Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Curr Microbiol ; 81(10): 321, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177881

RESUMEN

Ganoderma lucidum is a medicinal mushroom usually cultivated in logs and covered with soil. Its production decreases after continuous cultivation. Changes of microbial diversity in soil are suggested to be one of the reasons. This study aims to investigate the changes of microbial diversity and abundance in soil during cultivation, and isolate potential microbial strains that affect the yield of G. lucidum. Soil samples were collected at two different ranges from logs during one complete growth cycle of G. lucidum. The changes in fungi and bacteria were investigated by using high-throughput sequencing and real-time PCR. Results indicated that the relative abundance of Firmicutes in the bacterial community decreased at the short-range site. In the fungal community, the relative abundance of Ganoderma increased to 70% at the long-range site at the end of the cultivation. The abundance of bacteria and fungi decreased significantly at the end of the growth cycle. Recovery of microbial changes in soil should be proceeded separately based on different ranges to logs. The microbial strains in these soil samples were also isolated and identified. Potential strains were assessed in the form of bio-fertilizer. The yield of G. lucidum in the field using bio-fertilizer with isolated bacterial strains from the Firmicutes phylum was about 13% higher than that without using bio-fertilizer, suggesting the possibility of alleviating the production decrease of G. lucidum by this method.


Asunto(s)
Bacterias , Biodiversidad , Hongos , Reishi , Microbiología del Suelo , Reishi/metabolismo , Reishi/crecimiento & desarrollo , Reishi/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Fertilizantes/análisis , Microbiota , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Suelo/química
2.
J Biotechnol ; 393: 109-116, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39103018

RESUMEN

Ganoderma has received much attention for its medicinal value, but the manipulation of multiple genes remains a challenge, hindering the genetic engineering of this species for the development of cell factories. Here, we first showed that the presence of an intron is necessary for the efficient expression of the endogenous cDNA of carboxin-resistant gene (cbx) in G. lucidum. Then, the self-cleaving function of 2 A peptide was investigated in G. lucidum by linking cbx cDNA to the codon-optimized hygromycin B-resistant gene (ophph) using the 2A-peptide sequence. The results showed that cbx cDNA and ophph can be successfully expressed in G. lucidum in a bicistronic manner from a single transcript. Moreover, the expression of both genes was not affected by the order within the 2 A cassette. In addition, simultaneous expression of cbx cDNA, ophph, and codon-optimized yellow fluorescent protein gene (opyfp) was conducted for the first time in G. lucidum using the 2 A peptide-based approach. The developed method was successfully applied to express both cDNA of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (hmgr) and squalene epoxidase gene (se) for enhanced production of ganoderic acids (GAs) in G. lucidum. The engineered strain produced the maximum content of GA-Mk, GA-T, GA-S, and GA-Me were 26.56±3.53,39.58±3.75, 16.54±2.16, and 19.1±1.87 µg/100 mg dry weight, respectively. These values were 3.85-, 4.74-, 3.65-, and 3.23-fold higher than those produced by the control strain. The developed method will be useful for the manipulation of complex metabolic or regulatory pathways involving multiple genes in Ganoderma.


Asunto(s)
Reishi , Triterpenos , Reishi/genética , Reishi/metabolismo , Triterpenos/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo
3.
World J Microbiol Biotechnol ; 40(10): 303, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153119

RESUMEN

Dye-decolorizing peroxidases (DyPs) belong to a novel superfamily of heme peroxidases that can oxidize recalcitrant compounds. In the current study, the GlDyP2 gene from Ganoderma lucidum was heterologously expressed in Escherichia coli, and the enzymatic properties of the recombinant GlDyP2 protein were investigated. The GlDyP2 protein could oxidize not only the typical peroxidase substrate ABTS but also two lignin substrates, namely guaiacol and 2,6-dimethoxy phenol (DMP). For the ABTS substrate, the optimum pH and temperature of GlDyP2 were 4.0 and 35 °C, respectively. The pH stability and thermal stability of GlDyP2 were also measured; the results showed that GlDyP2 could function normally in the acidic environment, with a T50 value of 51 °C. Moreover, compared to untreated controls, the activity of GlDyP2 was inhibited by 1.60 mM of Mg2+, Ni2+, Mn2+, and ethanol; 0.16 mM of Cu2+, Zn2+, methanol, isopropyl alcohol, and Na2EDTA·2H2O; and 0.016 mM of Fe2+ and SDS. The kinetic constants of recombinant GlDyP2 for oxidizing ABTS, Reactive Blue 19, guaiacol, and DMP were determined; the results showed that the recombination GlDyP2 exhibited the strongest affinity and the most remarkable catalytic efficiency towards guaiacol in the selected substrates. GlDyP2 also exhibited decolorization and detoxification capabilities towards several dyes, including Reactive Blue 19, Reactive Brilliant Blue X-BR, Reactive Black 5, Methyl Orange, Trypan Blue, and Malachite Green. In conclusion, GlDyP2 has good application potential for treating dye wastewater.


Asunto(s)
Colorantes , Estabilidad de Enzimas , Escherichia coli , Guayacol , Proteínas Recombinantes , Reishi , Temperatura , Colorantes/metabolismo , Colorantes/química , Reishi/genética , Reishi/enzimología , Reishi/metabolismo , Concentración de Iones de Hidrógeno , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Guayacol/metabolismo , Guayacol/análogos & derivados , Biodegradación Ambiental , Cinética , Benzotiazoles/metabolismo , Especificidad por Sustrato , Lignina/metabolismo , Oxidación-Reducción , Peroxidasa/genética , Peroxidasa/metabolismo , Peroxidasa/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Peroxidasas/genética , Peroxidasas/metabolismo , Peroxidasas/química , Contaminantes Químicos del Agua/metabolismo , Compuestos Azo/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Ácidos Sulfónicos/metabolismo , Antraquinonas , Colorantes de Rosanilina
4.
Int J Biol Macromol ; 276(Pt 2): 134031, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033891

RESUMEN

Ganoderma lucidum polysaccharides are valuable natural compounds possessing significant biological activity, with glycosyltransferases playing a crucial role in their biosynthesis. Although the function of ß-1,3-glucosyltransferase in polysaccharides production is well understood, the role of α-1,3-glucosyltransferase in edible fungi remains unclear. In this study, over-expression of the α-1,3-glucosyltransferase gene in G. lucidum (glagt) was found to suppress the growth, with the maximum biomass and mycelial growth rate decreasing by 21.78 % and 79.61 %, respectively, a behavior distinct from ß-1,3-glucosyltransferase. The fungal pellet diameter decreased by 38 % and the cell-wall thickness by 32.44 %, whereas intracellular and extracellular polysaccharides production increased by 27.58 % and 66.08 %, respectively. In the transcription level, overexpressing the glagt gene i) downregulated the citrate synthase and isocitrate dehydrogenase gene in the TCA cycle, disrupting energy metabolism and fungal growth; ii) upregulated key enzymes involved in UDP-glucose synthesis and glycosyltransferases (gl24465, gl24971, and gl22535); and iii) universally increased the transcriptional level of glucosidases gl21451, gl30087, and gl24581 by 22 %-397 %, contributing to cell-wall thinning to facilitate polysaccharides export. Conversely, the glagt gene downregulation promoted G. lucidum growth and decreased polysaccharides production. The results elucidate the roles of GLAGT and are expected to inspire in-depth exploration of polysaccharides biosynthesis pathways.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Glucosiltransferasas , Reishi , Reishi/genética , Reishi/enzimología , Reishi/crecimiento & desarrollo , Reishi/metabolismo , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Polisacáridos/biosíntesis , Biomasa , Polisacáridos Fúngicos/biosíntesis , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
Redox Biol ; 74: 103227, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38865903

RESUMEN

Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.


Asunto(s)
Respuesta al Choque Térmico , Homeostasis , Sulfuro de Hidrógeno , Potencial de la Membrana Mitocondrial , Mitocondrias , Reishi , Triterpenos , Sulfuro de Hidrógeno/metabolismo , Reishi/metabolismo , Reishi/genética , Triterpenos/metabolismo , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Quinona Reductasas/metabolismo , Quinona Reductasas/genética , ADN Mitocondrial/genética , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/genética
6.
World J Microbiol Biotechnol ; 40(7): 225, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822208

RESUMEN

Ganoderma lucidum is known for its bioactive compounds, such as polysaccharides and triterpenoids, which are crucial in food and medicine. However, liquid fermentation encounters challenges in terms of strain differentiation and stability. In this research, we employed atmospheric room temperature plasma mutation and a microbial microdroplet culture system to identify strains with enhanced biomass and triterpenoid production. The three mutant strains, YB05, YB09, and YB18, exhibited accelerated growth rates and antagonized the initial strain G0023 more effectively than the controls. Notably, YB18 displayed the fastest growth, with a 17.25% increase in colony radius. Shake flask cultivation demonstrated that, compared with the initial strain, YB05 and YB18 had 26.33% and 17.85% greater biomass, respectively. Moreover, the triterpenoid production of YB05 and YB18 surpassed that of the control by 32.10% and 15.72%, respectively, as confirmed by colorimetric detection. Importantly, these mutant strains remained stable for five generations. This study revealed a comprehensive screening system utilizing atmospheric pressure, room temperature plasma mutation technology and microbial droplet cultivation. This innovative approach offers a promising pathway for obtaining advantageous Ganoderma strains for liquid fermentation. The methodology of atmospheric room temperature plasma mutation and microbial microdroplet culture systems is detailed for better comprehension.


Asunto(s)
Fermentación , Mutación , Reishi , Triterpenos , Reishi/crecimiento & desarrollo , Reishi/metabolismo , Reishi/genética , Triterpenos/metabolismo , Biomasa , Temperatura , Gases em Plasma/farmacología
7.
Int J Med Mushrooms ; 26(5): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38780421

RESUMEN

Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.


Asunto(s)
Fermentación , Reishi , Triterpenos , Triterpenos/metabolismo , Reishi/metabolismo , Reishi/genética , Reishi/química , Ingeniería Genética , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/química , Mutagénesis , Micelio/metabolismo
8.
Commun Biol ; 7(1): 466, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632386

RESUMEN

Cellulose is an important abundant renewable resource on Earth, and the microbial cellulose utilization mechanism has attracted extensive attention. Recently, some signalling molecules have been found to regulate cellulose utilization and the discovery of underlying signals has recently attracted extensive attention. In this paper, we found that the hydrogen sulfide (H2S) concentration under cellulose culture condition increased to approximately 2.3-fold compared with that under glucose culture condition in Ganoderma lucidum. Further evidence shown that cellulase activities of G. lucidum were improved by 18.2-27.6% through increasing H2S concentration. Then, we observed that the carbon repressor CreA inhibited H2S biosynthesis in G. lucidum by binding to the promoter of cbs, a key gene for H2S biosynthesis, at "CTGGGG". In our study, we reported for the first time that H2S increased the cellulose utilization in G. lucidum, and analyzed the mechanism of H2S biosynthesis induced by cellulose. This study not only enriches the understanding of the microbial cellulose utilization mechanism but also provides a reference for the analysis of the physiological function of H2S signals.


Asunto(s)
Sulfuro de Hidrógeno , Reishi , Celulosa/metabolismo , Reishi/genética , Carbono/metabolismo , Transducción de Señal , Sulfuro de Hidrógeno/metabolismo
9.
Free Radic Biol Med ; 216: 1-11, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458391

RESUMEN

Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. However, in Basidiomycetes, the extent of lysine acetylation of nonhistone proteins remains largely unknown. Recently, we identified the deacetylase Glsirt1 as a key regulator of the biosynthesis of ganoderic acid (GA), a key secondary metabolite of Ganoderma lucidum. To gain insight into the characteristics, extent, and biological function of Glsirt1-mediated lysine acetylation in G. lucidum, we aimed to identify additional Glsirt1 substrates via comparison of acetylomes between wild-type (WT) and Glsirt1-silenced mutants. A large amount of Glsirt1-dependent lysine acetylation occurs in G. lucidum according to the results of this omics analysis, involving energy metabolism, protein synthesis, the stress response and other pathways. Our results suggest that GlCAT is a direct target of Glsirt1 and that the deacetylation of GlCAT by Glsirt1 reduces catalase activity, thereby leading to the accumulation of intracellular reactive oxygen species (ROS) and positively regulating the biosynthesis of GA. Our findings provide evidence for the involvement of nonhistone lysine acetylation in the biological processes of G. lucidum and help elucidate the involvement of important ROS signaling molecules in regulating physiological and biochemical processes in this organism. In conclusion, this proteomic analysis reveals a striking breadth of cellular processes affected by lysine acetylation and provides new nodes of intervention in the biosynthesis of secondary metabolites in G. lucidum.


Asunto(s)
Reishi , Triterpenos , Especies Reactivas de Oxígeno/metabolismo , Reishi/genética , Reishi/metabolismo , Lisina/metabolismo , Proteómica , Triterpenos/metabolismo
10.
Commun Biol ; 7(1): 241, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418849

RESUMEN

PRMT5, a type II arginine methyltransferase, is involved in transcriptional regulation, RNA processing and other biological processes and signal transduction. Secondary metabolites are vital pharmacological compounds in Ganoderma lucidum, and their content is an important indicator for evaluating the quality of G. lucidum. Here, we found that GlPRMT5 negatively regulates the biosynthesis of secondary metabolites. In further in-depth research, GlPP2C1 (a type 2C protein phosphatase) was identified out as an interacting protein of GlPRMT5 by immunoprecipitation-mass spectrometry (IP-MS). Further mass spectrometry detection revealed that GlPRMT5 symmetrically dimethylates the arginine 99 (R99) and arginine 493 (R493) residues of GlPP2C1 to weaken its activity. The symmetrical dimethylation modification of the R99 residue is the key to affecting GlPP2C1 activity. Symmetrical demethylation-modified GlPP2C1 does not affect the interaction with GlPRMT5. In addition, silencing GlPP2C1 clearly reduced GA content, indicating that GlPP2C1 positively regulates the biosynthesis of secondary metabolites in G. lucidum. In summary, this study reveals the molecular mechanism by which GlPRMT5 regulates secondary metabolites, and these studies provide further insights into the target proteins of GlPRMT5 and symmetric dimethylation sites. Furthermore, these studies provide a basis for the mutual regulation between different epigenetic modifications.


Asunto(s)
Reishi , Reishi/genética , Reishi/metabolismo , Regulación de la Expresión Génica , Epigénesis Genética , Espectrometría de Masas , Arginina/metabolismo
11.
Food Res Int ; 180: 114056, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395571

RESUMEN

Ganoderma lucidum (G. lucidum) is a rare medicinal fungus with various beneficial properties. One of its main components, ganoderic acids (GAs), are important triterpenoids known for their sedative and analgesic, hepatoprotective, and anti-tumor activities. Understanding the growth and development of the G. lucidum fruiting body is crucial for determining the optimal time to harvest them. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to systematically characterize the metabolites of G. lucidum at seven distinct developmental stages. We also measured the contents of seven kinds of GAs using LC-MS/MS. A total of 49 metabolites were detected in G. lucidum, including amino acids, sugars, organic acids and GAs. During the transition from the bud development period (I) to the budding period (II), we observed a rapid accumulation of glucose, tyrosine, nicotinamide ribotide, inosine and GAs. After the budding period, the contents of most metabolites decreased until the mature period (VII). In addition, the contents of GAs showed an initial raising, followed by a decline during the elongation period, except for GAF, which exhibited a rapid raise during the mature stage. We also detected the expression of several genes involved in GA synthesis, finding that most genes including 16 cytochrome P450 monooxygenase were all down-regulated during periods IV and VII compared to period I. These findings provide valuable insights into the dynamic metabolic profiles of G. lucidum throughout its growth stage, and it is recommended to harvest G. lucidum at period IV.


Asunto(s)
Ascomicetos , Reishi , Triterpenos , Reishi/genética , Reishi/química , Cromatografía Liquida , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masas en Tándem , Espectroscopía de Resonancia Magnética , Ascomicetos/genética
12.
Gene ; 899: 148147, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38191099

RESUMEN

It is now understood that 4-Coumarate-CoA ligases (4-CL) are pivotal in bridging the phenylpropanoid metabolic pathway and the lignin biosynthesis pathway in plants. However, limited information on 4-CL genes and their functions in fungi is available. In this study, we cloned the 4-CL gene (Gl21040) from Ganoderma lucidum, which spans 2178 bp and consists of 10 exons and 9 introns. We also developed RNA interference and overexpression vectors for Gl21040 to investigate its roles in G. lucidum. Our findings indicated that in the Gl21040 interference transformants, 4-CL enzyme activities decreased by 31 %-57 %, flavonoids contents decreased by 10 %-22 %, lignin contents decreased by 20 %-36 % compared to the wild-type (WT) strain. Conversely, in the Gl21040 overexpression transformants, 4-CL enzyme activity increased by 108 %-143 %, flavonoids contents increased by 8 %-37 %, lignin contents improved by 15 %-17 % compared to the WT strain. Furthermore, primordia formation was delayed by approximately 10 days in the Gl21040-interferenced transformants but occurred 3 days earlier in the Gl21040-overexpressed transformants compared to the WT strain. These results underscored the involvement of the Gl21040 gene in flavonoid synthesis, lignin synthesis, and fruiting body formation in G. lucidum.


Asunto(s)
Reishi , Reishi/genética , Reishi/metabolismo , Lignina , Flavonoides , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo
13.
Trends Biotechnol ; 42(2): 197-211, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37659953

RESUMEN

Ganoderma lucidum holds a colossal reservoir of hydrolytic enzymes and therapeutic compounds and can be a sustainable source of proteins and bioactive compounds. Its metabolic versatility, propelled by its rich genome content, provides excellent biosynthetic machinery for innovation-driven pathway engineering. However, robust regulatory networks and low frequency of homologous recombination are critical bottlenecks that limit the development of molecular tools and precise genetic markers for biomanufacturing innovations in this organism. Modern synthetic biology provides tools that could help to accelerate precise multiple gene targeting and editing and untangling the biosynthetic machinery of G. lucidum. This review provides insight into molecular strategies to unwind the regulatory bottlenecks and transform G. lucidum into efficient cell factories for food and nutraceuticals.


Asunto(s)
Reishi , Reishi/genética , Reishi/metabolismo , Suplementos Dietéticos
14.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-38018543

RESUMEN

Dengue fever cases are spiking over the last two decades. Incessant efforts are still being made to gain deeper insights on this arboviral disease and to identify bioactive antivirals. In this study, bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) in the expression profiling datasets of dengue virus serotype 2 (DENV2) patients. We found overexpressed genes in dengue patients that can interrupt cell cycle progression and phase transitions of mitosis inside the host to favour the viral replication process. These DEGs were associated with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as cell cycle and DNA replication. A protein interaction network consisting of these significant pathways was also constructed using STRING. Futher, the traditional Chinese medicine (TCM) compounds from Ganoderma lucidum were screened to target DENV2 envelope protein, which was crucial for viral fusion activity. Docking, orbital energy, and toxicity prediction analysis revealed that naringenin was the best antiviral candidate. Following molecular dynamics simulations, the predicted binding energy of the protein-naringenin system using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach was slightly greater than the control system. It is recommended to perform in vitro inhibition of naringenin against DENV2 and use our findings to complement the experimental data obtained.


Asunto(s)
Virus del Dengue , Reishi , Humanos , Virus del Dengue/genética , Virus del Dengue/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Reishi/genética , Serogrupo
15.
Microb Cell Fact ; 22(1): 205, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817159

RESUMEN

BACKGROUND: Edible mushrooms are delicious in flavour and rich in high-quality protein and amino acids required by humans. A transcription factor, general control nonderepressible 4 (GCN4), can regulate the expression of genes involved in amino acid metabolism in yeast and mammals. A previous study revealed that GCN4 plays a pivotal role in nitrogen utilization and growth in Ganoderma lucidum. However, its regulation is nearly unknown in mushrooms. RESULTS: In this study, we found that the amino acid contents reached 120.51 mg per gram of mycelia in the WT strain under 60 mM asparagine (Asn) conditions, but decreased by 62.96% under 3 mM Asn conditions. Second, silencing of gcn4 resulted in a 54.2% decrease in amino acid contents under 60 mM Asn, especially for the essential and monosodium glutamate-like flavour amino acids. However, these effects were more pronounced under 3 mM Asn. Third, silencing of gcn4 markedly inhibited the expression of amino acid biosynthesis and transport genes. In addition, GCN4 enhanced the tricarboxylic acid cycle (TCA) and glycolytic pathway and inhibited the activity of target of rapamycin complex 1 (TORC1), thus being beneficial for maintaining amino acid homeostasis. CONCLUSION: This study confirmed that GCN4 contributes to maintaining the amino acid contents in mushrooms under low concentrations of nitrogen. In conclusion, our study provides a research basis for GCN4 to regulate amino acid synthesis and improve the nutrient contents of edible mushrooms.


Asunto(s)
Agaricales , Reishi , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Reishi/genética , Reishi/metabolismo , Aminoácidos/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/metabolismo , Nitrógeno/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética
16.
Microbiol Spectr ; 11(6): e0290623, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37882562

RESUMEN

IMPORTANCE: PRMT5 contributes to secondary metabolite biosynthesis in Ganoderma lucidum. However, the mechanism through which PRMT5 regulates the biosynthesis of secondary metabolites remains unclear. In the current study, PRMT5 silencing led to a significant decrease in the biosynthesis of polysaccharides from G. lucidum through the action of the alternative splicing of TLP. A shorter TLP2 isoform can directly bind to PGI and regulated polysaccharide biosynthesis. These results suggest that PRMT5 enhances PGI activity by regulating TLP binding to PGI. The results of the current study reveal a novel target gene for PRMT5-mediated alternative splicing and provide a reference for the identification of PRMT5 regulatory target genes.


Asunto(s)
Reishi , Reishi/genética , Reishi/química , Reishi/metabolismo , Polisacáridos/metabolismo , Empalme Alternativo
17.
Int J Biol Macromol ; 253(Pt 2): 126778, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37683745

RESUMEN

A ß-1,3-glucan synthase gene (gls) was cloned and overexpressed in Ganoderma lingzhi. The content of intracellular polysaccharides (IPS) in G. lingzhi overexpressing gls was 22.36 mg/100 mg dry weight (DW), 19 % higher than those in the wild-type (WT) strain. Overexpression of gls did not affect the expression of the phosphoglucomutase gene and the UDP-glucose pyrophosphorylase gene (ugp) in the polysaccharide biosynthesis. The gls and ugp were then simultaneously overexpressed in G. lingzhi for the first time. The combined overexpression of these two genes increased the IPS content and exopolysaccharides (EPS) production to a greater extent than the overexpression of gls independently. The maximum IPS content of the overexpressed strain was 24.61 mg/100 mg, and the maximum EPS production was 1.55 g/L, 1.31- and 1.50-fold higher than that in the WT strain, respectively. Moreover, the major EPS fractions from the overexpression strain contained more glucose (86.7 % and 72.5 %) than those from the WT strain (78.2 % and 62.9 %). Furthermore, the major fraction G+U-0.1 from the overexpression strain exhibited stronger antioxidant and anti-senescence activities than the WT-0.1 fraction from the WT strain. These findings will aid in the hyperproduction and application of Ganoderma polysaccharides and facilitate our understanding of mushroom polysaccharide biosynthesis.


Asunto(s)
Ganoderma , Reishi , beta-Glucanos , Ganoderma/genética , Reishi/genética , beta-Glucanos/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Polisacáridos/metabolismo
18.
mBio ; 14(5): e0135623, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37732773

RESUMEN

IMPORTANCE: Mitochondrial pyruvate carrier (MPC) is a pyruvate transporter that plays a crucial role in regulating the carbon metabolic flow and is considered an essential mechanism for microorganisms to adapt to environmental changes. However, it remains unclear how MPC responds to environmental stress in organisms. General control non-derepressible 4 (GCN4), a key regulator of nitrogen metabolism, plays a pivotal role in the growth and development of fungi. In this study, we report that GCN4 can directly bind to the promoter region and activate the expression of GlMPC, thereby regulating the tricarboxylic acid cycle and secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. These findings provide significant insights into the regulation of carbon and nitrogen metabolism in fungi, highlighting the critical role of GCN4 in coordinating metabolic adaptation to environmental stresses.


Asunto(s)
Reishi , Reishi/genética , Reishi/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolismo Secundario , Nitrógeno/metabolismo , Carbono/metabolismo
19.
Sci Rep ; 13(1): 11133, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429890

RESUMEN

Gene editing is a promising alternative to traditional breeding for the generation of new mushroom strains. However, the current approach frequently uses Cas9-plasmid DNA to facilitate mushroom gene editing, which can leave residual foreign DNA in the chromosomal DNA raising concerns regarding genetically modified organisms. In this study, we successfully edited pyrG of Ganoderma lucidum using a preassembled Cas9-gRNA ribonucleoprotein complex, which primarily induced a double-strand break (DSB) at the fourth position prior to the protospacer adjacent motif. Of the 66 edited transformants, 42 had deletions ranging from a single base to large deletions of up to 796 bp, with 30 being a single base deletion. Interestingly, the remaining 24 contained inserted sequences with variable sizes at the DSB site that originated from the fragmented host mitochondrial DNA, E. coli chromosomal DNA, and the Cas9 expression vector DNA. The latter two were thought to be contaminated DNAs that were not removed during the purification process of the Cas9 protein. Despite this unexpected finding, the study demonstrated that editing G. lucidum genes using the Cas9-gRNA complex is achievable with comparable efficiency to the plasmid-mediated editing system.


Asunto(s)
Agaricales , Reishi , Reishi/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Fitomejoramiento , ADN Mitocondrial , Ribonucleoproteínas/genética
20.
Med Res Rev ; 43(5): 1504-1536, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37052237

RESUMEN

Ganoderma lucidum is a mushroom that has been widely used for centuries in Asian countries for its antiaging properties. It is popularly known as "Ling Zhi," "Reishi," and "Youngzhi," and because of its benefits, it is known as the "immortality mushroom." Pharmacological assays have revealed that G. lucidum ameliorates cognitive impairments through inhibition of ß-amyloid and neurofibrillary tangle formation, antioxidant effect, reduction of inflammatory cytokine release and apoptosis, genic expression modulation, among other activities. Chemical investigations on G. lucidum have revealed the presence of metabolites such as triterpenes, which are the most explored in this field, as well as flavonoids, steroids, benzofurans, and alkaloids; in the literature, these have also been reported to have mnemonic activity. These properties of the mushroom make it a potential source of new drugs to prevent or reverse memory disorders, as actual medications are able to only alleviate some symptoms but are unable to stop the progress of cognitive impairments, with no impact on social, familiar, and personal relevance. In this review, we discuss the cognitive findings of G. lucidum reported in the literature, converging the proposed mechanisms through the several pathways that underlie memory and cognition processes. In addition, we highlight the gaps that deserve particular attention to support future studies.


Asunto(s)
Reishi , Triterpenos , Humanos , Reishi/química , Reishi/genética , Antagonistas Colinérgicos , Antioxidantes/química , Cognición , Triterpenos/química , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA