Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.120
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000398

RESUMEN

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Asunto(s)
Inmunohistoquímica , Órgano Vomeronasal , Animales , Órgano Vomeronasal/metabolismo , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Zorros/genética , Zorros/metabolismo , Ratones , Lobos/genética , Lobos/metabolismo , Perros , Canidae/genética
2.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972875

RESUMEN

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Asunto(s)
Endosomas , Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Transporte de Proteínas , Receptores de Vasopresinas , beta-Arrestinas , Humanos , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Células HEK293 , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Transducción de Señal
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928267

RESUMEN

The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.


Asunto(s)
Receptores de Vasopresinas , Espermatogénesis , Testículo , Vasotocina , Pez Cebra , Animales , Pez Cebra/metabolismo , Masculino , Vasotocina/metabolismo , Vasotocina/farmacología , Testículo/metabolismo , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Espermatozoides/metabolismo , Proliferación Celular , Espermatogonias/metabolismo , Espermatogonias/citología
4.
PLoS One ; 19(6): e0304703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900750

RESUMEN

Arginine vasopressin (AVP) and oxytocin (OT) are well-known as neuropeptides that regulate various social behaviors in mammals. However, little is known about their role in mouse female sexual behavior. Thus, we investigated the role of AVP (v1a and v1b) and OT receptors on female sexual behavior. First, we devised a new apparatus, the bilevel chamber, to accurately observe female mouse sexual behavior. This apparatus allowed for a more precisely measurement of lordosis as receptivity and rejection-like behavior (newly defined in this study), a reversed expression of proceptivity. To address our research question, we evaluated female sexual behavior in mice lacking v1a (aKO), v1b (bKO), both v1a and v1b (dKO), and OT (OTRKO) receptors. aKO females showed decreased rejection-like behavior but a normal level of lordosis, whereas bKO females showed almost no lordosis and no change in rejection-like behavior. In addition, dKO females showed normal lordosis levels, suggesting that the v1b receptor promotes lordosis, but not necessarily, while the v1a receptor latently suppresses it. In contrast, although OTRKO did not influence lordosis, it significantly increased rejection-like behavior. In summary, the present results demonstrated that the v1a receptor inhibits proceptivity and receptivity, whereas the v1b and OT receptors facilitate receptivity and proceptivity, respectively.


Asunto(s)
Ratones Noqueados , Receptores de Oxitocina , Receptores de Vasopresinas , Conducta Sexual Animal , Animales , Femenino , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/genética , Conducta Sexual Animal/fisiología , Ratones , Masculino , Oxitocina/metabolismo , Ratones Endogámicos C57BL , Arginina Vasopresina/metabolismo
5.
Sci Signal ; 17(842): eadi0934, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917219

RESUMEN

The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of ß-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the ß-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine ß-arrestin recruitment. The ligand-dependent variance in ß-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the ß-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-ß-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-ß-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained ß-arrestin binding: the V2 vasopressin receptor and a mutant ß2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in ß-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.


Asunto(s)
Endocitosis , Receptor de Angiotensina Tipo 1 , Transducción de Señal , beta-Arrestinas , Endocitosis/fisiología , Humanos , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/genética , beta-Arrestinas/metabolismo , beta-Arrestinas/genética , Células HEK293 , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Endosomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Ligandos , Unión Proteica , Transporte de Proteínas
6.
Peptides ; 179: 171253, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38821120

RESUMEN

The highly conserved oxytocin/vasopressin family of nonapeptides plays many roles across the animal kingdom, from osmoregulation to reproductive physiology. We investigated the expression patterns and pharmacological effects of the gastropod ortholog of this peptide, conopressin, along with another peptide involved in gastropod reproduction, APGWamide, in the nudibranch Berghia stephanieae. A brain transcriptome was used to identify and annotate the gene sequences for the peptides and one conopressin receptor. In-situ hybridization chain reaction showed that many neurons in the brain expressed these peptides. However, the peptide genes were co-expressed by only three neurons, which were in the right cerebral ganglion, the same side on which the reproductive organs are located. A conopressin receptor (BSCPR1) was expressed in a prominent population of APGWamide expressing neurons. Placing animals in a solution containing the APGWamide peptide caused minimal behavioral changes. However, exposure to conopressin reduced locomotion, increased gut contractions, and caused voiding at high concentration. The genes for these peptides and BSCPR1 were expressed in cells in the digestive system. BSCPR1 was also expressed by a line of neurons on the anterior portion of the radula and would be contacted during feeding. APGWamide-expressing neurons were found in the genital ganglion. All three genes expressed in cells on sensory appendages. These results are consistent with the conopressin playing a variety of roles in the brain and the body and being involved in both reproduction and digestion. This study sheds light on the function of this ancient nonapeptide in a new-to-neuroscience invertebrate species.


Asunto(s)
Gastrópodos , Vasopresinas , Animales , Gastrópodos/genética , Vasopresinas/farmacología , Vasopresinas/metabolismo , Oxitocina/farmacología , Oxitocina/análogos & derivados , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Locomoción/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
7.
PLoS One ; 19(5): e0303507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748623

RESUMEN

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Asunto(s)
Diabetes Insípida Nefrogénica , Receptores de Vasopresinas , Animales , Humanos , beta-Arrestinas/metabolismo , AMP Cíclico/metabolismo , Desamino Arginina Vasopresina/farmacología , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Diabetes Insípida Nefrogénica/genética , Diabetes Insípida Nefrogénica/metabolismo , Células HEK293 , Mutación , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/agonistas , Receptores de Vasopresinas/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782603

RESUMEN

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Asunto(s)
Quimiotaxis , Monocitos , Receptores de Quimiocina , Receptores de Vasopresinas , Humanos , Monocitos/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Células THP-1 , Multimerización de Proteína , Células HEK293 , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Sistemas CRISPR-Cas , Transducción de Señal , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 1/genética , Ligandos
9.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709918

RESUMEN

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Asunto(s)
Ansiedad , Arginina Vasopresina , Conducta Social , Animales , Femenino , Masculino , Ratones , Ansiedad/metabolismo , Arginina Vasopresina/metabolismo , Conducta Animal/fisiología , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Núcleos Septales/metabolismo , Núcleos Septales/fisiología
10.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695074

RESUMEN

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Asunto(s)
Desamino Arginina Vasopresina , Túbulos Renales Colectores , Ratones Noqueados , Animales , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Desamino Arginina Vasopresina/farmacología , Capacidad de Concentración Renal/efectos de los fármacos , Arginina Vasopresina/metabolismo , Masculino , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Ratones , Acuaporina 2/metabolismo , Acuaporina 2/genética , Fármacos Antidiuréticos/farmacología , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Ratones Endogámicos C57BL , Privación de Agua , Concentración Osmolar , Sodio/orina , Sodio/metabolismo , Vasopresinas/metabolismo , Benzazepinas
11.
Peptides ; 177: 171226, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38649033

RESUMEN

Close contact between lactating rodent mothers and their infants is essential for effective nursing. Whether the mother's effort to retrieve the infants to their nest requires the vasopressin-signaling via V1b receptor has not been fully defined. To address this question, V1b receptor knockout (V1bKO) and control mice were analyzed in pup retrieval test. Because an exploring mother in a new test cage randomly accessed to multiple infants in changing backgrounds over time, a computer vision-based deep learning analysis was applied to continuously calculate the distances between the mother and the infants as a parameter of their relationship. In an open-field, a virgin female V1bKO mice entered fewer times into the center area and moved shorter distances than wild-type (WT). While this behavioral pattern persisted in V1bKO mother, the pup retrieval test demonstrated that total distances between a V1bKO mother and infants came closer in a shorter time than with a WT mother. Moreover, in the medial preoptic area, parts of the V1b receptor transcripts were detected in galanin- and c-fos-positive neurons following maternal stimulation by infants. This research highlights the effectiveness of deep learning analysis in evaluating the mother-infant relationship and the critical role of V1b receptor in pup retrieval during the early lactation phase.


Asunto(s)
Conducta Materna , Ratones Noqueados , Receptores de Vasopresinas , Animales , Femenino , Ratones , Animales Recién Nacidos , Aprendizaje Profundo , Lactancia/genética , Conducta Materna/fisiología , Área Preóptica/metabolismo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
12.
Peptides ; 177: 171229, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663583

RESUMEN

Circadian rhythms optimally regulate numerous physiological processes in an organism and synchronize them with the external environment. The suprachiasmatic nucleus (SCN), the center of the circadian clock in mammals, is composed of multiple cell types that form a network that provides the basis for the remarkable stability of the circadian clock. Among the neuropeptides expressed in the SCN, arginine vasopressin (AVP) has attracted much attention because of its deep involvement in the function of circadian rhythms, as elucidated in particular by studies using genetically engineered mice. This review briefly summarizes the current knowledge on the peptidergic distribution and topographic neuronal organization in the SCN, the molecular mechanisms of the clock genes, and the relationship between the SCN and peripheral clocks. With respect to the physiological roles of AVP and AVP-expressing neurons, in addition to a sex-dependent action of AVP in the SCN, studies using AVP receptor knockout mice and mice genetically manipulated to alter the clock properties of AVP neurons are summarized here, highlighting its importance in maintaining circadian homeostasis and its potential as a target for therapeutic interventions.


Asunto(s)
Arginina Vasopresina , Ritmo Circadiano , Homeostasis , Núcleo Supraquiasmático , Animales , Arginina Vasopresina/metabolismo , Arginina Vasopresina/genética , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología , Homeostasis/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Humanos , Ratones , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Neuronas/metabolismo , Ratones Noqueados , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
13.
Planta Med ; 90(10): 757-765, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38599625

RESUMEN

The medicinal plant Bryophyllum pinnatum was previously shown to block oxytocin (OT)-induced signals in myometrial cells, consistent with its tocolytic effect observed in patients. OT activates not only OT receptors but also V1A receptors, two receptors with high receptor homology that are both expressed in the myometrium and play a crucial role in myometrial contraction signaling. We aimed to study the molecular pharmacology of B. pinnatum herbal preparations using specific receptor ligands, the human myometrial cell line hTERT-C3, and cell lines expressing recombinant human OT and V1A receptors.We found that press juice from B. pinnatum (BPJ) inhibits both OT- and vasopressin (AVP)-induced intracellular calcium increases in hTERT-C3 myometrial cells. In additional assays performed with cells expressing recombinant receptors, BPJ also inhibited OT and V1A receptor-mediated signals with a similar potency (IC50 about 0.5 mg/mL). We further studied endogenous OT- and AVP-sensitive receptors in hTERT-C3 cells and found that OT and AVP stimulated those receptors with similar potency (EC50 of ~ 1 nM), suggesting expression of both receptor subtypes. This interpretation was corroborated by the antagonist potencies of atosiban and relcovaptan that we found. However, using qPCR, we almost exclusively found expression of OT receptors suggesting a pharmacological difference between recombinant OT receptors and native receptors expressed in hTERT-C3 cells.In conclusion, we show that B. pinnatum inhibits both OT and AVP signaling, which may point beyond its tocolytic effects to other indications involving a disbalance in the vasopressinergic system.


Asunto(s)
Kalanchoe , Miometrio , Oxitocina , Receptores de Oxitocina , Transducción de Señal , Vasopresinas , Humanos , Oxitocina/farmacología , Femenino , Kalanchoe/química , Receptores de Oxitocina/metabolismo , Miometrio/efectos de los fármacos , Miometrio/metabolismo , Transducción de Señal/efectos de los fármacos , Vasopresinas/farmacología , Vasopresinas/metabolismo , Extractos Vegetales/farmacología , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Vasotocina/farmacología , Vasotocina/análogos & derivados , Línea Celular , Pirrolidinas/farmacología , Calcio/metabolismo , Indoles
14.
Sci Rep ; 14(1): 9453, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658606

RESUMEN

Arginine-vasopressin (AVP), a cyclic peptide hormone composed of nine amino acids, regulates water reabsorption by increasing intracellular cyclic adenosine monophosphate (cAMP) concentrations via the vasopressin V2 receptor (V2R). Plasma AVP is a valuable biomarker for the diagnosis of central diabetes insipidus (CDI) and is commonly measured using radioimmunoassay (RIA). However, RIA has several drawbacks, including a long hands-on time, complex procedures, and handling of radioisotopes with special equipment and facilities. In this study, we developed a bioassay to measure plasma AVP levels using HEK293 cells expressing an engineered V2R and a cAMP biosensor. To achieve high sensitivity, we screened V2R orthologs from 11 various mammalian species and found that the platypus V2R (pV2R) responded to AVP with approximately six-fold higher sensitivity than that observed by the human V2R. Furthermore, to reduce cross-reactivity with desmopressin (DDAVP), a V2R agonist used for CDI treatment, we introduced a previously described point mutation into pV2R, yielding an approximately 20-fold reduction of responsiveness to DDAVP while maintaining responsiveness to AVP. Finally, a comparison of plasma samples from 12 healthy individuals demonstrated a strong correlation (Pearson's correlation value: 0.90) between our bioassay and RIA. Overall, our assay offers a more rapid and convenient method for quantifying plasma AVP concentrations than existing techniques.


Asunto(s)
Arginina Vasopresina , Técnicas Biosensibles , AMP Cíclico , Receptores de Vasopresinas , Humanos , Arginina Vasopresina/sangre , Células HEK293 , AMP Cíclico/sangre , AMP Cíclico/metabolismo , Receptores de Vasopresinas/genética , Técnicas Biosensibles/métodos , Desamino Arginina Vasopresina/farmacología , Animales , Bioensayo/métodos
15.
Horm Behav ; 161: 105521, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452613

RESUMEN

The neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) are key regulators of social behaviour across vertebrates. However, much of our understanding of how these neuropeptide systems interact with social behaviour is centred around laboratory studies which fail to capture the social and physiological challenges of living in the wild. To evaluate relationships between these neuropeptide systems and social behaviour in the wild, we studied social groups of the cichlid fish Neolamprologus pulcher in Lake Tanganyika, Africa. We first used SCUBA to observe the behaviour of focal group members and then measured transcript abundance of key components of the AVP and OXT systems across different brain regions. While AVP is often associated with male-typical behaviours, we found that dominant females had higher expression of avp and its receptor (avpr1a2) in the preoptic area of the brain compared to either dominant males or subordinates of either sex. Dominant females also generally had the highest levels of leucyl-cystinyl aminopeptidase (lnpep)-which inactivates AVP and OXT-throughout the brain, potentially indicating greater overall activity (i.e., production, release, and turnover) of the AVP system in dominant females. Expression of OXT and its receptors did not differ across social ranks. However, dominant males that visited the brood chamber more often had lower preoptic expression of OXT receptor a (oxtra) suggesting a negative relationship between OXT signalling and parental care in males of this species. Overall, these results advance our understanding of the relationships between complex social behaviours and neuroendocrine systems under natural settings.


Asunto(s)
Arginina Vasopresina , Cíclidos , Oxitocina , Conducta Social , Animales , Oxitocina/metabolismo , Oxitocina/análogos & derivados , Arginina Vasopresina/metabolismo , Masculino , Femenino , Cíclidos/metabolismo , Cíclidos/fisiología , Cíclidos/genética , Encéfalo/metabolismo , Cistinil Aminopeptidasa/metabolismo , Cistinil Aminopeptidasa/genética , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Conducta Animal/fisiología , Predominio Social
16.
Psychopharmacology (Berl) ; 241(6): 1177-1190, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38358527

RESUMEN

RATIONALE: Arginine vasopressin (AVP) has dose- and sex-specific effects on social behavior, and variation in social responses is related to variation in the V1a receptor gene in animals. Whether such complexity also characterizes AVP effects on anxiety in humans, or whether V1a genotype is related to anxiety and/or AVP's ability to affect it, remains to be determined. OBJECTIVE: To test if AVP has dose-dependent effects on anxiety in men and/or women and if a particular allele within the RS3 promoter region of the V1a receptor gene is associated with anxiety and/or AVP effects on anxiety. METHOD: Men and women self-administered 20 IU or 40 IU intranasal arginine vasopressin (AVP) and placebo in a double-blind, within-subjects design, and State (SA) and Trait (TA) anxiety were measured 60 min later. PCR was used to identify allelic variation within the RS3 region of the V1a receptor gene. RESULTS: AVP decreased SA in men across both doses, whereas only the lower dose had the same effect, across sexes, in individuals who carry at least one copy of a previously identified "risk" allele in the RS3 promoter of the V1a receptor gene. Additionally, after placebo, women who carried a copy of the allele displayed lower TA than women who did not, and AVP acutely increased TA scores in those women. CONCLUSIONS: Exogenous AVP has modest sex- and dose-dependent effects on anxiety/affect in humans. Further, allelic variation in the V1a promoter appears associated with responsiveness to AVP's effects and, at least in women, to stable levels of anxiety/affect.


Asunto(s)
Ansiedad , Arginina Vasopresina , Relación Dosis-Respuesta a Droga , Genotipo , Receptores de Vasopresinas , Humanos , Masculino , Receptores de Vasopresinas/genética , Femenino , Arginina Vasopresina/genética , Arginina Vasopresina/farmacología , Arginina Vasopresina/administración & dosificación , Método Doble Ciego , Ansiedad/genética , Ansiedad/tratamiento farmacológico , Adulto , Adulto Joven , Factores Sexuales , Regiones Promotoras Genéticas , Administración Intranasal , Alelos
17.
Neuropsychobiology ; 83(1): 28-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185116

RESUMEN

INTRODUCTION: Vasopressin (AVP) and oxytocin (OT) exert sex-specific effects on social pair bonding and stress reactions while also influencing craving in substance use disorders. In this regard, intranasal oxytocin (OT) and AVP antagonists present potential treatments for tobacco use disorder (TUD). Since transcription of both hormones is also regulated by gene methylation, we hypothesized sex-specific changes in methylation levels of the AVP, OT, and OT receptor (OXTR) gene during nicotine withdrawal. METHODS: The study population consisted of 49 smokers (29 males, 20 females) and 51 healthy non-smokers (25 males, 26 females). Blood was drawn at day 1, day 7, and day 14 of smoking cessation. Craving was assessed with the questionnaire on smoking urges (QSU). RESULTS: Throughout cessation, mean methylation of the OT promoter gene increased in males and decreased in females. OXTR receptor methylation decreased in females, while in males it was significantly lower at day 7. Regarding the AVP promoter, mean methylation increased in males while there were no changes in females. Using mixed linear modeling, CpG position, time point, sex, and the interaction of time point and sex as well as time point, sex, and QSU had a significant fixed effect on OT and AVP gene methylation. The interaction effect suggests that sex, time point, and QSU are interrelated, meaning that, depending on the sex, methylation could be different at different time points and vice versa. There was no significant effect of QSU on mean OXTR methylation. DISCUSSION: We identified differences at specific CpGs between controls and smokers in OT and AVP and in overall methylation of the AVP gene. Furthermore, we found sex-specific changes in mean methylation levels of the mentioned genes throughout smoking cessation, underlining the relevance of sex in the OT and vasopressin system. This is the first study on epigenetic regulation of the OT promoter in TUD. Our results have implications for research on the utility of the AVP and OT system for treating substance craving. Future studies on both targets need to analyze their effect in the context of sex, social factors, and gene regulation.


Asunto(s)
Oxitocina , Tabaquismo , Masculino , Femenino , Humanos , Oxitocina/genética , Oxitocina/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Tabaquismo/genética , Epigénesis Genética , Vasopresinas/genética , Vasopresinas/metabolismo , Metilación , Arginina Vasopresina/genética , Receptores de Vasopresinas/genética
18.
Am J Med Genet A ; 194(3): e63407, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909842

RESUMEN

Ninety percent of congenital nephrogenic diabetes insipidus (NDI) are X-linked inherited and are caused by mutations in the vasopressin type 2 receptor gene (AVPR2). Most affected individuals are males. Only sporadic female cases have been reported. Here, we first reported a female monozygotic twin with discordant phenotypes for NDI carrying a missense variant c.845T>C (p.Leu282Pro) in exon 4 of AVPR2. Intracellular cAMP concentrations in COS7 cells transfected with AVPR2-L282P were significantly decreased by about 60% compared with those in wild-type AVPR2 plasmid transfected cells, suggesting this variation was pathogenic. The X-inactivation pattern was investigated in peripheral leukocytes and urine sediments in both the unaffected and affected pair. Results showed that the affected pair had a skewed X chromosome inactivation (XCI) pattern in urine sediments and a random XCI pattern in leukocytes, while the unaffected pair showed a random XCI pattern both in leukocytes and urine sediments. This was the first report of monozygotic twins who developed different phenotypes of NDI. Our study suggested that the development of NDI symptoms is more closely associated with the XCI pattern in urine sediments compared with the XCI pattern in peripheral leukocytes. Analysis of XCI in peripheral leukocytes may not be enough to explore possible mechanisms.


Asunto(s)
Diabetes Insípida Nefrogénica , Gemelos Monocigóticos , Femenino , Humanos , Diabetes Insípida Nefrogénica/genética , Exones , Mutación Missense , Receptores de Vasopresinas/genética , Gemelos Monocigóticos/genética
19.
Genes (Basel) ; 14(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38002996

RESUMEN

The neurobiological systems of maintenance and control of behavioral responses result from natural selection. We have analyzed the selection signatures for single nucleotide variants (SNV) of the genes of oxytocin (OXT, OXTR) and vasopressin (AVP, AVPR1A, AVPR1B) systems, which are associated with the regulation of social and emotional behavior in distinct populations. The analysis was performed using original WGS (whole genome sequencing) data on Eastern Slavs (SlEast), as well as publicly available data from the 1000 Genomes Project on GBR, FIN, IBR, PUR, BEB, CHB, and ACB populations (the latter were taken as reference). To identify selection signatures, we rated the integrated haplotype scores (iHS), the numbers of segregating sites by length (nSl), and the integrated haplotype homozygosity pooled (iHH12) measures; the fixation index Fst was implemented to assess genetic differentiation between populations. We revealed that the strongest genetic differentiation of populations was found with respect to the AVPR1B gene, with the greatest differentiation observed in GRB (Fst = 0.316) and CHB (Fst = 0.325) in comparison to ACB. Also, high Fst values were found for SNVs of the AVPR1B gene rs28499431, rs33940624, rs28477649, rs3883899, and rs28452187 in most of the populations. Selection signatures have also been identified in the AVP, AVPR1A, OXT, and OXTR genes. Our analysis shows that the OXT, OXTR, AVP, AVPR1A, and AVPR1B genes were subject to positive selection in a population-specific process, which was likely contributing to the diversity of adaptive emotional response types and social function realizations.


Asunto(s)
Oxitocina , Vasopresinas , Humanos , Oxitocina/genética , Genómica , Receptores de Oxitocina/genética , Receptores de Vasopresinas/genética
20.
Proc Biol Sci ; 290(2000): 20230378, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37312550

RESUMEN

Although numerous studies have focused on brain functions related to inequity aversion, few have examined its genetic basis. Here, we show the association between estimated inequity aversion and polymorphisms in three genes associated with human sociality. Non-student adult participants took part in five economic game experiments on different days. Disadvantageous inequity aversion (DIA) and advantageous inequity aversion (AIA) were calculated from behavioural responses using Bayesian estimation. We investigated the association between genetic polymorphisms in the oxytocin receptor (OXTR rs53576), arginine vasopressin receptor 1A (AVPR1A RS3) and opioid receptor mu 1 (OPRM1 rs1799971) and inequity aversion. Regarding AVPR1A RS3, participants with the SS genotype had higher AIA than those with the SL or LL genotypes, but no association was found for DIA. Moreover, we observed no aversion associations for OXTR rs53576 or OPRM1 rs1799971. The results suggest that AVPR1A plays an important role in aversion when one's own gain is greater than that of others. Our findings may provide a solid theoretical basis for future studies on the relationship between genetic polymorphisms and inequity aversion.


Asunto(s)
Afecto , Receptores de Vasopresinas , Adulto , Humanos , Teorema de Bayes , Receptores de Vasopresinas/genética , Genotipo , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA