receptors that help maintain Ca2+ concentrations, modulating calciotropic hormone release (parathyroid hormone (PTH), calcitonin and 1,25-dihydroxyvitamin D) by direct actions in the kidneys, gastrointestinal tract and bone. Variability in population calcium levels has been attributed to single nucleotide polymorphisms in CaSR genes, and several conditions affecting calcium and phosphate homeostasis have been attributed to gain- or loss-of-function mutations. An example is autosomal dominant hypercalciuric hypocalcaemia, because of a missense mutation at codon 128 of chromosome 3, as reported in our specific case and her family. As a consequence of treating symptomatic hypocalcaemia as a child, this female subject slowly developed progressive end-stage kidney failure because of nephrocalcinosis and nephrolithiasis. After kidney transplantation, she remains asymptomatic, with decreased vitamin D and elemental calcium requirements, stable fluid and electrolyte homeostasis during intercurrent illnesses and has normalised urinary calcium and phosphate excretion, reducing the likelihood of hypercalciuria-induced graft impairment. We review the actions of the CaSR, its role in regulating renal Ca2+ homeostasis along with the impact of a proven gain-of-function mutation in the CaSR gene resulting in autosomal dominant hypercalciuric hypocalcaemia before and after kidney transplantation.


Asunto(s)
Calcio , Homeostasis , Trasplante de Riñón , Receptores Sensibles al Calcio , Humanos , Receptores Sensibles al Calcio/genética , Femenino , Calcio/metabolismo , Hipocalcemia/genética , Hipocalcemia/etiología , Hipercalciuria/genética , Hipercalcemia/genética , Riñón/metabolismo , Mutación Missense , Nefrocalcinosis/genética , Fallo Renal Crónico/cirugía , Hipoparatiroidismo/congénito
12.
Eur J Endocrinol ; 190(4): 296-306, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38561929

RESUMEN

OBJECTIVE: The calcium-sensing receptor (CASR) gene encodes a G protein-coupled receptor crucial for calcium homeostasis. Gain-of-function CASR variants result in hypocalcemia, while loss-of-function variants lead to hypercalcemia. This study aims to assess the functional consequences of the novel nonsense CASR variant [c.2897_2898insCTGA, p.(Gln967*) (Q967*)] identified in adolescent patient with chronic hypocalcemia, a phenotype expected for a gain-of-function variants. DESIGN AND METHODS: To functionally characterize the Q967* mutant receptor, both wild-type (WT) and mutant CASR were transiently transfected into HEK293T cells and calcium-sensing receptor (CaSR) protein expression and functions were comparatively evaluated using multiple read-outs. RESULTS: Western blot analysis revealed that the CaSR mutant protein displayed a lower molecular weight compared with the WT, consistent with the loss of the last 122 amino acids in the intracellular domain. Mitogen-activated protein kinase activation and serum responsive element luciferase assays demonstrated that the mutant receptor had higher baseline activity than the WT. Extracellular-signal-regulated kinase/c-Jun N-terminal kinase phosphorylation, however, remained consistently high in the mutant, without significant modulations following exposure to increasing extracellular calcium (Ca2+o) levels, suggesting that the mutant receptor is more sensitive to Ca2+o compared with the WT. CONCLUSIONS: This study provides functional validation of the pathogenicity of a novel nonsense CASR variant, resulting in an abnormally hyperfunctioning protein consistent with the patient's phenotype. Functional analyses indicate that mutant receptor is constitutively active and poorly sensitive to increasing concentrations of extracellular calcium, suggesting that the cytoplasmic tail may contain elements regulating signal transduction.


Asunto(s)
Hipercalcemia , Hipocalcemia , Adolescente , Humanos , Calcio , Células HEK293 , Hipercalcemia/genética , Hipocalcemia/genética , Mutación/genética , Receptores Sensibles al Calcio/genética
13.
Biomed Pharmacother ; 174: 116518, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565057

RESUMEN

BACKGROUND: The Calcium-sensing receptor (CaSR) participates in the regulation of gastrointestinal (GI) motility under normal conditions and might be involved in the regulation of GI dysmotility in patients with Parkinson's disease (PD). METHODS: CaSR antagonist-NPS-2143 was applied in in vivo and ex vivo experiments to study the effect and underlying mechanisms of CaSR inhibition on GI dysmotility in the MPTP-induced PD mouse model. FINDINGS: Oral intake of NPS-2143 promoted GI motility in PD mice as shown by the increased gastric emptying rate and shortened whole gut transit time together with improved weight and water content in the feces of PD mice, and the lack of influence on normal mice. Meanwhile, the number of cholinergic neurons, the proportion of serotonergic neurons, as well as the levels of acetylcholine and serotonin increased, but the numbers of nitrergic and tyrosine hydroxylase immunoreactive neurons, and the levels of nitric oxide synthase and dopamine decreased in the myenteric plexus in the gastric antrum and colon of PD mice in response to NPS-2143 treatment. Furthermore, the numbers of c-fos positive neurons in the nucleus tractus solitarius (NTS) and cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) increased in NPS-2143 treated PD mice, suggesting the involvement of both the enteric (ENS) and central (CNS) nervous systems. However, ex vivo results showed that NPS-2143 directly inhibited the contractility of antral and colonic strips in PD mice via a non-ENS mediated mechanism. Further studies revealed that NPS-2143 directly inhibited the voltage gated Ca2+ channels, which might, at least in part, explain its direct inhibitory effects on the GI muscle strips. INTERPRETATION: CaSR inhibition by its antagonist ameliorated GI dysmotility in PD mice via coordinated neuronal regulation by both ENS and CNS in vivo, although the direct effects of CaSR inhibition on GI muscle strips were suppressive.


Asunto(s)
Motilidad Gastrointestinal , Naftalenos , Enfermedad de Parkinson , Receptores Sensibles al Calcio , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Vaciamiento Gástrico/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Receptores Sensibles al Calcio/antagonistas & inhibidores , Receptores Sensibles al Calcio/metabolismo
14.
Commun Biol ; 7(1): 501, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664468

RESUMEN

G protein-coupled receptors naturally oscillate between inactive and active states, often resulting in receptor constitutive activity with important physiological consequences. Among the class C G protein-coupled receptors that typically sense amino-acids and their derivatives, the calcium sensing receptor (CaSR) tightly controls blood calcium levels. Its constitutive activity has not yet been studied. Here, we demonstrate the importance of the inter-subunit disulfide bridges in maintaining the inactive state of CaSR, resulting in undetectable constitutive activity, unlike the other class C receptors. Deletion of these disulfide bridges results in strong constitutive activity that is abolished by mutations preventing amino acid binding. It shows that this inter-subunit disulfide link is necessary to limit the agonist effect of amino acids on CaSR. Furthermore, human genetic mutations deleting these bridges and associated with hypocalcemia result in elevated CaSR constitutive activity. These results highlight the physiological importance of fine tuning the constitutive activity of G protein-coupled receptors.


Asunto(s)
Disulfuros , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Humanos , Disulfuros/metabolismo , Disulfuros/química , Células HEK293 , Calcio/metabolismo , Mutación , Animales
15.
Nature ; 629(8011): 481-488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632411

RESUMEN

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Sensibles al Calcio , Humanos , Calcio/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/química , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Sitios de Unión , Estructura Secundaria de Proteína , Especificidad por Sustrato
16.
Artículo en Inglés | MEDLINE | ID: mdl-38447057

RESUMEN

Kidney aging accelerates the progression of various acute and chronic kidney diseases and can also induce pathological changes in other organs throughout the body. Circular RNAs (circRNAs) have been demonstrated to play a vital role in aging and age-related diseases. However, biological functions and the underlying molecular mechanism of circRNAs in kidney aging remain largely unclear. Uncovering the functions of circRNAs in kidney aging and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human aging. Here, we report the important role of circVmn2r1 in the progression of kidney aging. We found that circVmn2r1 was one of the top expressed circRNAs in mouse kidney by RNA sequencing and was significantly upregulated in 24-month-old mouse kidney compared to 3-month-old. More importantly, we demonstrated that overexpression of circVmn2r1 promoted kidney aging in senescence-accelerated mouse prone 8 mice. Cellular assays with mouse kidney tubular epithelium (TCMK-1) cells under both gain-of-function and loss-of-function conditions demonstrated that circVmn2r1 inhibited proliferation and promoted senescence, whereas miR-223-3p counteracted these effects. Mechanistic analysis demonstrated that circVmn2r1 acted as a miR-223-3p sponge to relieve the repressive effect of miR-223-3p on its target NLRP3, which we proved could inhibit proliferation and promote senescence of TCMK-1 cells. Our results indicate that circVmn2r1 promotes kidney aging through acting as a miR-223-3p sponge, consequently upregulating NLRP3 expression, and can be a valuable diagnostic marker and an important therapeutic target for kidney aging.


Asunto(s)
Envejecimiento , Riñón , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Circular , Animales , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/fisiología , Senescencia Celular/genética , Riñón/patología , Riñón/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , ARN Circular/genética , ARN Circular/metabolismo , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo
17.
Am J Physiol Renal Physiol ; 326(5): F792-F801, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545651

RESUMEN

The kidney controls systemic inorganic phosphate (Pi) levels by adapting reabsorption to Pi intake. Renal Pi reabsorption is mostly mediated by sodium-phosphate cotransporters NaPi-IIa (SLC34A1) and NaPi-IIc (SLC34A3) that are tightly controlled by various hormones including parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23). PTH and FGF23 rise in response to Pi intake and decrease NaPi-IIa and NaPi-IIc brush border membrane abundance enhancing phosphaturia. Phosphaturia and transporter regulation occurs even in the absence of PTH and FGF23 signaling. The calcium-sensing receptor (CaSR) regulates PTH and FGF23 secretion, and may also directly affect renal Pi handling. Here, we combined pharmacological and genetic approaches to examine the role of the CaSR in the acute phosphaturic response to Pi loading. Animals pretreated with the calcimimetic cinacalcet were hyperphosphatemic, had blunted PTH levels upon Pi administration, a reduced Pi-induced phosphaturia, and no Pi-induced NaPi-IIa downregulation. The calcilytic NPS-2143 exaggerated the PTH response to Pi loading but did not abolish Pi-induced downregulation of NaPi-IIa. In mice with a dominant inactivating mutation in the Casr (CasrBCH002), baseline NaPi-IIa expression was higher, whereas downregulation of transporter expression was blunted in double CasrBCH002/PTH knockout (KO) transgenic animals. Thus, in response to an acute Pi load, acute modulation of the CaSR affects the endocrine and renal response, whereas chronic genetic inactivation, displays only subtle differences in the downregulation of NaPi-IIa and NaPi-IIc renal expression. We did not find evidence that the CaSR impacts on the acute renal response to oral Pi loading beyond its role in regulating PTH secretion.NEW & NOTEWORTHY Consumption of phosphate-rich diets causes an adaptive response of the body leading to the urinary excretion of phosphate. The underlying mechanisms are still poorly understood. Here, we examined the role of the calcium-sensing receptor (CaSR) that senses both calcium and phosphate. We confirmed that the receptor increases the secretion of parathyroid hormone involved in stimulating urinary phosphate excretion. However, we did not find any evidence for a role of the receptor beyond this function.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Riñón , Ratones Noqueados , Hormona Paratiroidea , Fosfatos , Receptores Sensibles al Calcio , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Animales , Hormona Paratiroidea/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Fosfatos/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Ratones , Reabsorción Renal/efectos de los fármacos , Masculino , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones Endogámicos C57BL
18.
Front Endocrinol (Lausanne) ; 15: 1291160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487341

RESUMEN

Context: Although a monoallelic mutation in the calcium-sensing receptor (CASR) gene causes familial hypocalciuric hypercalcemia (FHH), the functional characterization of the identified CASR mutation linked to the clinical response to calcimimetics therapy is still limited. Objective: A 45-year-old male presenting with moderate hypercalcemia, hypocalciuria, and inappropriately high parathyroid hormone (PTH) had a good response to cinacalcet (total serum calcium (Ca2+) from 12.5 to 10.1 mg/dl). We identified the genetic mutation and characterized the functional and pathophysiological mechanisms, and then linked the mutation to calcimimetics treatment in vitro. Design: Sanger sequencing of the CASR, GNA11, and AP2S1 genes was performed in his family. The simulation model was used to predict the function of the identified mutant. In vitro studies, including immunoblotting, immunofluorescence, a cycloheximide chase study, Calbryte™ 520 Ca2+ detection, and half-maximal effective concentration (EC50), were examined. Results: This proband was found to carry a de novo heterozygous missense I554N in the cysteine-rich domain of CASR, which was pathogenic based on the different software prediction models and ACGME criteria. The simulation model showed that CASR I554N mutation decreased its binding energy with Ca2+. Human CASR I554N mutation attenuated the stability of CASR protein, reduced the expression of p-ERK 1/2, and blunted the intracellular Ca2+ response to gradient extracellular Ca2+ (eCa2+) concentration. The EC50 study also demonstrated the correctable effect of calcimimetics on the function of the CASR I554N mutation. Conclusion: This novel CASR I554N mutation causing FHH attenuates CASR stability, its binding affinity with Ca2+, and the response to eCa2+ corrected by therapeutic calcimimetics.


Asunto(s)
Hipercalcemia , Hipercalcemia/congénito , Hiperparatiroidismo , Enfermedades Renales , Masculino , Humanos , Persona de Mediana Edad , Hipercalcemia/tratamiento farmacológico , Hipercalcemia/genética , Hipercalcemia/diagnóstico , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Calcio/metabolismo , Mutación
19.
Int Urol Nephrol ; 56(7): 2165-2177, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38372840

RESUMEN

PURPOSE: Calcium-sensing receptor (CASR) influences the expression pattern of multiple genes in renal tubular epithelial cells. The objective of this inquiry was to explore the molecular mechanisms of CASR in renal tubular epithelial cells and nephrolithiasis. METHODS: HK-2 cells were transfected with lentiviruses carrying either CASR (named CASR) or an empty vector negative control (named NC), as well as shRNA intended to target CASR (named shCASR) or its corresponding negative control (named shNC). CCK-8 assay was used to detect the effect of CASR on the proliferation of HK-2 cells. RNA-Sequencing was applied to explore potential pathways regulated by CASR in HK-2 cells. RESULTS: PCR and western blot results showed that CASR expression was significantly increased in CASR cells and was decreased in shCASR cells when compared to their corresponding negative control, respectively. CCK-8 assay revealed that CASR inhibited the proliferation of HK-2 cells. RNA-Sequencing results suggested that the shCASR HK-2 cells exhibited a significant up-regulation of 345 genes and a down-regulation of 366 genes. These differentially expressed genes (DEGs) were related to cell apoptosis and cell development. In CASR HK-2 cells, 1103 DEGs primarily functioned in mitochondrial energy metabolism, and amino acid metabolism. With the Venn diagram, 4 DEGs (Clorf116, ENPP3, IL20RB, and CLDN2) were selected as the hub genes regulated by CASR. Enrichment analysis revealed that these hub genes were involved in cell-cell junction, and epithelial cell development. CONCLUSIONS: In summary, our investigation has the potential to offer novel perspectives on CASR regulating cell-cell junction in HK-2 cells.


Asunto(s)
Células Epiteliales , Túbulos Renales , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Humanos , Células Epiteliales/metabolismo , Túbulos Renales/citología , Túbulos Renales/metabolismo , Uniones Intercelulares/metabolismo , Células Cultivadas , Proliferación Celular , Nefrolitiasis/genética , Nefrolitiasis/metabolismo , Regulación de la Expresión Génica , Línea Celular
20.
J Physiol ; 602(13): 3207-3224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38367250

RESUMEN

High concentrations of urinary calcium counteract vasopressin action via the activation of the Calcium-Sensing Receptor (CaSR) expressed in the luminal membrane of the collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). In line with these findings, we provide evidence that, with respect to wild-type mice, CaSR knock-in (KI) mice mimicking autosomal dominant hypocalcaemia, display a significant decrease in the total content of AQP2 associated with significantly higher levels of AQP2 phosphorylation at Ser261, a phosphorylation site involved in AQP2 degradation. Interestingly, KI mice also had significantly higher levels of phosphorylated p38MAPK, a downstream effector of CaSR and known to phosphorylate AQP2 at Ser261. Moreover, ATF1 phosphorylated at Ser63, a transcription factor downstream of p38MAPK, was significantly higher in KI. In addition, KI mice had significantly higher levels of AQP2-targeting miRNA137 consistent with a post-transcriptional downregulation of AQP2. In vivo treatment of KI mice with the calcilytic JTT-305, a CaSR antagonist, increased AQP2 expression and reduced AQP2-targeting miRNA137 levels in KI mice. Together, these results provide direct evidence for a critical role of CaSR in impairing both short-term vasopressin response by increasing AQP2-pS261, as well as AQP2 abundance, via the p38MAPK-ATF1-miR137 pathway. KEY POINTS: Calcium-Sensing Receptor (CaSR) activating mutations are the main cause of autosomal dominant hypocalcaemia (ADH) characterized by inappropriate renal calcium excretion leading to hypocalcaemia and hypercalciuria. Current treatments of ADH patients with parathyroid hormone, although improving hypocalcaemia, do not improve hypercalciuria or nephrocalcinosis. In vivo treatment with calcilytic JTT-305/MK-5442 ameliorates most of the ADH phenotypes of the CaSR knock-in mice including hypercalciuria or nephrocalcinosis and reverses the downregulation of the vasopressin-sensitive aquaporin-2 (AQP2) expression, providing direct evidence for a critical role of CaSR in impairing vasopressin response. The beneficial effect of calcilytic in reducing the risk of renal calcification may occur in a parathyroid hormone-independent action through vasopressin-dependent inhibition of cAMP synthesis in the thick ascending limb and in the collecting duct. The amelioration of most of the abnormalities in calcium metabolism including hypercalciuria, renal calcification, and AQP2-mediated osmotic water reabsorption makes calcilytic a good candidate as a novel therapeutic agent for ADH.


Asunto(s)
Acuaporina 2 , Regulación hacia Abajo , Receptores Sensibles al Calcio , Vasopresinas , Animales , Acuaporina 2/metabolismo , Acuaporina 2/genética , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Ratones , Vasopresinas/metabolismo , Técnicas de Sustitución del Gen , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Transducción de Señal , Fenotipo , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipercalciuria/tratamiento farmacológico , Calcio/metabolismo , Fosforilación , Hipocalcemia , Hipoparatiroidismo/congénito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA