Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.866
Filtrar
1.
Chem Biol Drug Des ; 103(5): e14536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725079

RESUMEN

This research was designed to prospect the mechanism and impact of glycyrrhizic acid (GA) on DNA damage repair and cisplatin (CP)-induced apoptosis of melanoma cells. First, human melanoma cell SK-MEL-28 was stimulated using GA for 24, 48, and 72 h. Then, the optimal treatment time and dosage were selected. After that, cell counting kit-8 (CCK-8) was employed for testing the cell viability, flow cytometry for the apoptosis, comet assay for the DNA damage of cells, and western blot for the cleaved-Caspase3, Caspase3, Bcl-2, and γH2AX protein expression levels. The experimental outcomes exhibited that as the GA concentration climbed up, the SK-MEL-28 cell viability dropped largely, while the apoptosis level raised significantly, especially at the concentration of 100 µm. In addition, compared with GA or CPtreatment only, CP combined with GA notably suppressed the viability of melanoma cells and promoted cell apoptosis at the cytological level. At the protein level, the combined treatment notably downregulated the Bcl-2 and Caspase3 expression levels, while significantly upregulated the cleaved-Caspase3 and γH2AX expression levels. Besides, CP + GA treatment promoted DNA damage at the DNA molecular level. Collectively, both GA and CP can inhibit DNA damage repair and enhance the apoptosis of SK-MEL-28 cells, and the synergistic treatment of both exhibits better efficacy.


Asunto(s)
Apoptosis , Cisplatino , Daño del ADN , Reparación del ADN , Ácido Glicirrínico , Melanoma , Cisplatino/farmacología , Humanos , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/química , Apoptosis/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Caspasa 3/metabolismo , Sinergismo Farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
Cell Death Dis ; 15(5): 329, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740757

RESUMEN

Iron is crucial for cell DNA synthesis and repair, but an excess of free iron can lead to oxidative stress and subsequent cell death. Although several studies suggest that cancer cells display characteristics of 'Iron addiction', an ongoing debate surrounds the question of whether iron can influence the malignant properties of ovarian cancer. In the current study, we initially found iron levels increase during spheroid formation. Furthermore, iron supplementation can promote cancer cell survival, cancer spheroid growth, and migration; vice versa, iron chelators inhibit this process. Notably, iron reduces the sensitivity of ovarian cancer cells to platinum as well. Mechanistically, iron downregulates DNA homologous recombination (HR) inhibitor polymerase theta (POLQ) and relieves its antagonism against the HR repair enzyme RAD51, thereby promoting DNA damage repair to resist chemotherapy-induced damage. Additionally, iron tightly regulated by ferritin (FTH1/FTL) which is indispensable for iron-triggered DNA repair. Finally, we discovered that iron chelators combined with platinum exhibit a synergistic inhibitory effect on ovarian cancer in vitro and in vivo. Our findings affirm the pro-cancer role of iron in ovarian cancer and reveal that iron advances platinum resistance by promoting DNA damage repair through FTH1/FTL/POLQ/RAD51 pathway. Our findings highlight the significance of iron depletion therapy, revealing a promising avenue for advancing ovarian cancer treatment.


Asunto(s)
Reparación del ADN , Resistencia a Antineoplásicos , Hierro , Neoplasias Ováricas , Recombinasa Rad51 , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Hierro/metabolismo , Línea Celular Tumoral , Recombinasa Rad51/metabolismo , Animales , Ferritinas/metabolismo , Ratones , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Ratones Desnudos , Oxidorreductasas/metabolismo
3.
Am J Mens Health ; 18(3): 15579883241246908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725193

RESUMEN

The aim of this study was to investigate the potential mechanism through which Yishen Tongluo decoction (YSTL) repairs DNA damage caused by benzo(a)pyrene diol epoxide (BPDE) in mouse spermatocytes (GC-2). The GC-2 cells were divided randomly into the control group, BPDE group, and low-, medium-, and high-dose YSTL groups of YSTL decoction. A comet assay was used to detect the DNA fragment index (DFI) of cells in each group. Based on the DFI results, whole transcriptome sequencing was conducted, followed by trend analysis, gene ontology (GO) enrichment analysis, kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and ceRNA network analysis. Compared with the control group, the BPDE group reported a significant increase in the DNA fragmentation index (DFI) (p < .05). Compared with the BPDE group, the low-, high- and medium-dose YSTL groups had a significantly reduced DFI (p < .05). Whole-transcriptome sequencing revealed seven differentially expressed circRNAs, 203 differentially expressed miRNAs, and 3,662 differentially expressed mRNAs between the control group and the BPDE group. There was a total of 12 differentially expressed circRNAs, 204 miRNAs, and 2150 mRNAs between the BPDE group and the traditional Chinese medicine group. The pathways involved include DNA repair pathway, nucleotide excision repair pathway, base excision repair pathway, etc. The ceRNA network reported that Hmga2 was the core protein involved, novel_cir_000117 and mmu-miR-466c-3p were located upstream of Hmga2, and they were regulatory factors associated with Hmga2. Finally, we conclude that YSTL decoction may repair sperm DNA damage caused by BPDE through the novel_cir_000117-mmu-miR-466c-3p-Hmga2 pathway.


Asunto(s)
Daño del ADN , Reparación del ADN , Medicamentos Herbarios Chinos , Animales , Masculino , Ratones , Medicamentos Herbarios Chinos/farmacología , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Transcriptoma/efectos de los fármacos
4.
Oncol Rep ; 52(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38785163

RESUMEN

Inotuzumab ozogamicin (IO), a novel therapeutic drug for relapsed or refractory acute lymphoblastic leukemia (RR)­(ALL), is a humanized anti­cluster of differentiation (CD) 22 monoclonal antibody conjugated with calicheamicin that causes DNA single­ and double­strand breaks. Although the efficacy of IO is significantly improved compared with that of conventional chemotherapies, the prognosis for RR­ALL remains poor, highlighting the need for more effective treatment strategies. The present study examined the role of DNA damage repair inhibition using the poly (ADP­ribose) polymerase (PARP) inhibitors olaparib or talazoparib on the enhancement of the antitumor effects of IO on B­ALL cells in vitro. The Reh, Philadelphia (Ph)­B­ALL and the SUP­B15 Ph+ B­ALL cell lines were used for experiments. Both cell lines were ~90% CD22+. The half­maximal inhibitory concentration (IC50) values of IO were 5.3 and 49.7 ng/ml for Reh and SUP­B15 cells, respectively. The IC50 values of IO combined with minimally toxic concentrations of olaparib or talazoparib were 0.8 and 2.9 ng/ml for Reh cells, respectively, and 36.1 and 39.6 ng/ml for SUP­B15 cells, respectively. The combination index of IO with olaparib and talazoparib were 0.19 and 0.56 for Reh cells and 0.76 and 0.89 for SUP­B15 cells, demonstrating synergistic effects in all combinations. Moreover, the addition of minimally toxic concentrations of PARP inhibitors augmented IO­induced apoptosis. The alkaline comet assay, which quantitates the amount of DNA strand breaks, was used to investigate the degree to which DNA damage observed 1 h after IO administration was repaired 6 h later, reflecting successful repair of DNA strand breaks. However, DNA strand breaks persisted 6 h after IO administration combined with olaparib or talazoparib, suggesting inhibition of the repair processes by PARP inhibitors. Adding olaparib or talazoparib thus synergized the antitumor effects of IO by inhibiting DNA strand break repair via the inhibition of PARP.


Asunto(s)
Reparación del ADN , Sinergismo Farmacológico , Inotuzumab Ozogamicina , Ftalazinas , Piperazinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Piperazinas/farmacología , Piperazinas/administración & dosificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Inotuzumab Ozogamicina/farmacología , Apoptosis/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proliferación Celular/efectos de los fármacos , Indoles/farmacología
5.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38715049

RESUMEN

Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.


Asunto(s)
Daño del ADN , Ferroptosis , Hierro , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ferroptosis/efectos de los fármacos , Animales , Humanos , Ratones , Daño del ADN/efectos de los fármacos , Hierro/química , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Ratones Endogámicos BALB C , Femenino
6.
Cell Cycle ; 23(4): 369-384, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38571319

RESUMEN

Acetaldehyde, a chemical that can cause DNA damage and contribute to cancer, is prevalently present in our environment, e.g. in alcohol, tobacco, and food. Although aldehyde potentially promotes crosslinking reactions among biological substances including DNA, RNA, and protein, it remains unclear what types of DNA damage are caused by acetaldehyde and how they are repaired. In this study, we explored mechanisms involved in the repair of acetaldehyde-induced DNA damage by examining the cellular sensitivity to acetaldehyde in the collection of human TK6 mutant deficient in each genome maintenance system. Among the mutants, mismatch repair mutants did not show hypersensitivity to acetaldehyde, while mutants deficient in base and nucleotide excision repair pathways or homologous recombination (HR) exhibited higher sensitivity to acetaldehyde than did wild-type cells. We found that acetaldehyde-induced RAD51 foci representing HR intermediates were prolonged in HR-deficient cells. These results indicate a pivotal role of HR in the repair of acetaldehyde-induced DNA damage. These results suggest that acetaldehyde causes complex DNA damages that require various types of repair pathways. Mutants deficient in the removal of protein adducts from DNA ends such as TDP1-/- and TDP2-/- cells exhibited hypersensitivity to acetaldehyde. Strikingly, the double mutant deficient in both TDP1 and RAD54 showed similar sensitivity to each single mutant. This epistatic relationship between TDP1-/- and RAD54-/- suggests that the protein-DNA adducts generated by acetaldehyde need to be removed for efficient repair by HR. Our study would help understand the molecular mechanism of the genotoxic and mutagenic effects of acetaldehyde.


Asunto(s)
Acetaldehído , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Acetaldehído/toxicidad , Humanos , Recombinación Homóloga/efectos de los fármacos , Recombinación Homóloga/genética , Reparación del ADN/efectos de los fármacos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Mutación/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular
7.
Drug Resist Updat ; 74: 101085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636338

RESUMEN

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


Asunto(s)
Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos , Recombinación Homóloga , Quinasa Syk , Quinasa Syk/metabolismo , Quinasa Syk/genética , Quinasa Syk/antagonistas & inhibidores , Humanos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Fosforilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Reparación del ADN/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos
8.
EBioMedicine ; 103: 105129, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640836

RESUMEN

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS: A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS: In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION: Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING: Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).


Asunto(s)
Proteína BRCA1 , Senescencia Celular , Centrosoma , Daño del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Humanos , Animales , Centrosoma/metabolismo , Centrosoma/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ratones , Proteína BRCA1/genética , Línea Celular Tumoral , Femenino , Mutación , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética
9.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649802

RESUMEN

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Asunto(s)
Bleomicina , Senescencia Celular , Reparación del ADN , Recombinasa Rad51 , Bleomicina/efectos adversos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Humanos , Ratones , Reparación del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos
10.
J Control Release ; 369: 517-530, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569942

RESUMEN

Cancer cells rely on aerobic glycolysis and DNA repair signals to drive tumor growth and develop drug resistance. Yet, fine-tuning aerobic glycolysis with the assist of nanotechnology, for example, dampening lactate dehydrogenase (LDH) for cancer cell metabolic reprograming remains to be investigated. Here we focus on anaplastic thyroid cancer (ATC) as an extremely malignant cancer with the high expression of LDH, and develop a pH-responsive and nucleus-targeting platinum nanocluster (Pt@TAT/sPEG) to simultaneously targets LDH and exacerbates DNA damage. Pt@TAT/sPEG effectively disrupts LDH activity, reducing lactate production and ATP levels, and meanwhile induces ROS production, DNA damage, and apoptosis in ATC tumor cells. We found Pt@TAT/sPEG also blocks nucleotide excision repair pathway and achieves effective tumor cell killing. In an orthotopic ATC xenograft model, Pt@TAT/sPEG demonstrates superior tumor growth suppression compared to Pt@sPEG and cisplatin. This nanostrategy offers a feasible approach to simultaneously inhibit glycolysis and DNA repair for metabolic reprogramming and enhanced tumor chemotherapy.


Asunto(s)
Antineoplásicos , Reparación del ADN , Glucólisis , Ratones Desnudos , Platino (Metal) , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Glucólisis/efectos de los fármacos , Animales , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/patología , Carcinoma Anaplásico de Tiroides/metabolismo , Reparación del ADN/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Platino (Metal)/química , Platino (Metal)/farmacología , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
11.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649007

RESUMEN

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Asunto(s)
Benzoquinonas , Proteínas Potenciadoras de Unión a CCAAT , Reparación del ADN , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Ubiquitinación/efectos de los fármacos , Benzoquinonas/farmacología , Reparación del ADN/efectos de los fármacos , Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos
12.
Cancer Res Commun ; 4(5): 1199-1210, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38630886

RESUMEN

Homologous recombination (HR)-related gene alterations are present in a significant subset of prostate, breast, ovarian, pancreatic, lung, and colon cancers rendering these tumors as potential responders to specific DNA damaging agents. A small molecule acylfulvene prodrug, LP-184, metabolizes to an active compound by the oxidoreductase activity of enzyme prostaglandin reductase 1 (PTGR1), which is frequently elevated in multiple solid tumor types. Prior work demonstrated that cancer cell lines deficient in a spectrum of DNA damage repair (DDR) pathway genes show increased susceptibility to LP-184. Here, we investigated the potential of LP-184 in targeting multiple tumors with impaired HR function and its mechanism of action as a DNA damaging agent. LP-184 induced elevated DNA double-strand breaks in HR deficient (HRD) cancer cells. Depletion of key HR components BRCA2 or ataxia telangiectasia mutated (ATM) in cancer cells conferred up to 12-fold increased sensitivity to the LP-184. LP-184 showed nanomolar potency in a diverse range of HRD cancer models, including prostate cancer organoids, leiomyosarcoma cell lines, and patient-derived tumor graft models of lung, pancreatic, and prostate cancers. LP-184 demonstrated complete, durable tumor regression in 10 patient-derived xenograft (PDX) models of HRD triple-negative breast cancer (TNBC) including those resistant to PARP inhibitors (PARPi). LP-184 further displayed strong synergy with PARPi in ovarian and prostate cancer cell lines as well as in TNBC PDX models. These preclinical findings illustrate the potential of LP-184 as a pan-HRD cancer therapeutic. Taken together, our results support continued clinical evaluation of LP-184 in a large subset of HRD solid tumors. SIGNIFICANCE: New agents with activity against DDR-deficient solid tumors refractory to standard-of-care therapies are needed. We report multiple findings supporting the potential for LP-184, a novel alkylating agent with three FDA orphan drug designations, to fill this void clinically: strong nanomolar potency; sustained, durable regression of solid tumor xenografts; synthetic lethality with HR defects. LP-184 adult phase IA trial to assess safety in advanced solid tumors is ongoing.


Asunto(s)
Antineoplásicos , Recombinación Homóloga , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Línea Celular Tumoral , Recombinación Homóloga/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Femenino , Roturas del ADN de Doble Cadena/efectos de los fármacos , Masculino , Reparación del ADN/efectos de los fármacos
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167190, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657912

RESUMEN

Cervical cancer cells possess high levels of reactive oxygen species (ROS); thus, increasing oxidative stress above the toxicity threshold to induce cell death is a promising chemotherapeutic strategy. However, the underlying mechanisms of cell death are elusive, and efficacy and toxicity issues remain. Within DNA, 8-oxo-7,8-dihydroguanine (8-oxoG) is the most frequent base lesion repaired by 8-oxoguanine glycosylase 1 (OGG1)-initiated base excision repair. Cancer cells also express high levels of MutT homolog 1 (MTH1), which prevents DNA replication-induced incorporation of 8-oxoG into the genome by hydrolyzing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here, we revealed that ROS-inducing agents triggered cervical cancer to undergo parthanatos, which was mainly induced by massive DNA strand breaks resulting from overwhelming 8-oxoG excision by OGG1. Furthermore, the MTH1 inhibitor synergized with a relatively low dose of ROS-inducing agents by enhancing 8-oxoG loading in the DNA. In vivo, this drug combination suppressed the growth of tumor xenografts, and this inhibitory effect was significantly decreased in the absence of OGG1. Hence, the present study highlights the roles of base repair enzymes in cell death induction and suggests that the combination of lower doses of ROS-inducing agents with MTH1 inhibitors may be a more selective and safer strategy for cervical cancer chemotherapy.


Asunto(s)
ADN Glicosilasas , Enzimas Reparadoras del ADN , Monoéster Fosfórico Hidrolasas , Especies Reactivas de Oxígeno , Neoplasias del Cuello Uterino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Humanos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Animales , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , ADN Glicosilasas/metabolismo , ADN Glicosilasas/antagonistas & inhibidores , ADN Glicosilasas/genética , Ratones , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/genética , Guanina/análogos & derivados , Guanina/farmacología , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Células HeLa , Estrés Oxidativo/efectos de los fármacos
14.
J Med Chem ; 67(9): 6906-6921, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38663873

RESUMEN

DNA damage response (DDR) defects in cells play a crucial role in tumor development by promoting DNA mutations. These mutations create vulnerabilities specific to cancer cells, which can be effectively targeted through synthetic lethality-based therapies. To date, numerous small molecule DDR inhibitors have been identified, and some of them have already been approved for clinical use. However, due to the complexity of the tumor microenvironment, mutations may occur in the amino acid residues of DDR targets. These mutations can affect the efficacy of small molecule inhibitors targeting DDR pathways. Therefore, researchers have turned their attention to next-generation DNA damage repair modulators, particularly those based on PROTAC technology. From this perspective, we overviewed the recent progress on DDR-targeting PROTAC degraders for cancer therapy. In addition, we also summarized the biological functions of different DDR targets. Finally, the challenges and future directions for DDR-target PROTAC degraders are also discussed in detail.


Asunto(s)
Daño del ADN , Reparación del ADN , Humanos , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Animales , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
15.
Toxicol Appl Pharmacol ; 486: 116930, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626870

RESUMEN

Obesity impairs oocyte quality, fertility, pregnancy maintenance, and is associated with offspring birth defects. The model ovotoxicant, 7,12-dimethylbenz[a]anthracene (DMBA), causes ovarian DNA damage and follicle loss. Both DMBA-induced chemical biotransformation and the DNA damage response are partially attenuated in obese relative to lean female mice but whether weight loss could improve the DNA damage response to DMBA exposure has not been explored. Thus, at six weeks of age, C57BL/6 J female mice were divided in three groups: 1) Lean (L; n = 20) fed a chow diet for 12 weeks, 2) obese (O; n = 20) fed a high fat high sugar (HFHS) diet for 12 weeks and, 3) slim-down (S; n = 20). The S group was fed with HFHS diet for 7 weeks until attaining a higher body relative to L mice on week 7.5 and switched to a chow diet for 5 weeks to achieve weight loss. Mice then received either corn oil (CT) or DMBA (D; 1 mg/kg) for 7 d via intraperitoneal injection (n = 10/treatment). Obesity increased (P < 0.05) kidney and spleen weight, and DMBA decreased uterine weight (P < 0.05). Ovarian weight was reduced (P < 0.05) in S mice, but DMBA exposure increased ovary weight in the S mice. LC-MS/MS identified 18, 64, and 7 ovarian proteins as altered (P < 0.05) by DMBA in the L, S and O groups, respectively. In S and O mice, 24 and 8 proteins differed, respectively, from L mice. These findings support weight loss as a strategy to modulate the ovarian genotoxicant response.


Asunto(s)
9,10-Dimetil-1,2-benzantraceno , Daño del ADN , Ratones Endogámicos C57BL , Obesidad , Ovario , Pérdida de Peso , Animales , Femenino , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Obesidad/metabolismo , Daño del ADN/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Ratones , Reparación del ADN/efectos de los fármacos , Enfermedades del Ovario/inducido químicamente , Enfermedades del Ovario/prevención & control , Enfermedades del Ovario/metabolismo , Enfermedades del Ovario/patología , Dieta Alta en Grasa
16.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38592373

RESUMEN

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Asunto(s)
Adenocarcinoma , Proteínas de la Ataxia Telangiectasia Mutada , Reparación del ADN , Neoplasias Esofágicas , Oxaliplatino , Proteína smad3 , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Proteína smad3/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Reparación del ADN/efectos de los fármacos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Ratones , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Transducción de Señal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Organoides/efectos de los fármacos
17.
CNS Neurosci Ther ; 30(4): e14711, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38644551

RESUMEN

OBJECTIVE: To elucidate the relationship between USP19 and O(6)-methylguanine-DNA methyltransferase (MGMT) after temozolomide treatment in glioblastoma (GBM) patients with chemotherapy resistance. METHODS: Screening the deubiquitinase pannel and identifying the deubiquitinase directly interacts with and deubiquitination MGMT. Deubiquitination assay to confirm USP19 deubiquitinates MGMT. The colony formation and tumor growth study in xenograft assess USP19 affects the GBM sensitive to TMZ was performed by T98G, LN18, U251, and U87 cell lines. Immunohistochemistry staining and survival analysis were performed to explore how USP19 is correlated to MGMT in GBM clinical management. RESULTS: USP19 removes the ubiquitination of MGMT to facilitate the DNA methylation damage repair. Depletion of USP19 results in the glioblastoma cell sensitivity to temozolomide, which can be rescued by overexpressing MGMT. USP19 is overexpressed in glioblastoma patient samples, which positively correlates with the level of MGMT protein and poor prognosis in these patients. CONCLUSION: The regulation of MGMT ubiquitination by USP19 plays a critical role in DNA methylation damage repair and GBM patients' temozolomide chemotherapy response.


Asunto(s)
Antineoplásicos Alquilantes , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Resistencia a Antineoplásicos , Temozolomida , Proteínas Supresoras de Tumor , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Metilación de ADN/efectos de los fármacos , Ratones Desnudos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Ratones , Masculino , Femenino , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Reparación del ADN/efectos de los fármacos , Endopeptidasas/metabolismo , Endopeptidasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Ubiquitinación/efectos de los fármacos
18.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675528

RESUMEN

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Glioblastoma , S-Adenosilmetionina , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , S-Adenosilmetionina/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Aurora Quinasa B/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Recombinasa Rad51/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Mitosis/efectos de los fármacos
19.
Cell Cycle ; 23(2): 205-217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38389322

RESUMEN

The aim of this study was to explore the effect and mechanism of Sirt6 on DNA damage repair in OA chondrocytes. Cartilage tissues were collected from OA patients with knee arthroplasty and traumatic amputation patients without OA. Besides, 7-week-old male C57BL/6 mice were randomly divided into Control and OA groups; CHON-001 cells of corresponding groups were treated with 10 ng/ml interleukin (IL)-1ß, respectively. Subsequently, Sirt6 or siNrf2 was over-expressed in CHON-001 cells to observe the effect of Sirt6 on DNA damage and senescence of chondrocytes by IL-1ß through the nuclear factor E2-related factor 2 (Nrf2) signaling pathway. The expression level of Sirt6 in human and mouse OA cartilage tissues was significantly decreased. However, 24 h of treatment with IL-1ß significantly decreased the expression of Sirt6 in chondrocytes, induced DNA damage, and promoted cellular senescence. In addition, over-expression of Sirt6 promoted DNA damage repair and inhibited cellular senescence in IL-1ß-induced chondrocytes. Moreover, the overexpression of Sirt6 activated the Keap1/Nrf2/HO-1 signaling pathway in chondrocytes, while knockdown of Nrf2 expression inhibited the DNA damage repair and anti-senescence effects of Sirt6 on IL-1ß-treated chondrocytes. Sirt6 may reduce DNA damage and cellular senescence in OA chondrocytes induced by IL-1ß through activating the Keap1/Nrf2/HO-1 signaling pathway.


Asunto(s)
Condrocitos , Reparación del ADN , Osteoartritis , Transducción de Señal , Sirtuinas , Animales , Humanos , Masculino , Ratones , Cartílago Articular/patología , Cartílago Articular/metabolismo , Senescencia Celular/genética , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/patología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteoartritis/patología , Osteoartritis/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética
20.
J Biol Chem ; 299(6): 104800, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37164156

RESUMEN

For cells, it is important to repair DNA damage, such as double-strand and single-strand DNA breaks, because unrepaired DNA can compromise genetic integrity, potentially leading to cell death or cancer. Cells have multiple DNA damage repair pathways that have been the subject of detailed genetic, biochemical, and structural studies. Recently, the scientific community has started to gain evidence that the repair of DNA double-strand breaks may occur within biomolecular condensates and that condensates may also contribute to DNA damage through concentrating genotoxic agents used to treat various cancers. Here, we summarize key features of biomolecular condensates and note where they have been implicated in the repair of DNA double-strand breaks. We also describe evidence suggesting that condensates may be involved in the repair of other types of DNA damage, including single-strand DNA breaks, nucleotide modifications (e.g., mismatch and oxidized bases), and bulky lesions, among others. Finally, we discuss old and new mysteries that could now be addressed considering the properties of condensates, including chemoresistance mechanisms.


Asunto(s)
Reparación del ADN , ADN , Resistencia a Antineoplásicos , ADN/química , ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de los fármacos , Disparidad de Par Base/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA