Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52.559
Filtrar
Más filtros




Intervalo de año de publicación
1.
Sci Adv ; 10(19): eadj1424, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718126

RESUMEN

The ongoing expansion of human genomic datasets propels therapeutic target identification; however, extracting gene-disease associations from gene annotations remains challenging. Here, we introduce Mantis-ML 2.0, a framework integrating AstraZeneca's Biological Insights Knowledge Graph and numerous tabular datasets, to assess gene-disease probabilities throughout the phenome. We use graph neural networks, capturing the graph's holistic structure, and train them on hundreds of balanced datasets via a robust semi-supervised learning framework to provide gene-disease probabilities across the human exome. Mantis-ML 2.0 incorporates natural language processing to automate disease-relevant feature selection for thousands of diseases. The enhanced models demonstrate a 6.9% average classification power boost, achieving a median receiver operating characteristic (ROC) area under curve (AUC) score of 0.90 across 5220 diseases from Human Phenotype Ontology, OpenTargets, and Genomics England. Notably, Mantis-ML 2.0 prioritizes associations from an independent UK Biobank phenome-wide association study (PheWAS), providing a stronger form of triaging and mitigating against underpowered PheWAS associations. Results are exposed through an interactive web resource.


Asunto(s)
Bancos de Muestras Biológicas , Redes Neurales de la Computación , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Reino Unido , Fenómica/métodos , Predisposición Genética a la Enfermedad , Genómica/métodos , Bases de Datos Genéticas , Algoritmos , Biología Computacional/métodos , Biobanco del Reino Unido
2.
J R Soc Interface ; 21(214): 20230604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745459

RESUMEN

Simple models have been used to describe ecological processes for over a century. However, the complexity of ecological systems makes simple models subject to modelling bias due to simplifying assumptions or unaccounted factors, limiting their predictive power. Neural ordinary differential equations (NODEs) have surged as a machine-learning algorithm that preserves the dynamic nature of the data (Chen et al. 2018 Adv. Neural Inf. Process. Syst.). Although preserving the dynamics in the data is an advantage, the question of how NODEs perform as a forecasting tool of ecological communities is unanswered. Here, we explore this question using simulated time series of competing species in a time-varying environment. We find that NODEs provide more precise forecasts than autoregressive integrated moving average (ARIMA) models. We also find that untuned NODEs have a similar forecasting accuracy to untuned long-short term memory neural networks and both are outperformed in accuracy and precision by empirical dynamical modelling . However, we also find NODEs generally outperform all other methods when evaluating with the interval score, which evaluates precision and accuracy in terms of prediction intervals rather than pointwise accuracy. We also discuss ways to improve the forecasting performance of NODEs. The power of a forecasting tool such as NODEs is that it can provide insights into population dynamics and should thus broaden the approaches to studying time series of ecological communities.


Asunto(s)
Modelos Biológicos , Redes Neurales de la Computación , Densidad de Población , Dinámica Poblacional , Ecosistema , Algoritmos
3.
Braz J Biol ; 84: e281671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747863

RESUMEN

Unmanned Aerial Vehicles (UAVs), often called drones, have gained progressive prevalence for their swift operational ability as well as their extensive applicability in diverse real-world situations. Of late, UAV usage in precision agriculture has attracted much interest from scientific community. This study will look at drone aid in precise farming. Big data has the ability to analyze enormous amounts of data. Due to this, it is one of the diverse crucial technologies of Information and Communication Technology (ICT) which had applied in precision agriculture for the abstraction of critical information as well as for assisting agricultural practitioners in the comprehension of the most feasible farming practices, and also for better decision-making. This work analyses communication protocols, as well as their application toward the challenge of commanding a drone fleet for protecting crops from infestations of parasites. For computer-vision tasks as well as data-intensive applications, the method of deep learning has shown much potential. Due to its vast potential, it can also be used in the field of agriculture. This research will employ several schemes to assess the efficacy of models includes Visual Geometry Group (VGG-16), the Convolutional Neural Network (CNN) as well as the Fully-Convolutional Network (FCN) in plant disease detection. The methods of Artificial Immune Systems (AIS) can be used in order to adapt deep neural networks to the immediate situation. Simulated outcomes demonstrate that the proposed method is providing superior performance over various other technologically-advanced methods.


Asunto(s)
Agricultura , Animales , Dispositivos Aéreos No Tripulados , Productos Agrícolas , Redes Neurales de la Computación , Enfermedades de las Plantas/parasitología
4.
Opt Lett ; 49(10): 2669-2672, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748132

RESUMEN

Central venous oxygen saturation (ScvO2) is an important parameter for assessing global oxygen usage and guiding clinical interventions. However, measuring ScvO2 requires invasive catheterization. As an alternative, we aim to noninvasively and continuously measure changes in oxygen saturation of the internal jugular vein (SijvO2) by a multi-channel near-infrared spectroscopy system. The relation between the measured reflectance and changes in SijvO2 is modeled by Monte Carlo simulations and used to build a prediction model using deep neural networks (DNNs). The prediction model is tested with simulated data to show robustness to individual variations in tissue optical properties. The proposed technique is promising to provide a noninvasive tool for monitoring the stability of brain oxygenation in broad patient populations.


Asunto(s)
Venas Yugulares , Método de Montecarlo , Saturación de Oxígeno , Venas Yugulares/fisiología , Humanos , Saturación de Oxígeno/fisiología , Redes Neurales de la Computación , Oxígeno/metabolismo , Espectroscopía Infrarroja Corta/métodos , Masculino
5.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731522

RESUMEN

Cardiovascular disease has become a common ailment that endangers human health, having garnered widespread attention due to its high prevalence, recurrence rate, and sudden death risk. Ginseng possesses functions such as invigorating vital energy, enhancing vein recovery, promoting body fluid and blood nourishment, calming the nerves, and improving cognitive function. It is widely utilized in the treatment of various heart conditions, including palpitations, chest pain, heart failure, and other ailments. Although numerous research reports have investigated the cardiovascular activity of single ginsenoside, there remains a lack of systematic research on the specific components group that predominantly contribute to cardiovascular efficacy in ginseng medicinal materials. In this research, the spectrum-effect relationship, target cell extraction, and BP neural network classification were used to establish a rapid screening system for potential active substances. The results show that red ginseng extract (RGE) can improve the decrease in cell viability and ATP content and inhibit the increase in ROS production and LDH release in OGD-induced H9c2 cells. A total of 70 ginsenosides were identified in RGE using HPLC-Q-TOF-MS/MS analysis. Chromatographic fingerprints were established for 12 batches of RGE by high-performance liquid chromatography (HPLC). A total of 36 common ingredients were found in 12 batches of RGE. The cell viability, ATP, ROS, and LDH of 12 batches RGE were tested to establish gray relationship analysis (GRA) and partial least squares discrimination analysis (PLS-DA). BP neural network classification and target cell extraction were used to narrow down the scope of Spectral efficiency analysis and screen the potential active components. According to the cell experiments, RGE can improve the cell viability and ATP content and reduce the oxidative damage. Then, seven active ingredients, namely, Ginsenoside Rg1, Rg2, Rg3, Rb1, Rd, Re, and Ro, were screened out, and their cardiovascular activity was confirmed in the OGD model. The seven ginsenosides were the main active substances of red ginseng in treating myocardial injury. This study offers a reference for quality control in red ginseng and preparations containing red ginseng for the management of cardiovascular diseases. It also provides ideas for screening active ingredients of the same type of multi-pharmacologically active traditional Chinese medicines.


Asunto(s)
Supervivencia Celular , Ginsenósidos , Redes Neurales de la Computación , Panax , Extractos Vegetales , Panax/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ginsenósidos/farmacología , Ginsenósidos/química , Ginsenósidos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Ratas , Animales , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas en Tándem
6.
Sci Rep ; 14(1): 10812, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734714

RESUMEN

Cervical cancer, the second most prevalent cancer affecting women, arises from abnormal cell growth in the cervix, a crucial anatomical structure within the uterus. The significance of early detection cannot be overstated, prompting the use of various screening methods such as Pap smears, colposcopy, and Human Papillomavirus (HPV) testing to identify potential risks and initiate timely intervention. These screening procedures encompass visual inspections, Pap smears, colposcopies, biopsies, and HPV-DNA testing, each demanding the specialized knowledge and skills of experienced physicians and pathologists due to the inherently subjective nature of cancer diagnosis. In response to the imperative for efficient and intelligent screening, this article introduces a groundbreaking methodology that leverages pre-trained deep neural network models, including Alexnet, Resnet-101, Resnet-152, and InceptionV3, for feature extraction. The fine-tuning of these models is accompanied by the integration of diverse machine learning algorithms, with ResNet152 showcasing exceptional performance, achieving an impressive accuracy rate of 98.08%. It is noteworthy that the SIPaKMeD dataset, publicly accessible and utilized in this study, contributes to the transparency and reproducibility of our findings. The proposed hybrid methodology combines aspects of DL and ML for cervical cancer classification. Most intricate and complicated features from images can be extracted through DL. Further various ML algorithms can be implemented on extracted features. This innovative approach not only holds promise for significantly improving cervical cancer detection but also underscores the transformative potential of intelligent automation within the realm of medical diagnostics, paving the way for more accurate and timely interventions.


Asunto(s)
Aprendizaje Profundo , Detección Precoz del Cáncer , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/patología , Femenino , Detección Precoz del Cáncer/métodos , Redes Neurales de la Computación , Algoritmos , Prueba de Papanicolaou/métodos , Colposcopía/métodos
7.
Sci Rep ; 14(1): 9591, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719814

RESUMEN

Vaping involves the heating of chemical solutions (e-liquids) to high temperatures prior to lung inhalation. A risk exists that these chemicals undergo thermal decomposition to new chemical entities, the composition and health implications of which are largely unknown. To address this concern, a graph-convolutional neural network (NN) model was used to predict pyrolysis reactivity of 180 e-liquid chemical flavours. The output of this supervised machine learning approach was a dataset of probability ranked pyrolysis transformations and their associated 7307 products. To refine this dataset, the molecular weight of each NN predicted product was automatically correlated with experimental mass spectrometry (MS) fragmentation data for each flavour chemical. This blending of deep learning methods with experimental MS data identified 1169 molecular weight matches that prioritized these compounds for further analysis. The average number of discrete matches per flavour between NN predictions and MS fragmentation was 6.4 with 92.8% of flavours having at least one match. Globally harmonized system classifications for NN/MS matches were extracted from PubChem, revealing that 127 acute toxic, 153 health hazard and 225 irritant classifications were predicted. This approach may reveal the longer-term health risks of vaping in advance of clinical diseases emerging in the general population.


Asunto(s)
Aromatizantes , Redes Neurales de la Computación , Pirólisis , Vapeo , Vapeo/efectos adversos , Aromatizantes/química , Aromatizantes/análisis , Humanos , Sistemas Electrónicos de Liberación de Nicotina
8.
Microbiome ; 12(1): 84, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725076

RESUMEN

BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract.


Asunto(s)
Bacterias , Redes Neurales de la Computación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biología Computacional/métodos , Genes Bacterianos/genética , Farmacorresistencia Microbiana/genética , Humanos , Aprendizaje Profundo
9.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729112

RESUMEN

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Asunto(s)
Encéfalo , Drosophila melanogaster , Microscopía Electrónica , Neuronas , Neurotransmisores , Sinapsis , Animales , Drosophila melanogaster/ultraestructura , Drosophila melanogaster/metabolismo , Neurotransmisores/metabolismo , Sinapsis/ultraestructura , Sinapsis/metabolismo , Microscopía Electrónica/métodos , Encéfalo/ultraestructura , Encéfalo/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Redes Neurales de la Computación , Conectoma , Ácido gamma-Aminobutírico/metabolismo
10.
PLoS One ; 19(5): e0299603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728371

RESUMEN

Accurate forecasting of PM2.5 concentrations serves as a critical tool for mitigating air pollution. This study introduces a novel hybrid prediction model, termed MIC-CEEMDAN-CNN-BiGRU, for short-term forecasting of PM2.5 concentrations using a 24-hour historical data window. Utilizing the Maximal Information Coefficient (MIC) for feature selection, the model integrates Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Convolutional Neural Network (CNN), and Bidirectional Recurrent Gated Neural Network (BiGRU) to optimize predictive accuracy. We used 2016 PM2.5 monitoring data from Beijing, China as the empirical basis of this study and compared the model with several deep learning frameworks. RNN, LSTM, GRU, and other hybrid models based on GRU, respectively. The experimental results show that the prediction results of the hybrid model proposed in this question are more accurate than those of other models, and the R2 of the hybrid model proposed in this paper improves the R2 by nearly 5 percentage points compared with that of the single model; reduces the MAE by nearly 5 percentage points; and reduces the RMSE by nearly 11 percentage points. The results show that the hybrid prediction model proposed in this study is more accurate than other models in predicting PM2.5.


Asunto(s)
Redes Neurales de la Computación , Material Particulado , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Predicción/métodos , Beijing
11.
J Neural Eng ; 21(3)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701773

RESUMEN

Objective. Electroencephalogram (EEG) analysis has always been an important tool in neural engineering, and the recognition and classification of human emotions are one of the important tasks in neural engineering. EEG data, obtained from electrodes placed on the scalp, represent a valuable resource of information for brain activity analysis and emotion recognition. Feature extraction methods have shown promising results, but recent trends have shifted toward end-to-end methods based on deep learning. However, these approaches often overlook channel representations, and their complex structures pose certain challenges to model fitting.Approach. To address these challenges, this paper proposes a hybrid approach named FetchEEG that combines feature extraction and temporal-channel joint attention. Leveraging the advantages of both traditional feature extraction and deep learning, the FetchEEG adopts a multi-head self-attention mechanism to extract representations between different time moments and channels simultaneously. The joint representations are then concatenated and classified using fully-connected layers for emotion recognition. The performance of the FetchEEG is verified by comparison experiments on a self-developed dataset and two public datasets.Main results. In both subject-dependent and subject-independent experiments, the FetchEEG demonstrates better performance and stronger generalization ability than the state-of-the-art methods on all datasets. Moreover, the performance of the FetchEEG is analyzed for different sliding window sizes and overlap rates in the feature extraction module. The sensitivity of emotion recognition is investigated for three- and five-frequency-band scenarios.Significance. FetchEEG is a novel hybrid method based on EEG for emotion classification, which combines EEG feature extraction with Transformer neural networks. It has achieved state-of-the-art performance on both self-developed datasets and multiple public datasets, with significantly higher training efficiency compared to end-to-end methods, demonstrating its effectiveness and feasibility.


Asunto(s)
Electroencefalografía , Emociones , Humanos , Electroencefalografía/métodos , Emociones/fisiología , Aprendizaje Profundo , Atención/fisiología , Redes Neurales de la Computación , Masculino , Femenino , Adulto
12.
PLoS One ; 19(5): e0291279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739557

RESUMEN

Upper limb robotic (myoelectric) prostheses are technologically advanced, but challenging to use. In response, substantial research is being done to develop person-specific prosthesis controllers that can predict a user's intended movements. Most studies that test and compare new controllers rely on simple assessment measures such as task scores (e.g., number of objects moved across a barrier) or duration-based measures (e.g., overall task completion time). These assessment measures, however, fail to capture valuable details about: the quality of device arm movements; whether these movements match users' intentions; the timing of specific wrist and hand control functions; and users' opinions regarding overall device reliability and controller training requirements. In this work, we present a comprehensive and novel suite of myoelectric prosthesis control evaluation metrics that better facilitates analysis of device movement details-spanning measures of task performance, control characteristics, and user experience. As a case example of their use and research viability, we applied these metrics in real-time control experimentation. Here, eight participants without upper limb impairment compared device control offered by a deep learning-based controller (recurrent convolutional neural network-based classification with transfer learning, or RCNN-TL) to that of a commonly used controller (linear discriminant analysis, or LDA). The participants wore a simulated prosthesis and performed complex functional tasks across multiple limb positions. Analysis resulting from our suite of metrics identified 16 instances of a user-facing problem known as the "limb position effect". We determined that RCNN-TL performed the same as or significantly better than LDA in four such problem instances. We also confirmed that transfer learning can minimize user training burden. Overall, this study contributes a multifaceted new suite of control evaluation metrics, along with a guide to their application, for use in research and testing of myoelectric controllers today, and potentially for use in broader rehabilitation technologies of the future.


Asunto(s)
Miembros Artificiales , Electromiografía , Humanos , Masculino , Femenino , Adulto , Diseño de Prótesis , Extremidad Superior/fisiología , Robótica , Movimiento/fisiología , Redes Neurales de la Computación , Adulto Joven , Aprendizaje Profundo
13.
PLoS One ; 19(5): e0303287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739586

RESUMEN

Globally, stroke is the third-leading cause of mortality and disability combined, and one of the costliest diseases in society. More accurate predictions of stroke outcomes can guide healthcare organizations in allocating appropriate resources to improve care and reduce both the economic and social burden of the disease. We aim to develop and evaluate the performance and explainability of three supervised machine learning models and the traditional multinomial logistic regression (mLR) in predicting functional dependence and death three months after stroke, using routinely-collected data. This prognostic study included adult patients, registered in the Swedish Stroke Registry (Riksstroke) from 2015 to 2020. Riksstroke contains information on stroke care and outcomes among patients treated in hospitals in Sweden. Prognostic factors (features) included demographic characteristics, pre-stroke functional status, cardiovascular risk factors, medications, acute care, stroke type, and severity. The outcome was measured using the modified Rankin Scale at three months after stroke (a scale of 0-2 indicates independent, 3-5 dependent, and 6 dead). Outcome prediction models included support vector machines, artificial neural networks (ANN), eXtreme Gradient Boosting (XGBoost), and mLR. The models were trained and evaluated on 75% and 25% of the dataset, respectively. Model predictions were explained using SHAP values. The study included 102,135 patients (85.8% ischemic stroke, 53.3% male, mean age 75.8 years, and median NIHSS of 3). All models demonstrated similar overall accuracy (69%-70%). The ANN and XGBoost models performed significantly better than the mLR in classifying dependence with F1-scores of 0.603 (95% CI; 0.594-0.611) and 0.577 (95% CI; 0.568-0.586), versus 0.544 (95% CI; 0.545-0.563) for the mLR model. The factors that contributed most to the predictions were expectedly similar in the models, based on clinical knowledge. Our ANN and XGBoost models showed a modest improvement in prediction performance and explainability compared to mLR using routinely-collected data. Their improved ability to predict functional dependence may be of particular importance for the planning and organization of acute stroke care and rehabilitation.


Asunto(s)
Aprendizaje Automático , Accidente Cerebrovascular , Humanos , Suecia/epidemiología , Masculino , Femenino , Accidente Cerebrovascular/fisiopatología , Anciano , Anciano de 80 o más Años , Pronóstico , Persona de Mediana Edad , Sistema de Registros , Máquina de Vectores de Soporte , Modelos Logísticos , Redes Neurales de la Computación , Factores de Riesgo
14.
PLoS One ; 19(5): e0303101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739642

RESUMEN

This research study aims to understand the application of Artificial Neural Networks (ANNs) to forecast the Self-Compacting Recycled Coarse Aggregate Concrete (SCRCAC) compressive strength. From different literature, 602 available data sets from SCRCAC mix designs are collected, and the data are rearranged, reconstructed, trained and tested for the ANN model development. The models were established using seven input variables: the mass of cementitious content, water, natural coarse aggregate content, natural fine aggregate content, recycled coarse aggregate content, chemical admixture and mineral admixture used in the SCRCAC mix designs. Two normalization techniques are used for data normalization to visualize the data distribution. For each normalization technique, three transfer functions are used for modelling. In total, six different types of models were run in MATLAB and used to estimate the 28th day SCRCAC compressive strength. Normalization technique 2 performs better than 1 and TANSING is the best transfer function. The best k-fold cross-validation fold is k = 7. The coefficient of determination for predicted and actual compressive strength is 0.78 for training and 0.86 for testing. The impact of the number of neurons and layers on the model was performed. Inputs from standards are used to forecast the 28th day compressive strength. Apart from ANN, Machine Learning (ML) techniques like random forest, extra trees, extreme boosting and light gradient boosting techniques are adopted to predict the 28th day compressive strength of SCRCAC. Compared to ML, ANN prediction shows better results in terms of sensitive analysis. The study also extended to determine 28th day compressive strength from experimental work and compared it with 28th day compressive strength from ANN best model. Standard and ANN mix designs have similar fresh and hardened properties. The average compressive strength from ANN model and experimental results are 39.067 and 38.36 MPa, respectively with correlation coefficient is 1. It appears that ANN can validly predict the compressive strength of concrete.


Asunto(s)
Fuerza Compresiva , Materiales de Construcción , Aprendizaje Automático , Redes Neurales de la Computación , Materiales de Construcción/análisis , Reciclaje
15.
PLoS One ; 19(5): e0302639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739639

RESUMEN

Heart failure (HF) encompasses a diverse clinical spectrum, including instances of transient HF or HF with recovered ejection fraction, alongside persistent cases. This dynamic condition exhibits a growing prevalence and entails substantial healthcare expenditures, with anticipated escalation in the future. It is essential to classify HF patients into three groups based on their ejection fraction: reduced (HFrEF), mid-range (HFmEF), and preserved (HFpEF), such as for diagnosis, risk assessment, treatment choice, and the ongoing monitoring of heart failure. Nevertheless, obtaining a definitive prediction poses challenges, requiring the reliance on echocardiography. On the contrary, an electrocardiogram (ECG) provides a straightforward, quick, continuous assessment of the patient's cardiac rhythm, serving as a cost-effective adjunct to echocardiography. In this research, we evaluate several machine learning (ML)-based classification models, such as K-nearest neighbors (KNN), neural networks (NN), support vector machines (SVM), and decision trees (TREE), to classify left ventricular ejection fraction (LVEF) for three categories of HF patients at hourly intervals, using 24-hour ECG recordings. Information from heterogeneous group of 303 heart failure patients, encompassing HFpEF, HFmEF, or HFrEF classes, was acquired from a multicenter dataset involving both American and Greek populations. Features extracted from ECG data were employed to train the aforementioned ML classification models, with the training occurring in one-hour intervals. To optimize the classification of LVEF levels in coronary artery disease (CAD) patients, a nested cross-validation approach was employed for hyperparameter tuning. HF patients were best classified using TREE and KNN models, with an overall accuracy of 91.2% and 90.9%, and average area under the curve of the receiver operating characteristics (AUROC) of 0.98, and 0.99, respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8-9 am, and 10-11 pm were the ones that contributed to the highest classification accuracy. The results pave the way for creating an automated screening system tailored for patients with CAD, utilizing optimal measurement timings aligned with their circadian cycles.


Asunto(s)
Electrocardiografía , Insuficiencia Cardíaca , Aprendizaje Automático , Volumen Sistólico , Función Ventricular Izquierda , Humanos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico , Femenino , Masculino , Electrocardiografía/métodos , Anciano , Función Ventricular Izquierda/fisiología , Persona de Mediana Edad , Ritmo Circadiano/fisiología , Máquina de Vectores de Soporte , Redes Neurales de la Computación
16.
PLoS One ; 19(5): e0303327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739645

RESUMEN

This study applied the pull-out test to examine the influence of freeze-thaw cycles and hybrid fiber incorporation on the bond performance between BFRP bars and hybrid fiber-reinforced concrete. The bond-slip curves were fitted by the existing bond-slip constitutive model, and then the bond strength was predicted by a BP neural network. The results indicated that the failure mode changed from pull-out to splitting for the BFRP bar ordinary concrete specimens when the freeze-thaw cycles exceeded 50, while only pull-out failure occurred for all BFRP bar hybrid fiber-reinforced concrete specimens. An increasing trend was shown on the peak slip, but a decreasing trend was shown on the bond stiffness and bond strength when freeze-thaw cycles increased. The bond strength could be increased significantly by the incorporation of basalt fiber (BF) and cellulose fiber (CF) under the same freezing and thawing conditions as compared to concrete specimens without fibers. The Malvar model and the Continuous Curve model performed best in fitting the ascending and descending sections of the bond-slip curves, respectively. The BP neural network also accurately predicted the bond strength, with relative errors of predicted bond strengths ranging from 3.75% to 13.7%, and 86% of them being less than 10%.


Asunto(s)
Materiales de Construcción , Congelación , Materiales de Construcción/análisis , Ensayo de Materiales , Redes Neurales de la Computación , Estrés Mecánico
17.
PLoS One ; 19(5): e0303366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739676

RESUMEN

This study presents a novel approach to modeling the velocity-time curve in 100m sprinting by integrating machine learning algorithms. It critically addresses the limitations of traditional speed models, which often require extensive and intricate data collection, by proposing a more accessible and accurate method using fewer variables. The research utilized data from various international track events from 1987 to 2019. Two machine learning models, Random Forest (RF) and Neural Network (NN), were employed to predict the velocity-time curve, focusing on the acceleration phase of the sprint. The models were evaluated against the traditional exponential speed model using Mean Squared Error (MSE), with the NN model demonstrating superior performance. Additionally, the study explored the correlation between maximum velocity, the time of maximum velocity occurrence, the duration of the maximum speed phase, and the overall 100m sprint time. The findings indicate a strong negative correlation between maximum velocity and final time, offering new insights into the dynamics of sprinting performance. This research contributes significantly to the field of sports science, particularly in optimizing training and performance analysis in sprinting.


Asunto(s)
Rendimiento Atlético , Aprendizaje Automático , Carrera , Humanos , Carrera/fisiología , Rendimiento Atlético/fisiología , Redes Neurales de la Computación , Algoritmos , Aceleración
18.
AAPS PharmSciTech ; 25(5): 111, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740666

RESUMEN

This in-depth study looks into how artificial intelligence (AI) could be used to make formulation development easier in fluidized bed processes (FBP). FBP is complex and involves numerous variables, making optimization challenging. Various AI techniques have addressed this challenge, including machine learning, neural networks, genetic algorithms, and fuzzy logic. By integrating AI with experimental design, process modeling, and optimization strategies, intelligent systems for FBP can be developed. The advantages of AI in this context include improved process understanding, reduced time and cost, enhanced product quality, and robust formulation optimization. However, data availability, model interpretability, and regulatory compliance challenges must be addressed. Case studies demonstrate successful applications of AI in decision-making, process outcome prediction, and scale-up. AI can improve efficiency, quality, and cost-effectiveness in significant ways. Still, it is important to think carefully about data quality, how easy it is to understand, and how to follow the rules. Future research should focus on fully harnessing the potential of AI to advance formulation development in FBP.


Asunto(s)
Inteligencia Artificial , Química Farmacéutica , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Tecnología Farmacéutica/métodos , Lógica Difusa , Redes Neurales de la Computación , Aprendizaje Automático , Algoritmos
19.
ACS Appl Mater Interfaces ; 16(19): 24871-24878, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696352

RESUMEN

Recognition and judgment of X-ray computed tomography (CT) images play a crucial role in medical diagnosis and disease prevention. However, the storage and calculation of the X-ray imaging system applied in the traditional CT diagnosis is separate, and the pathological judgment is based on doctors' experience, which will affect the timeliness and accuracy of decision-making. In this paper, a simple-structured reservoir computing network (RC) is proposed based on Ga2O3 X-ray optical synaptic devices to recognize medical skeletal CT images with high accuracy. Through oxygen vacancy engineering, Ga2O3 X-ray optical synaptic devices with adjustable photocurrent gain and a persistent photoconductivity effect were obtained. By using the Ga2O3 X-ray optical synaptic device as a reservoir, we constructed an RC network for medical skeletal CT diagnosis and verified its image recognition capability using the MNIST data set with an accuracy of 78.08%. In the elbow skeletal CT image recognition task, the recognition rate is as high as 100%. This work constructs a simple-structured RC network for X-ray image recognition, which is of great significance in applications in medical fields.


Asunto(s)
Oxígeno , Tomografía Computarizada por Rayos X , Humanos , Oxígeno/química , Galio/química , Huesos/diagnóstico por imagen , Redes Neurales de la Computación , Dispositivos Ópticos
20.
Biomed Phys Eng Express ; 10(4)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697026

RESUMEN

Powered prosthetic hands capable of executing various grasp patterns are highly sought-after solutions for upper limb amputees. A crucial requirement for such prosthetic hands is the accurate identification of the intended grasp pattern and subsequent activation of the prosthetic digits accordingly. Vision-based grasp classification techniques offer improved coordination between amputees and prosthetic hands without physical contact. Deep learning methods, particularly Convolutional Neural Networks (CNNs), are utilized to process visual information for classification. The key challenge lies in developing a model that can effectively generalize across various object shapes and accurately classify grasp classes. To address this, a compact CNN model named GraspCNet is proposed, specifically designed for grasp classification in prosthetic hands. The use of separable convolutions reduces the computational burden, making it potentially suitable for real-time applications on embedded systems. The GraspCNet model is designed to learn and generalize from object shapes, allowing it to effectively classify unseen objects beyond those included in the training dataset. The proposed model was trained and tested using various standard object data sets. A cross-validation strategy has been adopted to perform better in seen and unseen object class scenarios. The average accuracy achieved was 82.22% and 75.48% in the case of seen, and unseen object classes respectively. In computer-based real-time experiments, the GraspCNet model achieved an accuracy of 69%. A comparative analysis with state-of-the-art techniques revealed that the proposed GraspCNet model outperformed most benchmark techniques and demonstrated comparable performance with the DcnnGrasp method. The compact nature of the GraspCNet model suggests its potential for integration with other sensing modalities in prosthetic hands.


Asunto(s)
Miembros Artificiales , Fuerza de la Mano , Mano , Redes Neurales de la Computación , Humanos , Aprendizaje Profundo , Amputados , Algoritmos , Diseño de Prótesis/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA