Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.160
Filtrar
1.
Nat Commun ; 15(1): 8820, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39394251

RESUMEN

Recent research has identified multiple immune systems that bacteria use to protect themselves from viral infections. However, little is known about the mechanisms by which these systems horizontally spread, especially among bacterial pathogens. Here, we investigate antiviral defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within or near SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem SCC-like cassettes enriched in genes coding for diverse defense systems. Further, we show that phage infection stimulates cassette mobilization (i.e. excision and circularization). Thus, our findings indicate that SCC/SCCmec cassettes not only spread antibiotic resistance but can also play a role in mobilizing anti-phage defenses.


Asunto(s)
Islas Genómicas , Islas Genómicas/genética , Staphylococcus/genética , Recombinasas/metabolismo , Recombinasas/genética , Resistencia a la Meticilina/genética , Fagos de Staphylococcus/genética , Transferencia de Gen Horizontal , Staphylococcus aureus Resistente a Meticilina/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Cromosomas Bacterianos/genética
2.
Anal Chem ; 96(37): 15059-15065, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39241168

RESUMEN

Herein, we report a target-triggered CRISPR/Cas12a assay by coupling lanthanide tagging and inductively coupled plasma mass spectrometry (ICP-MS) for highly sensitive elemental detection. Hepatitis B virus (HBV) DNA was chosen as a model analyte, and recombinase polymerase amplification (RPA) was used for target amplification. The double-stranded RPA amplicons containing a 5' TTTG PAM sequence can be recognized by Cas12a through a specific CRISPR RNA, activating the trans-cleavage activity of CRISPR/Cas12a and nonspecific cleavage of terbium (Tb)-ssDNA modified on magnetic beads (MBs). Following magnetic separation and acid digestion, the released Tb3+ ions were quantitated by ICP-MS and correlated to the concentration of HBV DNA. Taking advantage of the accelerated cleavage of Tb-ssDNA attached to the MB particles, RPA for target amplification, and ICP-MS for highly selective signal readout, this method permits the detection of 1 copy/µL of HBV DNA in serum with high specificity and holds great promise in the early diagnosis of viral infections or tumor development.


Asunto(s)
Sistemas CRISPR-Cas , ADN Viral , Virus de la Hepatitis B , Elementos de la Serie de los Lantanoides , Espectrometría de Masas , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , ADN Viral/genética , ADN Viral/análisis , Elementos de la Serie de los Lantanoides/química , Espectrometría de Masas/métodos , Sistemas CRISPR-Cas/genética , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo
3.
Sci Rep ; 14(1): 21332, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266713

RESUMEN

Sex identification in avian species is essential for biodiversity conservation and ecological studies. However, the sex of nearly half of the birds could not be identified based on their external appearance. It is difficult to visually identify sex to monitor the ecology and conservation of wild populations. In this study, we designed primer pairs for large white pelican using recombinase-based isothermal amplification combined with a lateral flow dipstick (RAA-LFD) assay for chromo-helicase-DNA binding protein (CHD) genes mapped to W chromosomes and an ultra-conserved element (UCE) located on chromosome 6, respectively. Our result showed that the raaW4-RAA-LFD can detect up to 0.1 ng of genomic DNA (gDNA) templates of female pelicans in 30 min at 39 ℃ and accurately distinguish female from male without any cross reactivity. RaaUCE2-RAA-LFD can amplify both male and female pelicans with a detection limit of 25 pg. To further evaluate the assay, 15 white pelicans of unknown sex were tested using the RAA-LFD assay and conventional polymerase chain reaction (PCR). The results of the raaW4-RAA-LFD assay were consistent with those of the conventional PCR. The developed RAA-LFD assay is equipped with field-deployable instruments and offers a field platform for rapid and reliable sex identification in pelicans.


Asunto(s)
Aves , Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Análisis para Determinación del Sexo , Animales , Femenino , Masculino , Análisis para Determinación del Sexo/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Aves/genética , Recombinasas/metabolismo , Recombinasas/genética
4.
Vet Parasitol ; 331: 110298, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217761

RESUMEN

Hepatozoonosis, caused by the protozoan Hepatozoon canis, is a prevalent blood disease affecting owned and stray dogs and cats. The prevalence of these parasites among companion animals in Thailand remains poorly understood. Diagnosing the old-world form of the disease is challenging due to the wide range of nonspecific clinical signs and the reliance on finding low levels of Hepatozoon gamonts in blood smears for conventional diagnosis. PCR demonstrates high specificity and sensitivity but it requires sophisticated instrumentation. Therefore, we established recombinase polymerase amplification (RPA) coupled with Cas12a for H. canis detection based on 18S rRNA. Our findings showed that RPA-Cas12a using gRNA_H was highly specific to H. canis, without yielding positives for other pathogen species including Babesia species. Even in cases of co-infection, RPA-Cas12a only detected positives in samples containing H. canis. This approach detected minimal amounts of H. canis18S rRNA-harboring plasmid at 10 copies per reaction, whereas plasmid-spiked canine blood enabled detection at a minimal amount of 100 copies per reaction. The performance of RPA-Cas12a was validated by comparing it with quantitative PCR-high resolution melting analysis (qPCR-HRM) and sequencing based on 35 canine blood samples. RPA-Cas12a demonstrated precision and accuracy values of 94 % and 90 %, respectively comparable to qPCR-HRM. Overall, these results indicate that RPA-Cas12a serves as a promising tool for H. canis detection as indicated by comparable performance to qPCR-HRM and is suitable for implementation in small animal hospitals or clinics due to its minimal resource requirements, thereby contributing to effective diagnosis and treatment for infected dogs.


Asunto(s)
Sistemas CRISPR-Cas , Coccidiosis , Enfermedades de los Perros , ARN Ribosómico 18S , Animales , Perros , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/diagnóstico , Coccidiosis/veterinaria , Coccidiosis/diagnóstico , Coccidiosis/parasitología , ARN Ribosómico 18S/genética , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Estudios de Factibilidad , Recombinasas/metabolismo , Eucoccidiida/genética , Eucoccidiida/aislamiento & purificación
5.
Front Cell Infect Microbiol ; 14: 1454076, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233906

RESUMEN

Introduction: Mycobacterium tuberculosis, the causative agent of human tuberculosis, poses a significant threat to global public health and imposes a considerable burden on the economy. However, existing laboratory diagnostic methods for M. tuberculosis are time-consuming and have limited sensitivity levels. Methods: The CRISPR/Cas system, commonly known as the "gene scissors", demonstrates remarkable specificity and efficient signal amplification capabilities. Enzymatic recombinase amplification (ERA) was utilized to rapidly amplify trace DNA fragments at a consistent temperature without relying on thermal cyclers. By integrating of CRISPR/Cas12a with ERA, we successfully developed an ERA-CRISPR/Cas12a detection system that enables rapid identification of M. tuberculosis. Results: The sensitivity of the ERA-CRISPR/Cas12a fluorescence and lateral flow systems was 9 copies/µL and 90 copies/µL, respectively. Simultaneously, the detection system exhibited no cross-reactivity with various of respiratory pathogens and non-tuberculosis mycobacteria, demonstrating a specificity of 100%. The positive concordance rate between the ERA-CRISPR/Cas12a fluorescence system and commercial qPCR was 100% in 60 clinical samples. Meanwhile, the lateral flow system showed a positive concordance rate of 93.8% when compared to commercial qPCR. Both methods demonstrated a negative concordance rate of 100%, and the test results can be obtained in 50 min at the earliest. Discussion: The ERA-CRISPR/Cas12a system offers a rapid, sensitive, and specific method that presents a novel approach to laboratory diagnosis of M. tuberculosis.


Asunto(s)
Sistemas CRISPR-Cas , Mycobacterium tuberculosis , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Tuberculosis/diagnóstico , Tuberculosis/microbiología , Recombinasas/metabolismo , Recombinasas/genética , Técnicas de Diagnóstico Molecular/métodos , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas
6.
Microbiol Spectr ; 12(10): e0034524, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39254031

RESUMEN

The potential of CRISPR/Cas systems for nucleic acid detection in novel biosensing applications is remarkable. The current clinical diagnostic detection of Streptococcus pyogenes (S. pyogenes) is based on serological identification, culture, and PCR. We report a rapid, simple, and sensitive method for detecting and screening for S. pyogenes. This novel method is a promising supplemental test. After 10 min of the sample processing and 10 min of recombinase polymerase amplification, followed by 10 min of Cas12 reaction and 3 min of lateral flow biosensor (LFB) readout, a visible outcome can be observed without the need for magnification within 33 min. This platform is robust, inexpensive, and appropriate for on-site testing. A new technique for detection was created using CRISPR-Cas12a technology, which includes two measurements: a fluorescent-CRISPR-S. pyogenes test and a LFB-CRISPR-S. pyogenes test. An approach utilizing CRISPR Cas12a was developed, and the accuracy and precision of this technique were assessed. The LoD for the fluorescence-CRISPR- S. pyogenes assay was 1 copy/µL, and the technique effectively differentiated S. pyogenes from other microorganisms. Moreover, the detection outcomes were presented in a user-friendly manner using lateral flow biosensor strips. Conclusion: A rapid and sensitive Cas12a/crRNA assay using recombinase RPA and LFB was developed to detect S. pyogenes. The Cas12a/crRNA-based assay exhibited high specificity among different bacteria strains and extremely high sensitivity. The accuracy and rapidity of this method make it a promising tool for S. pyogenes detection and screening. IMPORTANCE: Patients may experience a range of symptoms due to Streptococcus pyogenes infections, including superficial skin infections, pharyngitis, and invasive diseases in subcutaneous tissues like streptococcal toxic shock syndrome. At present, the clinical diagnostic detection of S. pyogenes is based on serological identification, culture, and PCR. These detection methods are time-consuming and require sophisticated equipment, making these methods challenging for routine laboratories. Thus, there is a need for a detection platform that is capable of quickly and accurately identifying S. pyogenes. In this study, a rapid and sensitive Cas12a/crRNA assay using recombinase RPA and LFB was developed to detect S. pyogenes. The Cas12a/crRNA-based assay exhibited high specificity among different bacteria strains and extremely high sensitivity. This method probably plays an important role for S. pyogenes detection and screening.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Infecciones Estreptocócicas , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/aislamiento & purificación , Técnicas Biosensibles/métodos , Recombinasas/metabolismo , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Proteínas Bacterianas/genética , Sensibilidad y Especificidad , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas
7.
Lab Chip ; 24(20): 4879-4891, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39302137

RESUMEN

Isothermal nucleic acid amplification tests (NAATs) are a vital tool for point-of-care (POC) diagnostics. These assays are well-suited for rapid, low-cost POC diagnostics for infectious diseases compared to traditional PCR tests conducted in central laboratories. There has been significant development of POC NAATs using paper-based diagnostic devices because they provide an affordable, user-friendly, and easy to store format; however, the difficulties in integrating separate liquid components, resuspending dried reagents, and achieving a low limit of detection hinder their use in commercial applications. Several studies report low assay efficiencies, poor detection output, and poorer limits of detection in porous membranes compared to traditional tube-based protocols. Recombinase polymerase amplification is a rapid, isothermal NAAT that is highly suited for POC applications, but requires viscous reaction conditions that has poor performance when amplifying in a porous paper membrane. In this work, we show that we can dramatically improve the performance of membrane-based recombinase polymerase amplification (RPA) of HIV-1 DNA and viral RNA by employing a coin cell-based vibration mixing platform. We achieve a limit of detection of 12 copies of DNA per reaction, nearly 50% reduction in time to threshold (from ∼10 minutes to ∼5 minutes), and an overall fluorescence output increase up to 16-fold when compared to unmixed experiments. This active mixing strategy enables reactions where the target and reaction cofactors are isolated from each other prior to the reaction. We also demonstrate amplification using a low-cost vibration motor for both temperature control and mixing, without the requirement of any additional heating components.


Asunto(s)
ADN Viral , VIH-1 , Técnicas de Amplificación de Ácido Nucleico , Papel , Recombinasas , Recombinasas/metabolismo , VIH-1/genética , ADN Viral/análisis , ADN Viral/genética , Vibración , ARN Viral/análisis , ARN Viral/genética , Humanos
9.
Front Cell Infect Microbiol ; 14: 1428827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318475

RESUMEN

The indiscriminate use of antibiotics has resulted in a growing resistance to drugs in Pseudomonas aeruginosa. The identification of antibiotic resistance genes holds considerable clinical significance for prompt diagnosis. In this study, we established and optimized a Recombinase-Aided Amplification (RAA) assay to detect two genes associated with drug resistance, oprD and arr, in 101 clinically collected P. aeruginosa isolates. Through screening for the detection or absence of oprD and arr, the results showed that there were 52 Imipenem-resistant P. aeruginosa (IRPA) strains and 23 Rifampin-resistant P. aeruginosa (RRPA) strains. This method demonstrated excellent detection performance even when the sample concentration is 10 copies/µL at isothermal conditions and the results could be obtained within 20 minutes. The detection results were in accordance with the results of conventional PCR and Real-time PCR. The detection outcomes of the arr gene were consistently with the resistance spectrum. However, the antimicrobial susceptibility results revealed that 65 strains were resistant to imipenem, while 49 strains sensitive to imipenem with oprD were identified. This discrepancy could be attributed to genetic mutations. In summary, the RAA has higher sensitivity, shorter time, and lower-cost instrument requirements than traditional detection methods. In addition, to analyze the epidemiological characteristics of the aforementioned drug-resistant strains, we conducted Multilocus Sequence Typing (MLST), virulence gene, and antimicrobial susceptibility testing. MLST analysis showed a strong correlation between the sequence types ST-1639, ST-639, ST-184 and IRPA, while ST-261 was the main subtype of RRPA. It was observed that these drug-resistant strains all possess five or more virulence genes, among which exoS and exoU do not coexist, and they are all multidrug-resistant strains. The non-coexistence of exoU and exoS in P.aeruginosa is related to various factors including bacterial regulatory mechanisms and pathogenic mechanisms. This indicates that the relationship between the presence of virulence genes and the severity of patient infection is worthy of attention. In conclusion, we have developed a rapid and efficient RAA (Recombinase-Aided Amplification) detection method that offers significant advantages in terms of speed, simplicity, and cost-effectiveness (especially in time and equipment aspect). This novel approach is designed to meet the demands of clinical diagnostics.


Asunto(s)
Antibacterianos , Imipenem , Pruebas de Sensibilidad Microbiana , Técnicas de Amplificación de Ácido Nucleico , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Recombinasas , Rifampin , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Imipenem/farmacología , Rifampin/farmacología , Humanos , Antibacterianos/farmacología , Recombinasas/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones por Pseudomonas/microbiología , Farmacorresistencia Bacteriana/genética , Porinas/genética , Sensibilidad y Especificidad , Proteínas Bacterianas/genética , Técnicas de Diagnóstico Molecular/métodos
10.
Sci Rep ; 14(1): 21946, 2024 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304692

RESUMEN

The plant virus, Impatiens necrotic spot virus (INSV), is an economically important pathogen of vegetables, fruits, and ornamental crops. INSV is vectored by the western flower thrips, Frankliniella occidentalis, a small insect pest that is globally distributed. In recent years, INSV outbreaks have reached epidemic levels in the Salinas Valley of California-an agriculturally rich region where most of the lettuce (Lactuca sativa) is produced in the United States. Due to the obligate nature in which virus transmission occurs, new tools that could rapidly detect INSV from thrips vectors would enhance our ability to predict where virus outbreaks may occur. Here, we report on the development of a reverse transcription-recombinase polymerase amplification (RT-RPA) assay that can detect INSV from individual thrips. The assay uses crude extraction methods, is performed at a single temperature of 42 °C, can be completed in 25 min, and provides sensitivity levels that are comparable to other available detection methods. When the assay was used on field populations of thrips, INSV was successfully identified and quantified from individual larvae and adults. The work provides a new cost-effective surveillance tool that can rapidly detect INSV from its insect vector and from plants.


Asunto(s)
Enfermedades de las Plantas , Thysanoptera , Animales , Thysanoptera/virología , Thysanoptera/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/parasitología , Insectos Vectores/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo , Recombinasas/genética , Tospovirus/genética , Tospovirus/aislamiento & purificación , Transcripción Reversa
11.
Mikrochim Acta ; 191(10): 631, 2024 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340568

RESUMEN

A highly specific and sensitive rapid two-signal assay was developed for the detection of Salmonella typhimurium in foods of animal origin. The invA gene of Salmonella was used as the biorecognition element and recombinase-assisted amplification (RAA) technology for signal amplification. By utilizing the specific recognition and efficient trans-cleavage activity of CRISPR/Cas12a, point-of-care testing (POCT) for S. typhimurium was achieved via lateral flow strips (LFS) and personal glucometer (PGM) biosensors as dual signal readout systems, with sensitivities of 33 CFU/mL and 20 CFU/mL, respectively. Users can select the appropriate test system on the basis of specific application requirements: LFSs are ideal for rapid onsite screening, whereas glucometer biosensors offer precise quantitative determination. This approach simplifies the use of large instruments and overcomes site constraints, demonstrating good accuracy and applicability in animal-derived samples, with significant potential for the detection of other pathogens and for use in restricted environments.


Asunto(s)
Proteínas Bacterianas , Técnicas Biosensibles , Sistemas CRISPR-Cas , Microbiología de Alimentos , Salmonella typhimurium , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Animales , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/genética , Proteínas Bacterianas/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas Asociadas a CRISPR/genética , Límite de Detección , Contaminación de Alimentos/análisis , Endodesoxirribonucleasas , Recombinasas/metabolismo , Pruebas en el Punto de Atención
12.
Sci Rep ; 14(1): 20165, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215071

RESUMEN

Robust diagnostic tools and surveillance are crucial for malaria control and elimination efforts. Malaria caused by neglected Plasmodium parasites is often underestimated due to the lack of rapid diagnostic tools that can accurately detect these species. While nucleic-acid amplification technologies stand out as the most sensitive methods for detecting and confirming Plasmodium species, their implementation in resource-constrained settings poses significant challenges. Here, we present a Pan Plasmodium recombinase polymerase amplification lateral flow (RPA-LF) assay, capable of detecting all six human infecting Plasmodium species in low resource settings. The Pan Plasmodium RPA-LF assay successfully detected low density clinical infections with a preliminary limit of detection between 10-100 fg/µl for P. falciparum. When combined with crude nucleic acid extraction, the assay can serve as a point-of-need tool for molecular xenomonitoring. This utility was demonstrated by screening laboratory-reared Anopheles stephensi mosquitoes fed with Plasmodium-infected blood, as well as field samples of An. funestus s.l. and An. gambiae s.l. collected from central Africa. Overall, our proof-of-concept Pan Plasmodium diagnostic tool has the potential to be applied for clinical and xenomonitoring field surveillance, and after further evaluation, could become an essential tool to assist malaria control and elimination.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Técnicas de Amplificación de Ácido Nucleico , Plasmodium , Humanos , Animales , Anopheles/parasitología , Plasmodium/genética , Plasmodium/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Malaria/diagnóstico , Malaria/parasitología , Mosquitos Vectores/parasitología , Recombinasas/metabolismo , Recombinasas/genética , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación
13.
BMC Microbiol ; 24(1): 314, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187803

RESUMEN

Pneumocystis jirovecii is a prevalent opportunistic fungal pathogen that can lead to life-threatening Pneumocystis pneumonia in immunocompromised individuals. Given that timely and accurate diagnosis is essential for initiating prompt treatment and enhancing patient outcomes, it is vital to develop a rapid, simple, and sensitive method for P. jirovecii detection. Herein, we exploited a novel detection method for P. jirovecii by combining recombinase polymerase amplification (RPA) of nucleic acids isothermal amplification and the trans cleavage activity of Cas12a. The factors influencing the efficiency of RPA and Cas12a-mediated trans cleavage reaction, such as RPA primer, crRNA, the ratio of crRNA to Cas12a and ssDNA reporter concentration, were optimized. Our RPA-Cas12a-based fluorescent assay can be completed within  30-40 min, comprising a 25-30 min RPA reaction and a 5-10 min trans cleavage reaction. It can achieve a lower detection threshold of 0.5 copies/µL of target DNA with high specificity. Moreover, our RPA-Cas12a-based fluorescent method was examined using 30 artificial samples and demonstrated high accuracy with a diagnostic accuracy of 93.33%. In conclusion, a novel, rapid, sensitive, and cost-effective RPA-Cas12a-based detection method was developed and demonstrates significant potential for on-site detection of P. jirovecii in resource-limited settings.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Pneumocystis carinii , Sensibilidad y Especificidad , Pneumocystis carinii/genética , Pneumocystis carinii/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Neumonía por Pneumocystis/diagnóstico , Neumonía por Pneumocystis/microbiología , Técnicas de Diagnóstico Molecular/métodos , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas Asociadas a CRISPR/genética , ADN de Hongos/genética , Recombinasas/metabolismo , Recombinasas/genética , Proteínas Bacterianas
14.
Appl Microbiol Biotechnol ; 108(1): 434, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120640

RESUMEN

Chinese hamster ovary (CHO) cells, widely acknowledged as the preferred host system for industrial recombinant protein manufacturing, play a crucial role in developing pharmaceuticals, including anticancer therapeutics. Nevertheless, mammalian cell-based biopharmaceutical production methods are still beset by cellular constraints such as limited growth and poor productivity. MicroRNA-21 (miR-21) has a major impact on a variety of malignancies, including glioblastoma multiforme (GBM). However, reduced productivity and growth rate have been linked to miR-21 overexpression in CHO cells. The current study aimed to engineer a recombinant CHO (rCHO) cell using the CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) system coupled with the Bxb1 recombinase-mediated cassette exchange (RMCE) to express a circular miR-21 decoy (CM21D) with five bulged binding sites for miR-21 sponging. Implementing the ribonucleoprotein (RNP) delivery method, a landing pad was inserted into the genome utilizing the CRIS-PITCh technique. Subsequently, the CM21D cassette flanked by Bxb1 attB was then retargeted into the integrated landing pad using the RMCE/Bxb1 system. This strategy raised the targeting efficiency by 1.7-fold, and off-target effects were decreased. The miR-21 target genes (Pdcd4 and Atp11b) noticed a significant increase in expression upon the miR-21 sponging through CM21D. Following the expression of CM21D, rCHO cells showed a substantial decrease in doubling time and a 1.3-fold increase in growth rate. Further analysis showed an increased yield of hrsACE2, a secretory recombinant protein, by 2.06-fold. Hence, we can conclude that sponging-induced inhibition of miR-21 may lead to a growth rate increase that could be linked to increased CHO cell productivity. For industrial cell lines, including CHO cells, an increase in productivity is crucial. The results of our research indicate that CM21D is an auspicious CHO engineering approach. KEY POINTS: • CHO is an ideal host cell line for producing industrial therapeutics manufacturing, and miR-21 is downregulated in CHO cells, which produce recombinant proteins. • The miR-21 target genes noticed a significant increase in expression upon the miR-21 sponging through CM21D. Additionally, sponging of miR-21 by CM21D enhanced the growth rate of CHO cells. • Productivity and growth rate were increased in CHO cells expressing recombinant hrs-ACE2 protein after CM21D knocking in.


Asunto(s)
Sistemas CRISPR-Cas , Cricetulus , MicroARNs , Células CHO , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ingeniería Celular/métodos , Edición Génica/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinasas/genética , Recombinasas/metabolismo , Cricetinae
15.
Cell Rep ; 43(8): 114650, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159043

RESUMEN

We describe a binary expression aleatory mosaic (BEAM) system, which relies on DNA delivery by transfection or viral transduction along with nested recombinase activity to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Control cells labeled with red fluorescent protein (RFP) can be directly compared with experimental cells manipulated by genetic gain or loss of function and labeled with GFP. Importantly, BEAM incorporates recombinase-dependent signal amplification and delayed reporter expression to enable sharper delineation of control and experimental cells and to improve reliability relative to existing methods. We applied BEAM to a variety of known phenotypes to illustrate its advantages for identifying temporally or spatially aberrant phenotypes, for revealing changes in cell proliferation or death, and for controlling for procedural variability. In addition, we used BEAM to test the cortical protomap hypothesis at the individual radial unit level, revealing that area identity is cell autonomously specified in adjacent radial units.


Asunto(s)
Recombinasas , Animales , Recombinasas/metabolismo , Recombinasas/genética , Mosaicismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Expresión Génica/genética , Proteína Fluorescente Roja , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos
16.
Poult Sci ; 103(10): 104141, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137501

RESUMEN

Rapid and accurate detection of goose parvovirus (GPV) is crucial for controlling outbreaks and mitigating their economic impact on the poultry industry. This study introduces recombinase polymerase amplification combined with the Pyrococcus furiosus argonaute (RPA-PfAgo) system, a novel diagnostic platform designed to address the limitations of traditional GPV detection methods. Capitalizing on the rapid DNA amplification of RPA and stringent nucleic acid cleavage by the PfAgo protein, the RPA-PfAgo system offers high specificity and sensitivity in detecting GPV. Our optimization efforts included primer and probe configurations, reaction parameters, and guided DNA selection, culminating in a detection threshold of 102 GPV DNA copies per microlitre. The specificity of the proposed method was rigorously validated against a spectrum of avian pathogens. Clinical application to lung tissues from GPV-infected geese yielded a detection concordance of 100%, surpassing that of qPCR and PCR in both rapidity and operational simplicity. The RPA-PfAgo system has emerged as a revolutionary diagnostic modality for managing this disease, as it is a promising rapid, economical, and onsite GPV detection method amenable to integration into broad-scale disease surveillance frameworks. Future explorations will extend the applicability of this method to diverse avian diseases and assess its field utility across various epidemiological landscapes.


Asunto(s)
Gansos , Técnicas de Amplificación de Ácido Nucleico , Infecciones por Parvoviridae , Enfermedades de las Aves de Corral , Pyrococcus furiosus , Animales , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/diagnóstico , Infecciones por Parvoviridae/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Gansos/virología , Pyrococcus furiosus/genética , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo , Parvovirinae/genética , Parvovirinae/aislamiento & purificación , Sensibilidad y Especificidad
17.
Int J Food Microbiol ; 422: 110822, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013210

RESUMEN

Foodborne illnesses, caused by harmful microorganisms in food, are a significant global health issue. Current methods for identifying these pathogens are both labor-intensive and time-consuming. In this research, we devised a swift and precise detection technique using recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) for three foodborne pathogens found in meat. By employing a dedicated detection device, RPA-LFD allows for the rapid analysis of DNA from Escherichia coli O157 (E. coli O157), Salmonella, and Shigella-pathogens that are prohibited in food. The detection thresholds for E. coli O157, Salmonella, and Shigella are 0.168 fg/µl (1.04 CFU/ml), 0.72 fg/µl (27.49 CFU/ml), and 1.25 fg/µl (48.84 CFU/ml), respectively. This method provides a short detection window, operates at low temperatures, follows simple procedures, and exhibits high sensitivity. Our study establishes the RPA-LFD method for simultaneously identifying the nucleic acid of three foodborne pathogens, offering an efficient solution for quickly identifying multiple contaminants.


Asunto(s)
Escherichia coli O157 , Contaminación de Alimentos , Microbiología de Alimentos , Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Salmonella , Shigella , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/genética , Salmonella/aislamiento & purificación , Salmonella/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Microbiología de Alimentos/métodos , Recombinasas/metabolismo , Shigella/aislamiento & purificación , Shigella/genética , Contaminación de Alimentos/análisis , Carne/microbiología , ADN Bacteriano/genética , Animales , Sensibilidad y Especificidad , Enfermedades Transmitidas por los Alimentos/microbiología
18.
J Infect Dis ; 230(1): 231-238, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052728

RESUMEN

Staphylococcal cassette chromosome mec (SCCmec) typing is crucial for investigating methicillin-resistant Staphylococcus aureus (MRSA), relying primarily on the combination of ccr and mec gene complexes. To date, 19 ccr genes and 10 ccr gene complexes have been identified, forming 15 SCCmec types. With the vast release of bacterial genome sequences, mining the database for novel ccr gene complexes and SCC/SCCmec elements could enhance MRSA epidemiological studies. In this study, we identified 12 novel ccr genes (6 ccrA, 3 ccrB, and 3 ccrC) through mining of the National Center for Biotechnology Information (NCBI) database, forming 12 novel ccr gene complexes and 10 novel SCC elements. Overexpression of 5 groups of novel Ccr recombinases (CcrA9B3, CcrA10B1, CcrC3, CcrC4, and CcrC5) in a mutant MRSA strain lacking the ccr gene and extrachromosomal circular intermediate (ciSCC) production significantly promoted ciSCC production, demonstrating their biological activity. This discovery provides an opportunity to advance MRSA epidemiological research and develop database-based bacterial typing methods.


Asunto(s)
Proteínas Bacterianas , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/epidemiología , Recombinasas/genética , Recombinasas/metabolismo , Minería de Datos , Humanos
19.
Front Cell Infect Microbiol ; 14: 1362513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994004

RESUMEN

The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/µL and 10 fg/µL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.


Asunto(s)
Sistemas CRISPR-Cas , Klebsiella pneumoniae , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Infecciones por Klebsiella/diagnóstico , Infecciones por Klebsiella/microbiología , Recombinasas/metabolismo , Recombinasas/genética , Técnicas de Diagnóstico Molecular/métodos , Proteínas Bacterianas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas Asociadas a CRISPR/genética , ADN Bacteriano/genética , Endodesoxirribonucleasas
20.
Int J Biol Macromol ; 275(Pt 2): 133720, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987000

RESUMEN

Tick-borne encephalitis virus (TBEV), a zoonotic pathogen, can cause severe neurological complications and fatal outcomes in humans. Early diagnosis of TBEV infection is crucial for clinical practice. Although serological assays are frequently employed for detection, the lack of antibodies in the early stages of infection and the cross-reactivity of antibodies limit their efficacy. Conventional molecular diagnostic methods such as RT-qPCR can achieve early and accurate identification but require specialized instrumentation and professionals, hindering their application in resource-limited areas. Our study developed a rapid and visual TBEV molecular detection method by combining RT-recombinase-aided amplification, the CRISPR/Cas13a system, and lateral flow dipsticks. The diagnostic sensitivity of this method is 50 CFU/ml, with no cross-reactivity with a variety of viruses. The detection can be carried out within 1 h at a temperature between 37 and 42 °C, and the results can be visually determined without the need for complex instruments and professionals. Subsequently, this assay was used to analyze clinical samples from 15 patients suspected of TBEV infection and 10 healthy volunteers, and its sensitivity and specificity reached 100 %, which was consistent with the results of RT-qPCR. These results indicate that this new method can be a promising point-of-care test for the diagnosis of tick-borne encephalitis.


Asunto(s)
Sistemas CRISPR-Cas , Virus de la Encefalitis Transmitidos por Garrapatas , Recombinasas , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Humanos , Recombinasas/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/virología , Encefalitis Transmitida por Garrapatas/sangre , Sensibilidad y Especificidad , ARN Viral/genética , Técnicas de Diagnóstico Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA