Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.225
Filtrar
1.
Molecules ; 29(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125051

RESUMEN

Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related to over-activation of this system. Thus, new molecules that may interfere with CRF receptor binding may be of value to treat neuropsychiatric stress-related disorders. Also, CRF1R antagonists have recently emerged as potential treatment options for congenital adrenal hyperplasia. Previously, several series of CRF1 receptor antagonists were developed by our group. In continuation of our efforts in this direction, herein we report the synthesis and biological evaluation of a new series of CRF1R antagonists. Representative compounds were evaluated for their binding affinities compared to antalarmin. Four compounds (2, 5, 20, and 21) showed log IC50 values of -8.22, -7.95, -8.04, and -7.88, respectively, compared to -7.78 for antalarmin. This result indicates that these four compounds are superior to antalarmin by 2.5, 1.4, 1.7, and 1.25 times, respectively. It is worth mentioning that compound 2, in terms of IC50, is among the best CRF1R antagonists ever developed in the last 40 years. The in silico physicochemical properties of the lead compounds showed good drug-like properties. Thus, further research in this direction may lead to better and safer CRF receptor antagonists that may have clinical applications, particularly for stress-related disorders and the treatment of congenital adrenal hyperplasia.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Diseño de Fármacos , Pirimidinas , Receptores de Hormona Liberadora de Corticotropina , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Humanos , Hiperplasia Suprarrenal Congénita/tratamiento farmacológico , Hiperplasia Suprarrenal Congénita/metabolismo , Pirroles/química , Pirroles/síntesis química , Pirroles/farmacología , Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico/tratamiento farmacológico , Simulación del Acoplamiento Molecular
2.
Biol Res ; 57(1): 46, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014514

RESUMEN

BACKGROUND: The nucleus incertus (NI) was originally described by Streeter in 1903, as a midline region in the floor of the fourth ventricle of the human brain with an 'unknown' function. More than a century later, the neuroanatomy of the NI has been described in lower vertebrates, but not in humans. Therefore, we examined the neurochemical anatomy of the human NI using markers, including the neuropeptide, relaxin-3 (RLN3), and began to explore the distribution of the NI-related RLN3 innervation of the hippocampus. METHODS: Histochemical staining of serial, coronal sections of control human postmortem pons was conducted to reveal the presence of the NI by detection of immunoreactivity (IR) for the neuronal markers, microtubule-associated protein-2 (MAP2), glutamic acid dehydrogenase (GAD)-65/67 and corticotrophin-releasing hormone receptor 1 (CRHR1), and RLN3, which is highly expressed in NI neurons in diverse species. RLN3 and vesicular GABA transporter 1 (vGAT1) mRNA were detected by fluorescent in situ hybridization. Pons sections containing the NI from an AD case were immunostained for phosphorylated-tau, to explore potential relevance to neurodegenerative diseases. Lastly, sections of the human hippocampus were stained to detect RLN3-IR and somatostatin (SST)-IR. RESULTS: In the dorsal, anterior-medial region of the human pons, neurons containing RLN3- and MAP2-IR, and RLN3/vGAT1 mRNA-positive neurons were observed in an anatomical pattern consistent with that of the NI in other species. GAD65/67- and CRHR1-immunopositive neurons were also detected within this area. Furthermore, RLN3- and AT8-IR were co-localized within NI neurons of an AD subject. Lastly, RLN3-IR was detected in neurons within the CA1, CA2, CA3 and DG areas of the hippocampus, in the absence of RLN3 mRNA. In the DG, RLN3- and SST-IR were co-localized in a small population of neurons. CONCLUSIONS: Aspects of the anatomy of the human NI are shared across species, including a population of stress-responsive, RLN3-expressing neurons and a RLN3 innervation of the hippocampus. Accumulation of phosphorylated-tau in the NI suggests its possible involvement in AD pathology. Further characterization of the neurochemistry of the human NI will increase our understanding of its functional role in health and disease.


Asunto(s)
Puente , Humanos , Puente/metabolismo , Masculino , Hipocampo/química , Hipocampo/metabolismo , Femenino , Relaxina/metabolismo , Relaxina/genética , Anciano , Neuronas/química , Memoria/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Inmunohistoquímica , Hibridación Fluorescente in Situ , Glutamato Descarboxilasa/metabolismo , Glutamato Descarboxilasa/genética , Receptores de Hormona Liberadora de Corticotropina
3.
J Affect Disord ; 363: 249-257, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029702

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is progressively recognized as a stress-related disorder characterized by aberrant brain network dynamics, encompassing both structural and functional domains. Yet, the intricate interplay between these dynamic networks and their molecular underpinnings remains predominantly unexplored. METHODS: Both structural and functional networks were constructed using multimodal neuroimaging data from 183 MDD patients and 300 age- and gender-matched healthy controls (HC). structural-functional connectivity (SC-FC) coupling was evaluated at both the connectome- and nodal-levels. Methylation data of five HPA axis key genes, including NR3C1, FKBP5, CRHBP, CRHR1, and CRHR2, were analyzed using Illumina Infinium Methylation EPIC BeadChip. RESULTS: We observed a significant reduction in SC-FC coupling at the connectome-level in patients with MDD compared to HC. At the nodal level, we found an imbalance in SC-FC coupling, with reduced coupling in cortical regions and increased coupling in subcortical regions. Furthermore, we identified 23 differentially methylated CpG sites on the HPA axis, following adjustment for multiple comparisons and control of age, gender, and medication status. Notably, three CpG sites on NR3C1 (cg01294526, cg19457823, and cg23430507), one CpG site on FKBP5 (cg25563198), one CpG site on CRHR1 (cg26656751), and one CpG site on CRHR2 (cg18351440) exhibited significant associations with SC-FC coupling in MDD patients. CONCLUSIONS: These findings provide valuable insights into the connection between micro-scale epigenetic changes in the HPA axis and SC-FC coupling at macro-scale connectomes. They unveil the mechanisms underlying increased susceptibility to MDD resulting from chronic stress and may suggest potential pharmacological targets within the HPA-axis for MDD treatment.


Asunto(s)
Encéfalo , Conectoma , Metilación de ADN , Trastorno Depresivo Mayor , Epigénesis Genética , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Masculino , Adulto , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Proteínas de Unión a Tacrolimus/genética , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipotálamo-Hipofisario/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Imagen por Resonancia Magnética , Sistema Hipófiso-Suprarrenal/fisiopatología , Receptores de Glucocorticoides/genética , Estudios de Casos y Controles
4.
Sci Rep ; 14(1): 17056, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048594

RESUMEN

Corticotropin-releasing factor (CRF) is mainly secreted from the hypothalamic paraventricular nuclei and plays a crucial role in stress-related responses. Recent studies have reported that CRF is a neuromodulator in the central nervous system. In the cerebellum, CRF is essential for the induction of long-term depression (LTD) at the parallel fiber-Purkinje cell synapses. Given that LTD is thought to be one of the fundamental mechanisms of motor learning, CRF may affect motor learning. However, the role of CRF in motor learning in vivo remains unclear. In this study, we aimed to examine the role of CRF in motor learning. This was achieved through a series of behavioral experiments involving the in vivo administration of CRF and its antagonists. Rats injected with CRF directly into the cerebellum exhibited superior performance on the rotarod test, especially during initial training phases, compared to control subjects. Conversely, rats receiving a CRF receptor antagonist demonstrated reduced endurance on the rotating rod compared to controls. Notably, CRF mRNA expression levels in the cerebellum did not show significant variance between the CRF-injected and control groups. These findings imply a critical role of endogenous CRF in cerebellar motor learning and suggest that exogenous CRF can augment this process. (199 words).


Asunto(s)
Cerebelo , Hormona Liberadora de Corticotropina , Aprendizaje , Animales , Hormona Liberadora de Corticotropina/metabolismo , Masculino , Ratas , Aprendizaje/fisiología , Aprendizaje/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/fisiología , Actividad Motora/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Ratas Sprague-Dawley
5.
Behav Brain Res ; 472: 115139, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-38969017

RESUMEN

Numerous studies have demonstrated that chronic stress during pregnancy (CSDP) can induce depression and hippocampal damage in offspring. It has also been observed that high levels of corticotropin-releasing hormone (CRH) can damage hippocampal neurons, and intraperitoneal injection of a corticotropin releasing hormone receptor 1 (CRHR1) antagonist decreases depression-like behavior and hippocampal neuronal damage in a mouse depression model. However, whether CSDP causes hippocampal damage and depression in offspring through the interaction of CRH and hippocampal CRHR1 remains unknown and warrants further investigation. Therefore, hippocampal Crhr1 conditional gene knockout mice and C57/BL6J mice were used to study these questions. Depression-related indexs in male offspring mice were examined using the forced swim test (FST), sucrose preference test (SPT), tail suspension test (TST) and open field test (OFT). Serum CRH levels were measured by enzyme-linked immunosorbent assay (ELISA). Golgi-Cox staining was used to examine the morphological changes of hippocampal neuronal dendrites. Neuronal apoptosis in the hippocampal CA3 regions was detected by terminal deoxynucleotidy transferase dUTP nick end labeling (TUNEL) staining. The levels of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR) and protein kinase B (AKT) proteins were measured by Western blot analysis. This study showed that CSDP induces depression-like behavior, hippocampal neuronal dendrite damage and apoptosis in male offspring mice. Conditional gene knockout of hippocampal Crhr1 in mice reduced CSDP-induced depression-like behavior, hippocampal neuronal dendrite damage and apoptosis in male offspring, and counteracted the CSDP-induced decreased expression of p-Akt and mTOR activity in male offspring hippocampus. These findings demonstrated that CSDP might inhibit the Akt/mTOR pathway by increasing the levels of CRH, leading to increased CRH-mediated activation of hippocampal CRHR1, thereby inducing synaptic impairment and apoptosis in hippocampal neurons, which in turn leads to depression-like behavior in offspring.


Asunto(s)
Hormona Liberadora de Corticotropina , Depresión , Hipocampo , Ratones Endogámicos C57BL , Ratones Noqueados , Efectos Tardíos de la Exposición Prenatal , Receptores de Hormona Liberadora de Corticotropina , Estrés Psicológico , Animales , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Femenino , Masculino , Hipocampo/metabolismo , Hipocampo/patología , Embarazo , Estrés Psicológico/metabolismo , Depresión/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/patología , Apoptosis/fisiología , Modelos Animales de Enfermedad , Conducta Animal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
6.
Neuropharmacology ; 258: 110066, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986806

RESUMEN

Patients with post-traumatic stress disorder (PTSD) exhibit sex differences in symptomology, with women more likely to report higher rates of intrusive and avoidance symptoms than men, underscoring the need for sex-informed approaches to research and treatment. Our study delved into the sex-specific aspects of stress-induced visual impairments using the single prolonged stress (SPS) model, a partially validated rodent model for PTSD. Male SPS mice exhibit heightened optimal spatial frequency (SF) of primary visual cortex (V1) neurons, while female counterparts exhibit decreased optimal temporal frequency (TF) of V1 neurons. This phenomenon persisted until the 29th day after SPS modeling, and it may be the physiological basis for the observed increase in visual acuity in male SPS mice in visual water task. Furthermore, our study found that corticotropin-releasing factor receptor 1 regulated optimal TF and optimal SF of V1 in mice, but did not exhibit sex differences. These findings indicated that severe stress induces sex-specific effects on visual function.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Receptores de Hormona Liberadora de Corticotropina , Caracteres Sexuales , Estrés Psicológico , Animales , Masculino , Femenino , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Ratones , Neuronas/fisiología , Trastornos por Estrés Postraumático/fisiopatología , Trastornos por Estrés Postraumático/psicología , Corteza Visual Primaria/fisiología , Agudeza Visual/fisiología , Corteza Visual
7.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022893

RESUMEN

Social status directly affects the health of humans and other animals. Low status individuals receive more antagonistic encounters, have fewer supportive relationships and have worse health outcomes. However, the physiological and cellular processes that mediate the relationship between the social environment and health are incompletely known. Epigenetic regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine pathway that activates in response to stressors, may be one process that is sensitive to the social environment. Here, we experimentally manipulated plumage, a key social signal in female tree swallows (Tachycineta bicolor) and quantified methylation of four genes in the HPA axis before and after treatment. We found that dulling the white breast plumage affected methylation in one gene, CRHR1; however, the effect depended on the original brightness of the bird. Methylation in this gene was correlated with baseline corticosterone levels, suggesting that DNA methylation of CRHR1 helps regulate glucocorticoid production in this species. Methylation in two other genes, FKBP5 and GR, changed over the course of the experiment, independent of treatment. These results show that methylation of these genes is labile into adulthood and suggest that epigenetic regulation of the HPA axis could help birds respond to current environmental conditions.


Asunto(s)
Metilación de ADN , Plumas , Sistema Hipotálamo-Hipofisario , Receptores de Hormona Liberadora de Corticotropina , Golondrinas , Animales , Femenino , Plumas/fisiología , Golondrinas/genética , Golondrinas/fisiología , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Corticosterona/sangre , Corticosterona/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología , Epigénesis Genética , Estrés Fisiológico/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
8.
Neurosci Biobehav Rev ; 163: 105748, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857667

RESUMEN

Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.


Asunto(s)
Ansiedad , Hormona Liberadora de Corticotropina , Receptores de Hormona Liberadora de Corticotropina , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Humanos , Animales , Hormona Liberadora de Corticotropina/metabolismo , Ansiedad/metabolismo , Ansiedad/fisiopatología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Depresión/metabolismo , Depresión/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología
9.
Exp Neurol ; 378: 114822, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823676

RESUMEN

Post-stroke depression (PSD) is a complication of cerebrovascular disease, which can increase mortality after stroke. CRH is one of the main signaling peptides released after activation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress. It affects synaptic plasticity by regulating inflammation, oxidative stress and autophagy in the central nervous system. And the loss of spines exacerbates depression-like behavior. Therefore, synaptic deficits induced by CRH may be related to post-stroke depression. However, the underlying mechanism remains unclear. The Keap1-Nrf2 complex is one of the core components of the antioxidant response. As an autophagy associated protein, p62 participates in the Keap1-NrF2 pathway through its Keap1 interaction domain. Oxidative stress is involved in the feedback regulation between Keap1-Nrf2 pathway and p62.However, whether the relationship between CRH and the Keap1-Nrf2-p62 pathway is involved in PSD remains unknown. This study found that serum levels of CRH in 22 patients with PSD were higher than those in healthy subjects. We used MCAO combined with CUMS single-cage SD rats to establish an animal model of PSD. Animal experiments showed that CRHR1 antagonist prevented synaptic loss in the hippocampus of PSD rats and alleviated depression-like behavior. CRH induced p62 accumulation in the prefrontal cortex of PSD rats through CRHR1. CRHR1 antagonist inhibited Keap1-Nrf2-p62 pathway by attenuating oxidative stress. In addition, we found that abnormal accumulation of p62 induces PSD. It alleviates depression-like behavior by inhibiting the expression of p62 and promoting the clearance of p62 in PSD rats. These findings can help explore the pathogenesis of PSD and design targeted treatments for PSD.


Asunto(s)
Depresión , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina , Accidente Cerebrovascular , Animales , Ratas , Masculino , Depresión/etiología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/psicología , Accidente Cerebrovascular/metabolismo , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Humanos , Regulación hacia Abajo/efectos de los fármacos , Persona de Mediana Edad , Modelos Animales de Enfermedad , Femenino , Anciano , Proteína Sequestosoma-1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Hormona Liberadora de Corticotropina/metabolismo
10.
Zhen Ci Yan Jiu ; 49(5): 472-479, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764118

RESUMEN

OBJECTIVES: To investigate the effect of Peitu Yimu(strengthening spleen and soothing liver) acupuncture on intestinal mucosal barrier function and corticotropin-releasing factor (CRF)/CRF receptor 1 (CRFR1) pathway in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), so as to explore its underlying mechanism in alleviating IBS-D. METHODS: Forty female SD rats were randomly divided into blank, model, electroacupuncture (EA), and agonist groups, with 10 rats in each group. Except for the blank group, rats in the other groups were given folium sennae infusion by gavage combined with chronic unpredictable mild stress to establish IBS-D model. Rats in the EA group received acupuncture at "Tianshu"(ST25) and EA at "Zusanli"(ST36) and "Taichong"(LR3) (2 Hz/15 Hz) on one side for 20 min, with the side chosen alternately every other day, for 14 days after modeling. Rats in the agonist group received acupuncture 30 min after intravenous injection of CRFR1 agonist urocortin, with the same manipulation method and time as the EA group. Before and after intervention, visceral pain threshold and stool Bristol scores were measured. Elevated plus maze test and open field test were used to detect anxiety and depression like behavior of rats. ELISA was used to detect the contents of CRF and CRFR1 in rats serum. Immunohistochemistry was used to detect the positive expressions of CRF, CRFR1, zonula occludens protein 1(ZO-1), occlusal protein(Occludin), and closure protein 1 (Claudin-1) in colon tissue. RESULTS: Compared with the blank group, the visceral pain threshold, open arm time percentage (OT%), total distance of movement in the open field test, and positive expression of ZO-1, Occludin, and Claudin-1 in colon were decreased (P<0.01, P<0.05), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were increased (P<0.01) in the model group. After intervention and compared with the model group, the visceral pain threshold, OT%, total distance of movement in the open field test, and positive expressions of ZO-1, Occludin, and Claudin-1 in colon were increased (P<0.05, P<0.01), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were decreased (P<0.01) in the EA group;the Bristol stool scores, serum CRF content, and CRF positive expression in colon were significantly decreased in the agonist group (P<0.01). CONCLUSIONS: Peitu Yimu acupuncture can significantly improve visceral hypersensitivity and anxiety-depression state in IBS-D rats. Its mechanism may be related to the inhibition of CRF/CRFR1 pathway and restoration of intestinal tight junction protein expressions.


Asunto(s)
Terapia por Acupuntura , Diarrea , Mucosa Intestinal , Síndrome del Colon Irritable , Receptores de Hormona Liberadora de Corticotropina , Animales , Femenino , Humanos , Ratas , Puntos de Acupuntura , Claudina-1/metabolismo , Claudina-1/genética , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/genética , Diarrea/terapia , Diarrea/metabolismo , Diarrea/genética , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/genética , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
11.
J Physiol ; 602(14): 3375-3400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698722

RESUMEN

Chronic intermittent hypoxia (CIH) in rodents mimics the hypoxia-induced elevation of blood pressure seen in individuals experiencing episodic breathing. The brainstem nucleus tractus solitarii (nTS) is the first site of visceral sensory afferent integration, and thus is critical for cardiorespiratory homeostasis and its adaptation during a variety of stressors. In addition, the paraventricular nucleus of the hypothalamus (PVN), in part through its nTS projections that contain oxytocin (OT) and/or corticotropin-releasing hormone (CRH), contributes to cardiorespiratory regulation. Within the nTS, these PVN-derived neuropeptides alter nTS activity and the cardiorespiratory response to hypoxia. Nevertheless, their contribution to nTS activity after CIH is not fully understood. We hypothesized that OT and CRH would increase nTS activity to a greater extent following CIH, and co-activation of OT+CRH receptors would further magnify nTS activity. Our data show that compared to their normoxic controls, 10 days' CIH exaggerated nTS discharge, excitatory synaptic currents and Ca2+ influx in response to CRH, which were further enhanced by the addition of OT. CIH increased the tonic functional contribution of CRH receptors, which occurred with elevation of mRNA and protein. Together, our data demonstrate that intermittent hypoxia exaggerates the expression and function of neuropeptides on nTS activity. KEY POINTS: Episodic breathing and chronic intermittent hypoxia (CIH) are associated with autonomic dysregulation, including elevated sympathetic nervous system activity. Altered nucleus tractus solitarii (nTS) activity contributes to this response. Neurons originating in the paraventricular nucleus (PVN), including those containing oxytocin (OT) and corticotropin-releasing hormone (CRH), project to the nTS, and modulate the cardiorespiratory system. Their role in CIH is unknown. In this study, we focused on OT and CRH individually and together on nTS activity from rats exposed to either CIH or normoxia control. We show that after CIH, CRH alone and with OT increased to a greater extent overall nTS discharge, neuronal calcium influx, synaptic transmission to second-order nTS neurons, and OT and CRH receptor expression. These results provide insights into the underlying circuits and mechanisms contributing to autonomic dysfunction during periods of episodic breathing.


Asunto(s)
Hormona Liberadora de Corticotropina , Hipoxia , Neuronas , Oxitocina , Ratas Sprague-Dawley , Núcleo Solitario , Animales , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Oxitocina/metabolismo , Hipoxia/fisiopatología , Hipoxia/metabolismo , Masculino , Neuronas/fisiología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratas , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo
12.
Sci Adv ; 10(19): eadk7636, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728397

RESUMEN

Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies. Moreover, optogenetic modulation to exchange the activation pattern of ovBNST CRF neurons during stress between female and male mice could reverse their susceptibility to anxiety. Last, CRF receptor type 1 (CRFR1) mediated the CRF-induced excitation of ovBNST CRF neurons and showed female-biased expression. Specific knockdown of the CRFR1 level in ovBNST CRF neurons in female or overexpression that in male could reverse their susceptibility to anxiety. Therefore, we identify that CRFR1-mediated hyperexcitation of ovBNST CRF neurons in female mice encode the female-biased susceptibility to anxiety.


Asunto(s)
Ansiedad , Hormona Liberadora de Corticotropina , Neuronas , Receptores de Hormona Liberadora de Corticotropina , Animales , Femenino , Masculino , Ratones , Ansiedad/metabolismo , Reacción de Prevención/fisiología , Conducta Animal , Hormona Liberadora de Corticotropina/metabolismo , Neuronas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Núcleos Septales/metabolismo , Estrés Psicológico/metabolismo
13.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673790

RESUMEN

Cognitive behavioral therapy is based on the view that maladaptive thinking is the causal mechanism of mental disorders. While this view is supported by extensive evidence, very limited work has addressed the factors that contribute to the development of maladaptive thinking. The present study aimed to uncover interactions between childhood maltreatment and multiple genetic differences in irrational beliefs. Childhood maltreatment and irrational beliefs were assessed using multiple self-report instruments in a sample of healthy volunteers (N = 452). Eighteen single-nucleotide polymorphisms were genotyped in six candidate genes related to neurotransmitter function (COMT; SLC6A4; OXTR), neurotrophic factors (BDNF), and the hypothalamic-pituitary-adrenal axis (NR3C1; CRHR1). Gene-environment interactions (G×E) were first explored in models that employed one measure of childhood maltreatment and one measure of irrational beliefs. These effects were then followed up in models in which either the childhood maltreatment measure, the irrational belief measure, or both were substituted by parallel measures. Consistent results across models indicated that childhood maltreatment was positively associated with irrational beliefs, and these relations were significantly influenced by COMT rs165774 and OXTR rs53576. These results remain preliminary until independent replication, but they represent the best available evidence to date on G×E in a fundamental mechanism of psychopathology.


Asunto(s)
Interacción Gen-Ambiente , Polimorfismo de Nucleótido Simple , Receptores de Glucocorticoides , Receptores de Oxitocina , Humanos , Femenino , Masculino , Adulto , Receptores de Oxitocina/genética , Receptores de Hormona Liberadora de Corticotropina/genética , Maltrato a los Niños/psicología , Persona de Mediana Edad , Experiencias Adversas de la Infancia/psicología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Adulto Joven , Niño
14.
Psychopharmacology (Berl) ; 241(8): 1565-1575, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38630316

RESUMEN

RATIONALE: Corticotropin-releasing factor (CRF), the apical stress-inducing hormone, exacerbates stress and addictive behaviors. TCAP-1 is a peptide that directly inhibits both CRF-mediated stress and addiction-related behaviors; however, the direct action of TCAP-1 on morphine withdrawal-associated behaviors has not previously been examined. OBJECTIVE: To determine whether TCAP-1 administration attenuates behavioral and physiological consequences of morphine withdrawal in mice. METHODS: Mice were administered via subcutaneous route TCAP-1 either before or after initial morphine exposure, after which jumping behavior was quantified to assess the effects of TCAP-1 on naloxone-precipitated morphine withdrawal. As a comparison, mice were treated with nonpeptide CRF1 receptor antagonist CP-154,526. In one experiment, plasma corticosterone (CORT) was also measured as a physiological stress indicator. RESULTS: Pretreatment with TCAP-1 (10-250 nmol/kg) before morphine treatment significantly inhibited the development of naloxone-precipitated withdrawal. TCAP-1 (250-500 nmol/kg) treatment administered after morphine treatment attenuated the behavioral expression of naloxone-precipitated withdrawal. TCAP-1 (250 nmol/kg) treatment during morphine treatment was more effective than the optimal dosing of CP-154,526 (20 mg/kg) at suppressing the behavioral expression of naloxone-precipitated withdrawal, despite similar reduction of withdrawal-induced plasma CORT level increases. CONCLUSIONS: These findings establish TCAP-1 as a potential therapeutic candidate for the prevention and treatment of morphine withdrawal.


Asunto(s)
Corticosterona , Morfina , Naloxona , Antagonistas de Narcóticos , Síndrome de Abstinencia a Sustancias , Animales , Masculino , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/metabolismo , Naloxona/farmacología , Naloxona/administración & dosificación , Ratones , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/administración & dosificación , Morfina/administración & dosificación , Morfina/farmacología , Corticosterona/sangre , Corticosterona/administración & dosificación , Relación Dosis-Respuesta a Droga , Pirroles/farmacología , Pirroles/administración & dosificación , Proteínas del Tejido Nervioso/metabolismo , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Conducta Animal/efectos de los fármacos , Dependencia de Morfina/metabolismo , Dependencia de Morfina/tratamiento farmacológico , Dependencia de Morfina/prevención & control , Pirrolidinas/farmacología , Pirrolidinas/administración & dosificación , Inyecciones Subcutáneas , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Pirimidinas
15.
Br J Pharmacol ; 181(15): 2600-2621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38613153

RESUMEN

BACKGROUND AND PURPOSE: Pancreatic islets are modulated by cross-talk among different cell types and paracrine signalling plays important roles in maintaining glucose homeostasis. Urocortin 3 (UCN3) secreted by pancreatic ß cells activates the CRF2 receptor (CRF2R) and downstream pathways mediated by different G protein or arrestin subtypes in δ cells to cause somatostatin (SST) secretion, and constitutes an important feedback circuit for glucose homeostasis. EXPERIMENTAL APPROACH: Here, we used Arrb1-/-, Arrb2-/-, Gsfl/fl and Gqfl/fl knockout mice, the G11-shRNA-GFPfl/fl lentivirus, as well as functional assays and pharmacological characterization to study how the coupling of Gs, G11 and ß-arrestin1 to CRF2R contributed to UCN3-induced SST secretion in pancreatic δ cells. KEY RESULTS: Our study showed that CRF2R coupled to a panel of G protein and arrestin subtypes in response to UCN3 engagement. While RyR3 phosphorylation by PKA at the S156, S2706 and S4697 sites may underlie the Gs-mediated UCN3- CRF2R axis for SST secretion, the interaction of SYT1 with ß-arrestin1 is also essential for efficient SST secretion downstream of CRF2R. The specific expression of the transcription factor Stat6 may contribute to G11 expression in pancreatic δ cells. Furthermore, we found that different UCN3 concentrations may have distinct effects on glucose homeostasis, and these effects may depend on different CRF2R downstream effectors. CONCLUSIONS AND IMPLICATIONS: Collectively, our results provide a landscape view of signalling mediated by different G protein or arrestin subtypes downstream of paracrine UCN3- CRF2R signalling in pancreatic ß-δ-cell circuits, which may facilitate the understanding of fine-tuned glucose homeostasis networks.


Asunto(s)
Receptores de Hormona Liberadora de Corticotropina , Transducción de Señal , Somatostatina , Urocortinas , Animales , Masculino , Ratones , Proteínas de Unión al GTP/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Urocortinas/metabolismo
17.
Biomed Res Int ; 2024: 8322844, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38327803

RESUMEN

Neuroimaging data in humans and neurobiological studies in rodents have suggested an involvement of the insular cortex (IC) in anxiety manifestations. However, the local neurochemical mechanisms involved are still poorly understood. Corticotropin-releasing factor (CRF) neurotransmission has been described as a prominent neurochemical mechanism involved in the expression of anxiety-like behaviors, but the brain sites related are poorly understood. Additionally, several findings indicate that control of physiological and behavioral responses by the IC occurs in a site-specific manner along its rostrocaudal axis. Thus, this study is aimed at evaluating the effect of CRF receptor agonism and antagonism within the anterior and posterior subregions of the IC in controlling anxiety-related behaviors in the elevated plus maze (EPM). For this, independent groups (six groups) of animals received bilateral microinjections of vehicle, the selective CRF1 receptor antagonist CP376395, or CRF into either the anterior or posterior subregions of the IC. Ten minutes later, the behavior in the EPM was evaluated for five minutes. Treatment of the anterior IC with CP376395, but not with CRF, increased the time and number of entries into the open arms of the EPM. CRF, but not the CRF1 receptor antagonist, microinjected into the posterior IC also increased exploration of the EPM open arms. Taken together, these data indicate that CRFergic neurotransmission in the anterior IC is involved in the expression of anxiety-related behaviors in the EPM. This neurochemical mechanism does not seem to be activated within the posterior IC during exposure to the EPM, but the effects caused by CRF microinjection indicate that activation of CRF receptors in this IC subregion might evoke anxiolytic-like effects.


Asunto(s)
Aminopiridinas , Ansiolíticos , Receptores de Hormona Liberadora de Corticotropina , Humanos , Ratas , Animales , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Hormona Liberadora de Corticotropina/metabolismo , Prueba de Laberinto Elevado , Corteza Insular , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiolíticos/farmacología
18.
J Pain ; 25(8): 104495, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38354968

RESUMEN

Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder, represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents in the basolateral amygdala (BLA)-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlights that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.


Asunto(s)
Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Neuralgia , Plasticidad Neuronal , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina , Receptores de N-Metil-D-Aspartato , Transducción de Señal , Estrés Psicológico , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatología , Núcleo Amigdalino Central/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Estrés Psicológico/complicaciones , Hormona Liberadora de Corticotropina/metabolismo , Plasticidad Neuronal/fisiología , Ratas , Transducción de Señal/fisiología , Modelos Animales de Enfermedad
19.
Biochem Biophys Res Commun ; 699: 149564, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277725

RESUMEN

Psychosocial stress is increasing, causing a growing number of people to suffer from hair loss. Stress-related corticotropin-releasing hormone (CRH) is associated with hair loss, but the mechanism by which hair follicles respond to stress and CRH remain poorly understood. The aim of the study is to elucidate the association between CRH and stress-related hair regenerative disorders, and reveal the potential pathological mechanisms. A chronic unpredictable stress mouse model and a chronic social defeat stress mouse model were used to examine the role of CRH and stress-related hair regrowth. Chronic unpredictable stress and chronic social defeat stress increased the expression of CRH and CRH receptors (CRHRs), and contributed to the onset of hair-cycle abnormalities. Psychoemotional stress and stress-related CRH blocked hair follicle regrowth, which could be restored by astressin, a CRHR antagonist. Long-term exposure to either chronic unpredictable stress or CRH induced a decrease in autophagy, which could be partially rescued by astressin. Activating CRHR, by stress or CRH administration, decreased autophagy via the mTOR-ULK1 signaling pathway to mediate hair regenerative disorders, which could be partially reversed through enhancing autophagy by administration of brefeldin A. These findings indicate that CRH-mediated autophagy inhibition play an important role in stress-induced hair regenerative disorders. CRH regulates the local hypothalamic-pituitary-adrenal axis of hair follicles, but also plays an independent pathogenic role in stress-related hair regenerative disorders through CRH-mediated autophagy inhibition. This work contributes to the present understanding of hair loss and suggests that enhancing autophagy may have a therapeutic effect on stress-induced hair loss.


Asunto(s)
Hormona Liberadora de Corticotropina , Sistema Hipotálamo-Hipofisario , Ratones , Animales , Humanos , Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Folículo Piloso/metabolismo , Alopecia/metabolismo
20.
Transl Psychiatry ; 14(1): 29, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233378

RESUMEN

The neuropeptide corticotropin-releasing factor (CRF) exerts a pivotal role in modulating neuronal activity in the mammalian brain. The effects of CRF exhibit notable variations, depending on factors such as duration of exposure, concentration, and anatomical location. In the CA1 region of the hippocampus, the impact of CRF is dichotomous: chronic exposure to CRF impairs synapse formation and dendritic integrity, whereas brief exposure enhances synapse formation and plasticity. In the current study, we demonstrate long-term effects of acute CRF on the density and stability of mature mushroom spines ex vivo. We establish that both CRF receptors are present in this hippocampal region, and we pinpoint their precise subcellular localization within synapses by electron microscopy. Furthermore, both in vivo and ex vivo data collectively demonstrate that a transient surge of CRF in the CA1 activates the cyclin-dependent kinase 5 (Cdk5)-pathway. This activation leads to a notable augmentation in CRF-dependent spine formation. Overall, these data suggest that upon acute release of CRF in the CA1-SR synapse, both CRF-Rs can be activated and promote synaptic plasticity via activating different downstream signaling pathways, such as the Cdk5-pathway.


Asunto(s)
Hormona Liberadora de Corticotropina , Espinas Dendríticas , Animales , Hormona Liberadora de Corticotropina/metabolismo , Espinas Dendríticas/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/farmacología , Hipocampo/metabolismo , Receptores de Hormona Liberadora de Corticotropina , Sinapsis/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA