Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancer Res Treat ; 54(1): 30-39, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34015890

RESUMEN

PURPOSE: K-MASTER project is a Korean national precision medicine platform that screened actionable mutations by analyzing next-generation sequencing (NGS) of solid tumor patients. We compared gene analyses between NGS panel from the K-MASTER project and orthogonal methods. MATERIALS AND METHODS: Colorectal, breast, non-small cell lung, and gastric cancer patients were included. We compared NGS results from K-MASTER projects with those of non-NGS orthogonal methods (KRAS, NRAS, and BRAF mutations in colorectal cancer [CRC]; epidermal growth factor receptor [EGFR], anaplastic lymphoma kinase [ALK] fusion, and reactive oxygen species 1 [ROS1] fusion in non-small cell lung cancer [NSCLC], and Erb-B2 receptor tyrosine kinase 2 (ERBB2) positivity in breast and gastric cancers). RESULTS: In the CRC cohort (n=225), the sensitivity and specificity of NGS were 87.4% and 79.3% (KRAS); 88.9% and 98.9% (NRAS); and 77.8% and 100.0% (BRAF), respectively. In the NSCLC cohort (n=109), the sensitivity and specificity of NGS for EGFR were 86.2% and 97.5%, respectively. The concordance rate for ALK fusion was 100%, but ROS1 fusion was positive in only one of three cases that were positive in orthogonal tests. In the breast cancer cohort (n=260), ERBB2 amplification was detected in 45 by NGS. Compared with orthogonal methods that integrated immunohistochemistry and in situ hybridization, sensitivity and specificity were 53.7% and 99.4%, respectively. In the gastric cancer cohort (n=64), ERBB2 amplification was detected in six by NGS. Compared with orthogonal methods, sensitivity and specificity were 62.5% and 98.2%, respectively. CONCLUSION: The results of the K-MASTER NGS panel and orthogonal methods showed a different degree of agreement for each genetic alteration, but generally showed a high agreement rate.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Medicina de Precisión/normas , Reparación del Gen Blanco/normas , Neoplasias de la Mama/genética , Neoplasias Colorrectales/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , República de Corea , Sensibilidad y Especificidad , Carcinoma Pulmonar de Células Pequeñas/genética , Neoplasias Gástricas/genética
2.
Int J Mol Sci ; 20(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366028

RESUMEN

The CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeat-associated protein 9) is a powerful genome-editing tool in animals, plants, and humans. This system has some advantages, such as a high on-target mutation rate (targeting efficiency), less cost, simplicity, and high-efficiency multiplex loci editing, over conventional genome editing tools, including meganucleases, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs). One of the crucial shortcomings of this system is unwanted mutations at off-target sites. We summarize and discuss different approaches, such as dCas9 and Cas9 paired nickase, to decrease the off-target effects in plants. According to studies, the most effective method to reduce unintended mutations is the use of ligand-dependent ribozymes called aptazymes. The single guide RNA (sgRNA)/ligand-dependent aptazyme strategy has helped researchers avoid unwanted mutations in human cells and can be used in plants as an alternative method to dramatically decrease the frequency of off-target mutations. We hope our concept provides a new, simple, and fast gene transformation and genome-editing approach, with advantages including reduced time and energy consumption, the avoidance of unwanted mutations, increased frequency of on-target changes, and no need for external forces or expensive equipment.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Fitomejoramiento/métodos , Reparación del Gen Blanco/métodos , Edición Génica/normas , Magnoliopsida/genética , ARN Guía de Kinetoplastida/genética , Reparación del Gen Blanco/normas
3.
Reprod Biol Endocrinol ; 12: 108, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25420886

RESUMEN

Genome editing technology, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, has enabled far more efficient genetic engineering even in non-human primates. This biotechnology is more likely to develop into medicine for preventing a genetic disease if corrective genome editing is integrated into assisted reproductive technology, represented by in vitro fertilization. Although rapid advances in genome editing are expected to make germline gene correction feasible in a clinical setting, there are many issues that still need to be addressed before this could occur. We herein examine current status of genome editing in mammalian embryonic stem cells and zygotes and discuss potential issues in the international regulatory landscape regarding human germline gene modification. Moreover, we address some ethical and social issues that would be raised when each country considers whether genome editing-mediated germline gene correction for preventive medicine should be permitted.


Asunto(s)
Fertilización In Vitro/efectos adversos , Enfermedades Genéticas Congénitas/terapia , Salud Global , Política de Salud , Reparación del Gen Blanco/efectos adversos , Animales , Fertilización In Vitro/normas , Fertilización In Vitro/tendencias , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/prevención & control , Ingeniería Genética/ética , Ingeniería Genética/legislación & jurisprudencia , Ingeniería Genética/normas , Ingeniería Genética/tendencias , Genoma Humano , Genómica/métodos , Genómica/tendencias , Política de Salud/tendencias , Humanos , Investigación con Células Madre/legislación & jurisprudencia , Reparación del Gen Blanco/ética , Reparación del Gen Blanco/normas , Reparación del Gen Blanco/tendencias , Investigación Biomédica Traslacional/legislación & jurisprudencia , Investigación Biomédica Traslacional/normas
4.
Crit Rev Biochem Mol Biol ; 47(3): 264-81, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22530743

RESUMEN

Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways.


Asunto(s)
Enfermedades Genéticas Congénitas/terapia , Reparación del Gen Blanco/métodos , Cromosomas Humanos/genética , Roturas del ADN , División del ADN , Reparación del ADN por Unión de Extremidades , Endonucleasas/uso terapéutico , Enfermedades Genéticas Congénitas/genética , Genoma Humano , Humanos , Mutación , Ingeniería de Proteínas , Reparación del ADN por Recombinación , Reparación del Gen Blanco/normas , Transgenes
5.
Biochemistry ; 47(33): 8754-9, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18642931

RESUMEN

A 606-base single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, corrects a hygromycin resistance and enhanced green fluorescent protein (Hyg-EGFP) fusion gene more efficiently than a PCR fragment, which is the conventional type of DNA fragment used in gene correction. Here, a tailed duplex, obtained by annealing an oligonucleotide to the ss DNA fragment, was used in the correction. The tailed duplex may be a good substrate for the RAD51 protein, an important enzyme in homologous recombination, which could be the gene correction pathway. The annealing of the oligonucleotides enhanced the correction efficiency of the Hyg-EGFP gene, especially when annealed in the 3'-region of the ss DNA fragment. Both the length and backbone structure of the oligonucleotides affected the gene correction efficiency. This type of gene correction device was also effective for another target gene, the rpsL gene. The results obtained in this study indicate that tailed duplex DNA fragments are effective nucleic acids for gene correction.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple/química , Proteínas Fluorescentes Verdes/genética , Reparación del Gen Blanco , Animales , Células CHO , Cinamatos/farmacología , Cricetinae , Cricetulus , Resistencia a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas Fluorescentes Verdes/metabolismo , Higromicina B/análogos & derivados , Higromicina B/farmacología , Mutación , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/metabolismo , Plásmidos/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Mapeo Restrictivo , Proteína Ribosómica S9 , Proteínas Ribosómicas/genética , Reparación del Gen Blanco/normas , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA