Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.872
Filtrar
1.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731605

RESUMEN

The aim of this study is to develop a rapid and accurate method for simultaneous analysis of multi-residue pesticides and conduct pesticide monitoring in agricultural products produced by the production and distribution stage in Korea. The representative agricultural products were selected as brown rice, soybean, potato, mandarin, and green pepper and developed using gas chromatography with tandem mass (GC-MS/MS) for the analysis of 272 pesticide residues. The experimental samples were extracted by the QuEChERS-EN method and then cleaned up by using d-SPE, including MgSO4 and primary secondary amine (PSA) sorbents. The established method was validated in accordance with Codex CAC-GL/40, and the limit of quantitation (LOQ) was determined to be 0.01 mg/kg. A total of 243 pesticides satisfied the guidelines in five samples at three levels with values of 60 to 120% (recovery) and ≤45% (coefficient of variation, CV). The remaining 29 pesticides did not satisfy the guidelines, and these pesticides are expected to be used as a screening method for the routine inspection of agricultural products. As a result of analyzing 223 agricultural products in South Korea by applying the simultaneous analysis method, none of the detected levels in the samples exceeded the standard values based on maximum residue limits (MRLs). The developed method in this study will be used to inspect residual pesticides in agricultural products, and it is anticipated to contribute to the distribution of safe agricultural products to consumers.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Residuos de Plaguicidas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Residuos de Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Plaguicidas/análisis , Productos Agrícolas/química , República de Corea , Contaminación de Alimentos/análisis , Límite de Detección , Extracción en Fase Sólida/métodos
2.
J Agric Food Chem ; 72(19): 11241-11250, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709728

RESUMEN

The fungicide phenamacril has been employed to manage Fusarium and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs). Additionally, gold nanoparticles coated with a polydopamine shell were synthesized and conjugated with mAbs, inducing fluorescence quenching in quantum dots. Moreover, a dual-readout immunochromatographic assay that combines the positive signal from fluorescence with the negative signal from colorimetry was developed to enable sensitive and precise detection of phenamacril within 10 min, achieving detection limits of 5 ng/mL. The method's reliability was affirmed by using spiked wheat flour samples, achieving a limit of quantitation of 0.05 mg/kg. This analytical platform demonstrates high sensitivity, outstanding accuracy, and robust tolerance to matrix effects, making it suitable for the rapid, onsite, quantitative screening of phenamacril residues.


Asunto(s)
Colorimetría , Contaminación de Alimentos , Fungicidas Industriales , Residuos de Plaguicidas , Fungicidas Industriales/análisis , Contaminación de Alimentos/análisis , Colorimetría/métodos , Residuos de Plaguicidas/análisis , Anticuerpos Monoclonales/química , Cromatografía de Afinidad/métodos , Cromatografía de Afinidad/instrumentación , Fluorescencia , Triticum/química , Nanopartículas del Metal/química , Oro/química , Límite de Detección , Harina/análisis
3.
Rapid Commun Mass Spectrom ; 38(15): e9770, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38773864

RESUMEN

RATIONALE: Chlorothalonil (CHT), a broad-spectrum fungicide, has been employed widely to control foliar diseases, whereas with a major metabolite of polar 4-hydroxychlorothalonil (CHT-4-OH), only an acceptable nonpolar CHT residue is allowed by most countries. This study involves the method development for CHT residue in vegetables/fruits using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a novel modified discharge-adaptor (DA) interface. METHODS: CHT residue was analyzed using LC-MS/MS with DA interface (LC-DA-MS/MS), developed in our previous works. A DA was placed on the electrospray tip to switch the ionization modes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to extract CHT residue of vegetables/fruits efficiently with less sample preparation time and analysis cost. RESULTS: CHT and CHT-4-OH spiked in four different vegetables/fruits were extracted using the modified QuEChERS method. After LC with isocratic elution, CHT and CHT-4-OH were separated within 3 min. Using LC-DA-MS/MS, the ion signals of CHT were improved two to three times, and the limit of quantification of 5 ng/g and linearity (r2 > 0.99) in the range of 5-200 ng/g were achieved using 10 g of vegetables/fruits. The precision and accuracy were within 15% each. The modified QuEChERS and LC-DA-MS/MS were applied to examine eight field-grown vegetables/fruits; 9.5 and 2588.9 ng/g of CHT were detected in two vegetables/fruits. CONCLUSION: LC-DA-MS/MS combined with modified QuEChERS was successfully applied to determine CHT residue <10 ng/g in vegetables/fruits and with satisfied validation results. The developed method could reduce both analysis cost and time, attributing to simplifications in modified QuEChERS, isocratic elution, and DA interface in LC-DA-MS/MS.


Asunto(s)
Frutas , Fungicidas Industriales , Nitrilos , Residuos de Plaguicidas , Espectrometría de Masas en Tándem , Verduras , Espectrometría de Masas en Tándem/métodos , Verduras/química , Nitrilos/análisis , Nitrilos/química , Cromatografía Liquida/métodos , Residuos de Plaguicidas/análisis , Frutas/química , Fungicidas Industriales/análisis , Límite de Detección , Reproducibilidad de los Resultados , Contaminación de Alimentos/análisis
4.
J Chromatogr A ; 1726: 464967, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38749275

RESUMEN

Infant formulas (IF) can contain harmful chemical substances, such as pesticides and mycotoxins, resulting from the contamination of raw materials and inputs used in the production chain, which can cause adverse effects to infants. Therefore, the quick, easy, cheap, effective, rugged, and safe (QuEChERS) methodology prior ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPL-QqQ-MS/MS) analysis was applied for the determination of 23 contaminants, in 30 samples of Brazilian IF. The method was validated in terms of limit of detection (0.2 to 0.4 µg/kg), limits of quantification (1 and 10 µg/kg), and recovery (64 % to 122 %); precision values, in terms of relative standard deviation (RSD), were ≤ 20 %. Fenitrothion, chlorpyrifos, and bifenthrin were the pesticides detected in the samples, but the values did not exceed the limit set by the European Union (EU), and ANVISA, and they were detected under their limits of quantification. Additionally, suspect screening and unknown analysis were conducted to tentatively identify 32 substances, including some compounds not covered in this study, such as pesticides, hormones, and veterinary drugs. Carbofuran was identified, confirmed and quantified in 10 % of the samples.


Asunto(s)
Contaminación de Alimentos , Fórmulas Infantiles , Límite de Detección , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Brasil , Fórmulas Infantiles/química , Contaminación de Alimentos/análisis , Plaguicidas/análisis , Humanos , Residuos de Plaguicidas/análisis , Reproducibilidad de los Resultados , Micotoxinas/análisis , Lactante , Piretrinas/análisis
5.
Rev Saude Publica ; 58: 19, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747867

RESUMEN

OBJECTIVE: To identify the prevalence of contamination by pesticides and their metabolites in the milk of lactating mothers in Latin America. METHODS: In this systematic review, the PubMed, LILACS, Embase, and Scopus databases were searched up to January 2022 to identify observational studies. The Mendeley software was used to manage these references. The risk of bias assessment was evaluated according to the checklist for prevalence studies and writing design, by the Prisma guidelines. RESULTS: This study retrieved 1835 references and analyzed 49 studies. 69.38% of the analyzed studies found a 100% prevalence of breast milk contamination by pesticides among their sample. Main pesticides include dichlorodiphenyltrichloroethane (DDT) and its isomers (75.51%), followed by the metabolite dichlorodiphenyldichloroethylene (DDE) (69.38%) and hexachlorocyclohexane (HCH) (46.93%). This study categorized most (65.30%) studies as having a low risk of bias. CONCLUSIONS: This review shows a high prevalence of pesticide contamination in the breast milk of Latin American women. Further investigations should be carried out to assess contamination levels in breast milk and the possible effects of these substances on maternal and child health.


Asunto(s)
Lactancia , Leche Humana , Plaguicidas , Humanos , Leche Humana/química , Femenino , América Latina , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Prevalencia , DDT/análisis , Exposición Materna/efectos adversos
6.
Environ Geochem Health ; 46(6): 191, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696024

RESUMEN

Pesticides are frequently used to protect crop yields and manage malaria vectors; however, their inadvertent transport into aquatic habitats poses a significant concern. Various anthropogenic activities influence the Indus River in Pakistan. This study aimed to assess the presence of eight pesticide residues at three different sites (Kalabagh, Kundian, and Chashma) in water, sediment, and the fish species (Labeo rohita) during both dry and wet seasons to measure the intensity of this pressure. Pesticide analysis was carried out using gas chromatography equipped with an electron capture detector. The results revealed the highest concentrations of pesticides during both dry and wet seasons at all sites, measuring 0.83 and 0.62 µg/l (water), 12.37 and 9.20 µg/g/dw (sediment), and 14.27 and 11.29 µg/g/ww (L. rohita), respectively. Overall, pesticide concentrations were higher in the dry season than in the wet season across all study sites. Based on detection frequency and concentration in both seasons at all sites, dominant pesticides included cypermethrin and carbofuran (in water), as well as endosulfan and cypermethrin (in sediment and fish tissue). Levels of endosulfan and cypermethrin exceeded standard limits. Moreover, principal component analysis (PCA) indicated no correlation among pesticides in fish tissue, sediment, and water. However, pesticides exhibited different behavior in different seasons. Furthermore, endosulfan and triazophos impose great human health risk, as indicated by the THQ value (> 1). The overall HI value was greater for site 1 in the dry season (8.378). The study concluded that the presence of agricultural pesticides in the Indus River poses a risk to aquatic life and has the potential to disrupt the entire food chain. This highlights the importance of sustainable practices for the study area and Pakistan overall agricultural and environmental sustainability. It is further recommended to strengthen regulations for reduced pesticide use and promote eco-friendly pest management.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Plaguicidas , Ríos , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Animales , Ríos/química , Pakistán , Humanos , Medición de Riesgo , Plaguicidas/análisis , Monitoreo del Ambiente/métodos , Estaciones del Año , Residuos de Plaguicidas/análisis , Cyprinidae , Peces
7.
PLoS One ; 19(5): e0303040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713652

RESUMEN

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Asunto(s)
Antioxidantes , Germinación , Glycine max , Melatonina , Valor Nutritivo , Residuos de Plaguicidas , Semillas , Melatonina/farmacología , Germinación/efectos de los fármacos , Residuos de Plaguicidas/análisis , Semillas/efectos de los fármacos , Semillas/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Glycine max/química , Antioxidantes/metabolismo , Grano Comestible/efectos de los fármacos , Grano Comestible/metabolismo , Fenoles/análisis , Contaminación de Alimentos/análisis , Glutatión/metabolismo
8.
PLoS One ; 19(5): e0298371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758738

RESUMEN

Malathion® is a persistent organophosphate pesticide used against biting and chewing insects on vegetables. It is a difficult-to-remove surface contaminant of vegetables and contaminates surface and ground water and soils. Malathion® is only partially water soluble, but use of detergent carriers makes adhering Malathion® residues difficult to subsequently remove. Magnetically treated water (MTW) successfully removed Malathion® from Chinese Kale (Brassica oleracea L.), meeting Maximum Residue Load (MRL) standards. Samples were soaked in MTW for 30 min prior to detection with GC/MS/MS, 98.5±3.02% of Malathion® was removed after washing by MTW. Removal by simple washing was only ≈42±1.2% which was not nearly sufficient to meet MRL criteria.


Asunto(s)
Brassica , Malatión , Brassica/química , Contaminantes Químicos del Agua/análisis , Agua/química , Insecticidas/análisis , Residuos de Plaguicidas/análisis , Purificación del Agua/métodos , Contaminación de Alimentos/análisis , Cromatografía de Gases y Espectrometría de Masas
9.
Huan Jing Ke Xue ; 45(5): 2678-2685, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629531

RESUMEN

Xingkai Lake, located in Heilongjiang Province, is an important fishery and agricultural base and is seriously polluted by agricultural non-point sources. To clarify the residual status of many pesticides in the surface water of Xingkai Lake, 27 types of pesticides, herbicides, and their degradation products were analyzed in rice paddy, drainage, and surface water around Xingkai Lake (China) during the rice heading and maturity periods. The results showed that all 27 types of pesticides, herbicides, and their degradation products were detected during the rice heading period, and the total concentration ranged from 247.97 to 6 094.49 ng·L-1. Additionally, 25 species were detected during the rice maturity period, and the total concentration ranged from 485.36 to 796.23 ng·L-1. In comparison, more pesticides, herbicides, and derived degradation products were detected during the heading period, and their total concentration was higher as well. During the rice heading period, atrazine, simetryn, and paclobutrazol were the main detected pesticides, atrazine and isoprothiolane were the main pesticides detected during the maturity period. The distribution characteristics of pesticides and herbicides in the surface water around Xingkai Lake (China) was similar to that in drainage, so they were probably imported from the drainage and rice paddy. The average risk quotient (RQ) values of atrazine, simetryn, prometryn, butachlor, isoprothiolane, and oxadiazon were higher than 0.1 in drainage and Xingkai Lake (China), which showed a potential risk to aquatic organisms.


Asunto(s)
Atrazina , Herbicidas , Residuos de Plaguicidas , Plaguicidas , Tiofenos , Contaminantes Químicos del Agua , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Lagos , Monitoreo del Ambiente , Agua/química , China , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
10.
J Hazard Mater ; 470: 134268, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608592

RESUMEN

Ginger is consumed as a spice and medicine globally. However, pesticide residues in ginger and their residue changes during processing remain poorly understood. Our results demonstrate that clothianidin, carbendazim and imidacloprid were the top detected pesticides in 152 ginger samples with detection rates of 17.11-27.63%, and these pesticides had higher average residues of 44.07-97.63 µg/kg. Although most samples contained low levels of pesticides, 66.45% of the samples were detected with pesticides, and 38.82% were contaminated with 2-5 pesticides. Peeling, washing, boiling and pickling removed different amounts of pesticides from ginger (processing factor range: 0.06-1.56, most <1). By contrast, pesticide residues were concentrated by stir-frying and drying (0.50-6.45, most >1). Pesticide residues were influenced by pesticide physico-chemical parameters involving molecular weight, melting point, degradation point and octanol-water partition coefficient by different ginger processing methods. Chronic and acute dietary risk assessments suggest that dietary exposure to pesticides from ginger consumption was within acceptable levels for the general population. This study sheds light on pesticide residues in ginger from market to processing and is of theoretical and practical value for ensuring ginger quality and safety.


Asunto(s)
Contaminación de Alimentos , Residuos de Plaguicidas , Zingiber officinale , Zingiber officinale/química , Residuos de Plaguicidas/análisis , Medición de Riesgo , Contaminación de Alimentos/análisis , Manipulación de Alimentos , Humanos , Exposición Dietética/análisis
11.
J Hazard Mater ; 470: 134208, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593663

RESUMEN

This study introduces an innovative strategy for the rapid and accurate identification of pesticide residues in agricultural products by combining surface-enhanced Raman spectroscopy (SERS) with a state-of-the-art transformer model, termed SERSFormer. Gold-silver core-shell nanoparticles were synthesized and served as high-performance SERS substrates, which possess well-defined structures, uniform dispersion, and a core-shell composition with an average diameter of 21.44 ± 4.02 nm, as characterized by TEM-EDS. SERSFormer employs sophisticated, task-specific data processing techniques and CNN embedders, powered by an architecture features weight-shared multi-head self-attention transformer encoder layers. The SERSFormer model demonstrated exceptional proficiency in qualitative analysis, successfully classifying six categories, including five pesticides (coumaphos, oxamyl, carbophenothion, thiabendazole, and phosmet) and a control group of spinach data, with 98.4% accuracy. For quantitative analysis, the model accurately predicted pesticide concentrations with a mean absolute error of 0.966, a mean squared error of 1.826, and an R2 score of 0.849. This novel approach, which combines SERS with machine learning and is supported by robust transformer models, showcases the potential for real-time pesticide detection to improve food safety in the agricultural and food industries.


Asunto(s)
Oro , Aprendizaje Automático , Nanopartículas del Metal , Plaguicidas , Plata , Espectrometría Raman , Spinacia oleracea , Espectrometría Raman/métodos , Spinacia oleracea/química , Nanopartículas del Metal/química , Plata/química , Oro/química , Plaguicidas/análisis , Contaminación de Alimentos/análisis , Residuos de Plaguicidas/análisis
12.
J Environ Sci Health B ; 59(6): 285-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686491

RESUMEN

In this paper, dispersive micro-solid phase extraction technique was developed for the purpose of extracting and preconcentrating organochlorine pesticide residues in juice samples before their separation and quantitative analysis by gas chromatography-mass spectrometry. A sorbent composed of a silica-supported Fe2O3-modified khat leftover biochar nanocomposite (SiO2-Fe2O3-KLBNC) was implemented in the process. To improve the dispersion of the sorbent in the solution, vortex mixer was employed. Experimental parameters influencing the performance of the method were optimized, and the optimal conditions were established. With these conditions, linear dynamic ranges ranged from 0.003 to 100.0 ng/mL were achieved, with a correlation coefficient (r2) ≥ 0.9981. The limits of detection and quantification, determined by signal-to-noise ratios of 3 and 10, respectively, were found to be in the ranges of 0.001-0.006 ng/mL and 0.003-0.020 ng/mL. Intra- and inter-day precision, values ranging from 0.3-4.8% and 1.7-5.2% were obtained, respectively. The matrix-matched extraction recoveries demonstrated favorable outcomes, falling within the range of 83.4-108.3%. The utilization of khat leftover as an adsorbent in contemporary sample preparation methodologies offers a cost-effective alternative to the currently available, yet expensive, adsorbents. This renders it economically viable, particularly in resource-constrained regions, and is anticipated to witness widespread adoption in the coming future.


Asunto(s)
Carbón Orgánico , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Clorados , Nanocompuestos , Dióxido de Silicio , Carbón Orgánico/química , Nanocompuestos/química , Dióxido de Silicio/química , Hidrocarburos Clorados/análisis , Hidrocarburos Clorados/química , Compuestos Férricos/química , Catha/química , Microextracción en Fase Sólida/métodos , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Jugos de Frutas y Vegetales/análisis , Contaminación de Alimentos/análisis
13.
Sci Total Environ ; 930: 172425, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643874

RESUMEN

Aedes albopictus, a virus-vector pest, is primarily controlled through the use of insecticides. In this study, we investigated the mechanisms of resistance in Ae. albopictus in terms of chlorpyrifos neurotoxicity to Ae. albopictus and its effects on the olfactory system. We assessed Ca2+-Mg2+-ATP levels, choline acetyltransferase (ChAT), Monoamine oxidase (MAO), odorant-binding proteins (OBPs), and olfactory receptor (OR7) gene expression in Ae. albopictus using various assays including Y-shaped tube experiments and DanioVision analysis to evaluate macromotor behavior. Our findings revealed that cumulative exposure to chlorpyrifos reduced the activity of neurotoxic Ca2+-Mg2+-ATPase and ChAT enzymes in Ae. albopictus to varying degrees, suppressed MAO-B enzyme expression, altered OBPs and OR7 expression patterns, as well as affected evasive response, physical mobility, and cumulative locomotor time under chlorpyrifos stress conditions for Ae. albopictus individuals. Consequently, these changes led to decreased feeding ability, reproductive capacity, and avoidance behavior towards natural enemies in Ae. albopictus populations exposed to chlorpyrifos stressors over time. To adapt to unfavorable living environments, Ae. albopictus may develop certain tolerance mechanisms against organophosphorus pesticides. This study provides valuable insights for guiding rational insecticide usage or dosage adjustments targeting the nervous system of Ae. albopictus.


Asunto(s)
Aedes , Cloropirifos , Insecticidas , Animales , Cloropirifos/toxicidad , Aedes/efectos de los fármacos , Insecticidas/toxicidad , Resistencia a los Insecticidas/genética , Residuos de Plaguicidas
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124336, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678838

RESUMEN

For addressing the challenges of strong affinity SERS substrate to organophosphorus pesticides (OPs), herein, a rapid water-assisted layer-by-layer heteronuclear growth method was investigated to grow uniform UiO-66 shell with controllable thickness outside the magnetic core and provide abundant defect sites for OPs adsorption. By further assembling the tailored Au@Ag, a highly sensitive SERS substrate Fe3O4-COOH@UiO-66/Au@Ag (FCUAA) was synthesized with a SERS enhancement factor of 2.11 × 107. The substrate's suitability for the actual vegetable samples (cowpeas and peppers) was confirmed under both destructive and non-destructive detection conditions, showing a strong SERS response to fenthion and triazophos, with limits of detection of 1.21 × 10-5 and 2.96 × 10-3 mg/kg in the vegetables under destructive conditions, and 0.13 and 1.39 ng/cm2 for non-destructive detection, respectively. The FCUAA substrate had high SERS performance, effective adsorption capability for OPs, and demonstrated good applicability, thus exhibiting great potential for rapid detection of trace OPs residues in the food industry.


Asunto(s)
Residuos de Plaguicidas , Espectrometría Raman , Espectrometría Raman/métodos , Residuos de Plaguicidas/análisis , Verduras/química , Oro/química , Compuestos Organofosforados/análisis , Compuestos Organofosforados/química , Plata/química , Fentión/análisis , Triazoles/química , Triazoles/análisis , Límite de Detección , Organotiofosfatos/análisis , Contaminación de Alimentos/análisis , Adsorción
15.
J Hazard Mater ; 471: 134454, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688223

RESUMEN

Parallel to the important use of pesticides in conventional agriculture there is a growing interest for green technologies to clear contaminated soil from pesticides and their degradation products. Bioaugmentation i. e. the inoculation of degrading micro-organisms in polluted soil, is a promising method still in needs of further developments. Specifically, improvements in the understanding of how degrading microorganisms must overcome abiotic filters and interact with the autochthonous microbial communities are needed in order to efficiently design bioremediation strategies. Here we designed a protocol aiming at studying the degradation of two herbicides, glyphosate (GLY) and isoproturon (IPU), via experimental modifications of two source bacterial communities. We used statistical methods stemming from genomic prediction to link community composition to herbicides degradation potentials. Our approach proved to be efficient with correlation estimates over 0.8 - between model predictions and measured pesticide degradation values. Multi-degrading bacterial communities were obtained by coalescing bacterial communities with high GLY or IPU degradation ability based on their community-level properties. Finally, we evaluated the efficiency of constructed multi-degrading communities to remove pesticide contamination in a different soil. While results are less clear in the case of GLY, we showed an efficient transfer of degrading capacities towards the receiving soil even at relatively low inoculation levels in the case of IPU. Altogether, we developed an innovative protocol for building multi-degrading simplified bacterial communities with the help of genomic prediction tools and coalescence, and proved their efficiency in a contaminated soil.


Asunto(s)
Bacterias , Biodegradación Ambiental , Glicina , Glifosato , Herbicidas , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Bacterias/metabolismo , Bacterias/genética , Herbicidas/metabolismo , Herbicidas/química , Compuestos de Fenilurea/metabolismo , Residuos de Plaguicidas/metabolismo
16.
J Hazard Mater ; 471: 134299, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631252

RESUMEN

Trichoderma can enhance the metabolism of organophosphate pesticides in plants, but the mechanism is unclear. Here, we performed high-throughput transcriptome sequencing of roots upon Trichoderma asperellum (TM) inoculation and phoxim (P) application in tomato (Solanum lycopersicum L.). A total of 4059 differentially expressed genes (DEGs) were obtained, including 2110 up-regulated and 1949 down-regulated DEGs in P vs TM+P. COG and KOG analysis indicated that DEGs were mainly enriched in signal transduction mechanisms. We then focused on the pesticide detoxification pathway and screened out cytochrome P450 CYP736A12 as a putative gene for functional analysis. We suppressed the expression of CYP736A12 in tomato plants by virus-induced gene silencing and analyzed tissue-specific phoxim residues, oxidative stress markers, glutathione pool, GST activity and related gene expression. Silencing CYP736A12 significantly increased phoxim residue and induced oxidative stress in tomato plants, by attenuating the TM-induced increased activity of antioxidant and detoxification enzymes, redox homeostasis and transcripts of detoxification genes including CYP724B2, GSH1, GSH2, GR, GPX, GST1, GST2, GST3, and ABC. The study revealed a critical mechanism by which TM promotes the metabolism of phoxim in tomato roots, which can be useful for further understanding the Trichoderma-induced xenobiotic detoxification and improving food safety.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Compuestos Organotiofosforados , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Compuestos Organotiofosforados/toxicidad , Compuestos Organotiofosforados/metabolismo , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hypocreales/metabolismo , Hypocreales/genética
17.
Crit Rev Toxicol ; 54(4): 215-234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626048

RESUMEN

Consumers are confronted with conflicting information regarding the safety of specific foods. For example, the Environmental Working Group (EWG) publishes an annual consumer guide in which they rank the pesticide contamination of 46 popular fruits and vegetables, which includes designating the 12 with the greatest pesticide contamination as the "Dirty Dozen," to help consumers reduce exposures to toxic pesticides. However, consumer guides like EWG's only incorporate some hazard assessment principles and do not reflect a dietary risk assessment. Therefore, the purpose of this study is to apply risk assessment techniques to EWG's Dirty Dozen list using a uniform screening-level approach to estimate pesticide exposures for U.S. consumers and to characterize the associated chronic human health risks. The most commonly detected pesticide and its representative residue concentrations were identified for each produce type on the 2022 Dirty Dozen list using the USDA Pesticide Data Program database. Estimates of mean dietary consumption in the U.S. were used to calculate dietary exposure to each pesticide-produce combination for adults and children. Pesticide-specific U.S. EPA dietary health-based guidance values (HBGVs) were then used as benchmarks to evaluate the chronic human health risk of consuming each produce type. Overall, the estimated daily exposure for each pesticide-produce combination was below the corresponding HBGV for all exposure scenarios. The current analysis demonstrates that excessive produce-specific pesticide exposure is unexpected as the amount of produce that would need to be consumed on a chronic basis, even among children, far exceeds typical dietary intake. Future research is necessary to assess acute dietary exposure scenarios and to consider cumulative risk.


Asunto(s)
Exposición Dietética , Contaminación de Alimentos , Frutas , Residuos de Plaguicidas , Humanos , Medición de Riesgo , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/análisis , Contaminación de Alimentos/análisis , Verduras , Estados Unidos , Dieta
18.
Sci Rep ; 14(1): 9130, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644400

RESUMEN

Rice serves as a fundamental food staple for humans. Its production process, however, unavoidably exposes it to pesticides which may detrimentally impact its quality due to residues. Therefore, it is extremely necessary to monitor pesticide residues on rice during storage. In this research, the Quatformer model, which considers the effects of temperature and humidity on pesticide residues in rice grains, was utilized to forecast the amount of pesticide residues in rice grains during the storage process, and the predicted results were combined with actual observations to form a quality assessment index. By applying the K-Means algorithm, the quality of rice grains was graded and assessed. The findings indicated that the model had high prediction accuracy, and the MAE, MSE, MAPE, RMSE and SMAPE indexes were calculated to be 0.0112, 0.0814, 0.1057, 0.1055 and 0.0204, respectively. These findings provide valuable technical and theoretical support for planning storage conditions, enhancing pesticide residue decomposition, and monitoring rice quality during storage.


Asunto(s)
Almacenamiento de Alimentos , Oryza , Residuos de Plaguicidas , Oryza/química , Residuos de Plaguicidas/análisis , Almacenamiento de Alimentos/métodos , Contaminación de Alimentos/análisis , Temperatura , Algoritmos , Humedad
19.
J Chromatogr A ; 1723: 464906, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38643739

RESUMEN

Consumer concerns over healthy diets are increasing as a result of the toxicity and persistence of pesticide residues in foodstuffs. Developing sensitive and high-throughput monitoring techniques for these trace residues is seen as an essential step in ensuring food safety. An automatic and sensitive multi-residue analytical method was developed and validated for the simultaneous determination of 230 compounds, including pesticides and their hazardous metabolites, in fermented soy products. The method included preparing the sample using on-line extraction and clean-up system based on accelerated solvent extraction (ASE), then determining the analytes using GC-MS/MS techniques. The homogenized samples (soy sauce, douchi, and sufu) were automatically extracted at 80 °C and 10.3 MPa and at the same time, in situ cleaned by 300 mg of primary secondary amine (PSA) combined with 20 mg of hydroxylated multi-walled carbon nanotubes in an extraction cell. The method obtained excellent calibration linearity (r > 0.9220) and a satisfactory analysis of the targeted compounds, which were evaluated with matrix-matched calibration standards over the range of 5-500 µg L-1. The limit of detections (LODs) of analytes were in the range of 0.01-1.29 µg kg-1, 0.01-1.39 µg kg-1, and 0.01-1.34 µg kg-1 in soy sauce, douchi, and sufu, respectively. The limit of quantifications (LOQs), which defined as the lowest spiking level, were set at 5.0 µg kg-1. The recoveries were within 70-120 % for over 95 % of the analytes, and the relative standard deviations (RSDs) were below 13.6 %. Moreover, a positive detection rate of 47 % were obtained when the proposed method was used on 15 real fermented soy products. These results suggested that the developed high-throughput method is highly feasible for monitoring of these target analytes in trace level.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Residuos de Plaguicidas , Alimentos de Soja , Espectrometría de Masas en Tándem , Residuos de Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Alimentos de Soja/análisis , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Contaminación de Alimentos/análisis , Fermentación
20.
Environ Pollut ; 349: 123940, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599268

RESUMEN

A quantitative multiresidue study of current-use pesticides in multiple matrices was undertaken with field sampling at 32 headwater streams near Lac Saint-Pierre in Québec, Canada. A total of 232 samples were collected in five campaigns of stream waters and streambed sediments from streams varying in size and watershed land use. Novel multiresidue analytical methods from previous work were successfully applied for the extraction of pesticide residues from sediments via pressurized liquid extraction (PLE) and quantitative analysis using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with online sample preparation on a hydrophilic-lipophilic balance (HLB) column. Of the 31 target compounds, including 29 pesticides and two degradation products of atrazine, 29 compounds were detected at least once. Consistent with other studies, atrazine and metolachlor were the most widely-detected herbicides. Detections were generally higher in water than sediment samples and the influence of land use on pesticide concentrations was only detectable in water samples. Small streams with a high proportion of agricultural land use in their watershed were generally found to have the highest pesticide concentrations. Corn and soybean monoculture crops, specifically, were found to cause the greatest impact on pesticide concentration in headwater streams and correlated strongly with many of the most frequently detected pesticides. This study highlights the importance of performing multiresidue pesticide monitoring programs in headwater streams in order to capture the impacts of agricultural intensification on freshwater ecosystems.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Plaguicidas , Ríos , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Quebec , Plaguicidas/análisis , Residuos de Plaguicidas/análisis , Atrazina/análisis , Espectrometría de Masas en Tándem , Sedimentos Geológicos/química , Herbicidas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA