Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
1.
Methods Mol Biol ; 2854: 107-115, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192123

RESUMEN

The innate immune system plays a pivotal role in pathogen recognition and the initiation of innate immune responses through its Pathogen Recognition Receptors (PRRs), which detect Pathogen-Associated Molecular Patterns (PAMPs). Nucleic acids, including RNA and DNA, are recognized as particularly significant PAMPs, especially in the context of viral pathogens. During RNA virus infections, specific sequences in the viral RNA mark it as non-self, enabling host recognition through interactions with RNA sensors, thereby triggering innate immunity. Given that some of the most lethal viruses are RNA viruses, they pose a severe threat to human and animal health. Therefore, understanding the immunobiology of RNA PRRs is crucial for controlling pathogen infections, particularly RNA virus infections. In this chapter, we will introduce a "pull-down" method for identifying RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensors.


Asunto(s)
Inmunidad Innata , ARN Viral , Receptores de Reconocimiento de Patrones , Humanos , ARN Viral/genética , ARN Viral/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Animales , Receptores Toll-Like/metabolismo , Receptores Toll-Like/inmunología , Receptores Toll-Like/genética , Virus ARN/inmunología , Virus ARN/genética , Interacciones Huésped-Patógeno/inmunología , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología
2.
Methods Mol Biol ; 2854: 237-251, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192134

RESUMEN

The innate immune system is the first line of host defense against infection by pathogenic microorganisms, among which macrophages are important innate immune cells. Macrophages are widely distributed throughout the body and recognize and eliminate viruses through pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs). In the present chapter, we provide detailed protocols for vesicular stomatitis virus (VSV) amplification, VSV titer detection, isolation of mouse primary peritoneal macrophages, in vitro and in vivo VSV infection, detection of interferon-beta (IFN-ß) expression, and lung injury. These protocols provide efficient and typical methods to evaluate virus-induced innate immunity in vitro and in vivo.


Asunto(s)
Inmunidad Innata , Interferón beta , Macrófagos Peritoneales , Vesiculovirus , Animales , Ratones , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/virología , Macrófagos Peritoneales/metabolismo , Interferón beta/inmunología , Interferón beta/metabolismo , Interferón beta/genética , Vesiculovirus/inmunología , Vesiculovirus/genética , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología
3.
Nat Cell Biol ; 26(9): 1420-1433, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223376

RESUMEN

Innate immunity, cell death and inflammation underpin many aspects of health and disease. Upon sensing pathogens, pathogen-associated molecular patterns or damage-associated molecular patterns, the innate immune system activates lytic, inflammatory cell death, such as pyroptosis and PANoptosis. These genetically defined, regulated cell death pathways not only contribute to the host defence against infectious disease, but also promote pathological manifestations leading to cancer and inflammatory diseases. Our understanding of the underlying mechanisms has grown rapidly in recent years. However, how dying cells, cell corpses and their liberated cytokines, chemokines and inflammatory signalling molecules are further sensed by innate immune cells, and their contribution to further amplify inflammation, trigger antigen presentation and activate adaptive immunity, is less clear. Here, we discuss how pattern-recognition and PANoptosome sensors in innate immune cells recognize and respond to cell-death signatures. We also highlight molecular targets of the innate immune response for potential therapeutic development.


Asunto(s)
Muerte Celular , Inmunidad Innata , Transducción de Señal , Humanos , Animales , Muerte Celular/inmunología , Inflamación/inmunología , Inflamación/patología , Piroptosis/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología
4.
Curr Opin Immunol ; 90: 102457, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232338

RESUMEN

The innate immune system employs two different strategies to detect pathogens: first, it recognizes microbial components as ligands of pattern recognition receptors (pattern-triggered immunity [PTI]), and second, it detects the activities of pathogen-encoded effectors (effector-triggered immunity [ETI]). Recently, these pathogen-centric concepts were expanded to include sensing of self-derived signals during cellular distress or damage (damage-triggered immunity [DTI]). This extension relied on broadening the PTI model to include damage-associated molecular patterns (DAMPs). However, applying the pattern recognition framework of PTI to DTI overlooks the critical role of sterile activation of ETI pathways. We argue that both PTI and ETI pathways are prone to erroneous detection of self, which is largely attributable to 'friendly fire' rather than protective immune activation. This erroneous activation is inherent to the trade-off between sensitivity and specificity of immune sensing and might be tolerated because its detrimental effects emerge late in life, a phenomenon known as antagonistic pleiotropy.


Asunto(s)
Inmunidad Innata , Receptores de Reconocimiento de Patrones , Humanos , Animales , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Alarminas/inmunología , Alarminas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Transducción de Señal/inmunología , Interacciones Huésped-Patógeno/inmunología
5.
Adv Neurobiol ; 37: 263-286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207697

RESUMEN

Microglia are best known as the resident phagocytes of the central nervous system (CNS). As a resident brain immune cell population, microglia play key roles during the initiation, propagation, and resolution of inflammation. The discovery of resident adaptive immune cells in the CNS has unveiled a relationship between microglia and adaptive immune cells for CNS immune-surveillance during health and disease. The interaction of microglia with elements of the peripheral immune system and other CNS resident cells mediates a fine balance between neuroprotection and tissue damage. In this chapter, we highlight the innate immune properties of microglia, with a focus on how pattern recognition receptors, inflammatory signaling cascades, phagocytosis, and the interaction between microglia and adaptive immune cells regulate events that initiate an inflammatory or neuroprotective response within the CNS that modulates immune-mediated disease exacerbation or resolution.


Asunto(s)
Inmunidad Innata , Microglía , Fagocitosis , Receptores de Reconocimiento de Patrones , Humanos , Microglía/inmunología , Microglía/metabolismo , Animales , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Inflamación/inmunología , Transducción de Señal , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Inmunidad Adaptativa/inmunología
6.
Genes (Basel) ; 15(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39202462

RESUMEN

We previously showed that several polymorphisms in genes encoding pattern recognition receptors that cause amino acid substitutions alter pathogen recognition ability and disease susceptibility in pigs. In this study, we expanded our analysis to a wide range of immune-related genes and investigated polymorphism distribution and its influence on pneumonia in multiple commercial pig populations. Among the polymorphisms in 42 genes causing 634 amino acid substitutions extracted from the swine genome database, 80 in 24 genes were found to have a minor allele frequency of at least 10% in Japanese breeding stock pigs via targeted resequencing. Of these, 62 single nucleotide polymorphisms (SNPs) in 23 genes were successfully genotyped in 862 pigs belonging to four populations with data on pneumonia severity. Association analysis using a generalized linear mixed model revealed that 12 SNPs in nine genes were associated with pneumonia severity. In particular, SNPs in the cellular receptor for immunoglobulin G FCGR2B and the intracellular nucleic acid sensors IFI16 and LRRFIP1 were found to be associated with mycoplasmal pneumonia of swine or porcine pleuropneumonia in multiple populations and may therefore have wide applications in the improvement of disease resistance in pigs. Functional analyses at the cellular and animal levels are required to clarify the mechanisms underlying the effects of these SNPs on disease susceptibility.


Asunto(s)
Neumonía , Polimorfismo de Nucleótido Simple , Enfermedades de los Porcinos , Porcinos , Neumonía/genética , Neumonía/inmunología , Neumonía/microbiología , Neumonía/veterinaria , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Masculino , Femenino , Genotipo , Alelos , Índice de Severidad de la Enfermedad
7.
Adv Neurobiol ; 37: 287-302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207698

RESUMEN

Microglia are specialized immune cells that reside in the central nervous system (CNS) and play a crucial role in maintaining the homeostasis of the brain microenvironment. While traditionally regarded as a part of the innate immune system, recent research has highlighted their role in adaptive immunity. The CNS is no longer considered an immune-privileged organ, and increasing evidence suggests bidirectional communication between the immune system and the CNS. Microglia are sensitive to systemic immune signals and can respond to systemic inflammation by producing various inflammatory cytokines and chemokines. This response is mediated by activating pattern recognition receptors (PRRs), which recognize pathogen- and danger-associated molecular patterns in the systemic circulation. The microglial response to systemic inflammation has been implicated in several neurological conditions, including depression, anxiety, and cognitive impairment. Understanding the complex interplay between microglia and systemic immunity is crucial for developing therapeutic interventions to modulate immune responses in the CNS.


Asunto(s)
Inmunidad Innata , Microglía , Microglía/inmunología , Microglía/metabolismo , Humanos , Animales , Inmunidad Innata/inmunología , Inflamación/inmunología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Inmunidad Adaptativa/inmunología , Encéfalo/inmunología
8.
Methods Mol Biol ; 2851: 213-226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39210185

RESUMEN

Microorganisms with the ability to modulate the immune system (immunobiotics) have shown to interact with different pattern recognition receptors (PRRs) expressed in nonimmune and immune cells and exert beneficial effects on host's health maintenance and promotion. Suitable assay systems are necessary for an efficient and rapid screening of potential immunobiotic strains. More than a decade of research has allowed us to develop efficient in vitro models based on porcine receptors and cells (porcine immunoassay systems) to study the immunomodulatory effects of lactic acid bacteria (LAB). In addition, detailed studies of model immunobiotic LAB strains with proved abilities to improve immune health in humans (Lactobacillus rhamnosus CRL1505) or pigs (Lactobacillus jensenii TL2937) allowed us to select the most suitable biomarkers that have to be evaluated in those porcine immunoassay systems. Our in vitro models, utilizing transfectant cells expressing PRRs along with an established porcine intestinal epitheliocyte (PIE) cell line, have proven to be valuable tools for immunobiotic selection and for gaining insights into the molecular mechanisms responsible for their beneficial effects.


Asunto(s)
Lactobacillales , Animales , Porcinos , Inmunoensayo/métodos , Lactobacillales/inmunología , Probióticos , Línea Celular , Humanos , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Lactobacillus/inmunología
9.
Front Cell Infect Microbiol ; 14: 1428447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211800

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating infectious diseases of pigs globally. The pathogen, porcine reproductive and respiratory syndrome virus (PRRSV), is an enveloped positive-stranded RNA virus, which is considered to be the key triggers for the activation of effective innate immunity through pattern recognition receptor (PRR)-dependent signaling pathways. Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs) and Cytoplasmic DNA receptors (CDRs) are used as PRRs to identify distinct but overlapping microbial components. The innate immune system has evolved to recognize RNA or DNA molecules from microbes through pattern recognition receptors (PRRs) and to induce defense response against infections, including the production of type I interferon (IFN-I) and inflammatory cytokines. However, PRRSV is capable of continuous evolution through gene mutation and recombination to evade host immune defenses and exploit host cell mechanisms to synthesize and transport its components, thereby facilitating successful infection and replication. This review presents the research progress made in recent years in the study of these PRRs and their associated adapters during PRRSV infection.


Asunto(s)
Inmunidad Innata , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Receptores de Reconocimiento de Patrones , Animales , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Interacciones Huésped-Patógeno/inmunología , Transducción de Señal , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética
10.
mSphere ; 9(8): e0046724, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39037263

RESUMEN

Systemic candidiasis remains a significant public health concern worldwide, with high mortality rates despite available antifungal drugs. Drug-resistant strains add to the urgency for alternative therapies. In this context, vaccination has reemerged as a prominent immune-based strategy. Extracellular vesicles (EVs), nanosized lipid bilayer particles, carry a diverse array of native fungal antigens, including proteins, nucleic acids, lipids, and glycans. Previous studies from our laboratory demonstrated that Candida albicans EVs triggered the innate immune response, activating bone marrow-derived dendritic cells (BMDCs) and potentially acting as a bridge between innate and adaptive immunity. Vaccination with C. albicans EVs induced the production of specific antibodies, modulated cytokine production, and provided protection in immunosuppressed mice infected with lethal C. albicans inoculum. To elucidate the mechanisms underlying EV-induced immune activation, our study investigated pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) involved in EVs-phagocyte engagement. EVs from wild-type and mutant C. albicans strains with truncated mannoproteins were compared for their ability to stimulate BMDCs. Our findings revealed that EV decoration with O- and N-linked mannans and the presence of ß-1,3-glucans and chitin oligomers may modulate the activation of specific PRRs, in particular Toll-like receptor 4 (TLR4) and dectin-1. The protective effect of vaccination with wild-type EVs was found to be dependent on TLR4. These results suggest that fungal EVs can be harnessed in vaccine formulations to selectively activate PRRs in phagocytes, offering potential avenues for combating or preventing candidiasis.IMPORTANCESystemic candidiasis is a serious global health concern with high mortality rates and growing drug resistance. Vaccination offers a promising solution. A unique approach involves using tiny lipid-coated particles called extracellular vesicles (EVs), which carry various fungal components. Previous studies found that Candida albicans EVs activate the immune response and may bridge the gap between innate and adaptive immunity. To understand this better, we investigated how these EVs activate immune cells. We demonstrated that specific components on EV surfaces, such as mannans and glucans, interact with receptors on immune cells, including Toll-like receptor 4 (TLR4) and dectin-1. Moreover, vaccinating with these EVs led to strong immune responses and full protection in mice infected with Candida. This work shows how harnessing fungal EVs might lead to effective vaccines against candidiasis.


Asunto(s)
Candida albicans , Candidiasis , Células Dendríticas , Vesículas Extracelulares , Vacunas Fúngicas , Receptores de Reconocimiento de Patrones , Receptor Toll-Like 4 , Animales , Candida albicans/inmunología , Vesículas Extracelulares/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Ratones , Candidiasis/inmunología , Candidiasis/prevención & control , Candidiasis/microbiología , Vacunas Fúngicas/inmunología , Vacunas Fúngicas/administración & dosificación , Células Dendríticas/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Ratones Endogámicos C57BL , Femenino , Inmunidad Innata , Modelos Animales de Enfermedad
11.
Cell Mol Life Sci ; 81(1): 290, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970666

RESUMEN

Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.


Asunto(s)
Inmunidad Innata , Procesamiento Proteico-Postraduccional , Transducción de Señal , Humanos , Animales , Transducción de Señal/inmunología , Ubiquitinación , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Acetilación , Metilación , Fosforilación , Sumoilación , Glicosilación
12.
Fish Shellfish Immunol ; 151: 109725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925448

RESUMEN

The Asian seabass, Lates calcarifer, is a key species in Asian aquaculture due to its nutritional value and adaptability. However, disease outbreaks, particularly viral and bacterial infections, pose significant challenges to its production. Immunostimulants offer promising solutions but raise safety concerns. Paraprobiotics and postbiotics (CPP) emerge as safer alternatives, exerting health benefits without live microorganisms. This study investigated the potential of probiotic paraprobiotic and postbiotic supplements derived from Bacillus subtilis to enhance the immune response and antioxidant capacity of Asian seabass and improve their resistance to Streptococcus iniae infection. Analysis of antioxidant activity and lipid peroxidation revealed significant improvements in fish supplemented with CPP, indicating their effectiveness in mitigating oxidative stress. Immunological assays demonstrated enhanced growth performance and serum immunity, including increased alternative complement activity, immunoglobulin levels, and phagocytic activity, in supplemented fish. Furthermore, upregulated expression of proinflammatory cytokines (TNF-α, IL-6, IL-1ß) and pattern recognition receptors (NLRC3, TLR22, MDA5) in immune tissues. Fish supplemented with CPP exhibited higher resistance and survival rates against S. iniae infection challenge compared to control groups. The study elucidates the mechanisms underlying the immunomodulatory effects of CPP, shedding light on their potential applications in aquaculture.


Asunto(s)
Alimentación Animal , Bacillus subtilis , Dieta , Enfermedades de los Peces , Inmunidad Innata , Probióticos , Infecciones Estreptocócicas , Streptococcus iniae , Animales , Enfermedades de los Peces/inmunología , Probióticos/farmacología , Probióticos/administración & dosificación , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/inmunología , Alimentación Animal/análisis , Inmunidad Innata/efectos de los fármacos , Bacillus subtilis/química , Dieta/veterinaria , Streptococcus iniae/fisiología , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/genética , Suplementos Dietéticos/análisis , Transducción de Señal , Perciformes/inmunología , Lubina/inmunología
13.
Fish Shellfish Immunol ; 150: 109636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762095

RESUMEN

As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1ß, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Lectinas Tipo C , Macrófagos , Perciformes , Receptores de Reconocimiento de Patrones , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Macrófagos/inmunología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Perciformes/inmunología , Perciformes/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Peces/inmunología , Peces/genética
14.
Curr Opin Immunol ; 87: 102424, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38761566

RESUMEN

Type I and III interferons (IFN-I and IFN-III) have a central role in the early antimicrobial response against invading pathogens. Induction of IFN-Is and IFN-IIIs arises due to the sensing by pattern recognition receptors of pathogen-associated molecular patterns (from micro-organisms) or of damage-associated molecular patterns (DAMPs; produced by host cells). Here, we review recent developments on how IFN-I and IFN-III expression is stimulated by different pathogens and how the signalling pathways leading to IFN induction are tightly regulated. We also summarise the growing knowledge of the sensing pathways that lead to IFN-I and IFN-III induction in response to severe acute respiratory syndrome coronavirus 2.


Asunto(s)
COVID-19 , Interferón lambda , Interferón Tipo I , Interferones , SARS-CoV-2 , Transducción de Señal , Humanos , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Animales , Transducción de Señal/inmunología , SARS-CoV-2/inmunología , Interferones/metabolismo , Interferones/inmunología , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo
15.
Viruses ; 16(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793622

RESUMEN

The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.


Asunto(s)
Virus de la Hepatitis Delta , Hepatocitos , Inmunidad Innata , Interferones , Receptores de Reconocimiento de Patrones , Humanos , Hepatitis D/inmunología , Hepatitis D/virología , Virus de la Hepatitis Delta/inmunología , Virus de la Hepatitis Delta/fisiología , Hepatocitos/virología , Hepatocitos/inmunología , Interacciones Huésped-Patógeno/inmunología , Interferones/inmunología , Interferones/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología
16.
Adv Protein Chem Struct Biol ; 140: 525-555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38762279

RESUMEN

There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.


Asunto(s)
Plantas Modificadas Genéticamente , Receptores de Reconocimiento de Patrones , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inmunidad de la Planta
17.
Cell Chem Biol ; 31(5): 835-850, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636521

RESUMEN

Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.


Asunto(s)
Bacterias , Inmunidad Innata , Inflamasomas , Receptores de Reconocimiento de Patrones , Inflamasomas/metabolismo , Inflamasomas/inmunología , Humanos , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Bacterias/inmunología , Bacterias/metabolismo , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología
18.
Plant Biotechnol J ; 22(8): 2113-2128, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38470397

RESUMEN

Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.


Asunto(s)
Inmunidad de la Planta , Transducción de Señal , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas/inmunología , Plantas/metabolismo , Resistencia a la Enfermedad/inmunología
19.
J Integr Plant Biol ; 65(7): 1613-1619, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36856338

RESUMEN

Plant cells possess a two-layered immune system consisting of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), mediated by cell surface pattern-recognition receptors and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs), respectively. The CONSTITUTIVE EXPRESSION OF PR GENES 5 (CPR5) nuclear pore complex protein negatively regulates ETI, including ETI-associated hypersensitive response. Here, we show that CPR5 is essential for the activation of various PTI responses in Arabidopsis, such as resistance to the non-adapted bacterium Pseudomonas syringae pv. tomato DC3000 hrcC- . In a forward-genetic screen for suppressors of cpr5, we identified the mediator protein MED4. Mutation of MED4 in cpr5 greatly restored the defective PTI of cpr5. Our findings reveal that CPR5 plays opposite roles in regulating PTI and ETI, and genetically regulates PTI via MED4.


Asunto(s)
Proteínas de Arabidopsis , Proteínas de la Membrana , Inmunidad de la Planta , Arabidopsis/inmunología , Proteínas de Arabidopsis/inmunología , Proteínas de la Membrana/inmunología , Pseudomonas syringae/patogenicidad , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Receptores de Reconocimiento de Patrones/inmunología , Proteínas NLR/inmunología
20.
Nature ; 613(7942): 145-152, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517600

RESUMEN

Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.


Asunto(s)
Capsicum , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Receptores de Reconocimiento de Patrones , Leucina , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Reconocimiento de Inmunidad Innata , Capsicum/inmunología , Capsicum/metabolismo , Capsicum/virología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA