Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.367
Filtrar
1.
Sci Rep ; 14(1): 10544, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719860

RESUMEN

The increasing amount of weeds surviving herbicide represents a very serious problem for crop management. The interaction between microbial community of soil and herbicide resistance, along with the potential evolutive consequences, are still poorly known and need to be investigated to better understand the impact on agricultural management. In our study, we analyzed the microbial composition of soils in 32 farms, located in the Northern Italy rice-growing area (Lombardy) with the aim to evaluate the relationship between the microbial composition and the incidence of resistance to acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibiting herbicides in Echinochloa species. We observed that the coverage of weeds survived herbicide treatment was higher than 60% in paddy fields with a low microbial biodiversity and less than 5% in those with a high microbial biodiversity. Fungal communities showed a greater reduction in richness than Bacteria. In soils with a reduced microbial diversity, a significant increase of some bacterial and fungal orders (i.e. Lactobacillales, Malasseziales and Diaporthales) was observed. Interestingly, we identified two different microbial profiles linked to the two conditions: high incidence of herbicide resistance (H-HeR) and low incidence of herbicide resistance (L-HeR). Overall, the results we obtained allow us to make hypotheses on the greater or lesser probability of herbicide resistance occurrence based on the composition of the soil microbiome and especially on the degree of biodiversity of the microbial communities.


Asunto(s)
Acetolactato Sintasa , Acetil-CoA Carboxilasa , Echinochloa , Resistencia a los Herbicidas , Herbicidas , Microbiología del Suelo , Italia/epidemiología , Herbicidas/farmacología , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/genética , Echinochloa/efectos de los fármacos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Malezas/efectos de los fármacos , Microbiota/efectos de los fármacos , Biodiversidad , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Suelo/química , Hongos/efectos de los fármacos , Hongos/aislamiento & purificación , Hongos/genética
2.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717990

RESUMEN

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Echinochloa , Resistencia a los Herbicidas , Herbicidas , Mutación , Proteínas de Plantas , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Herbicidas/metabolismo , Echinochloa/genética , Echinochloa/efectos de los fármacos , Echinochloa/metabolismo , Echinochloa/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Malezas/efectos de los fármacos , Malezas/genética , Malezas/metabolismo , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Butanos , Nitrilos , Sulfonamidas , Uridina/análogos & derivados
3.
Sci Rep ; 14(1): 10215, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702403

RESUMEN

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas , Lens (Planta) , Polimorfismo de Nucleótido Simple , Lens (Planta)/genética , Lens (Planta)/efectos de los fármacos , Lens (Planta)/crecimiento & desarrollo , Herbicidas/farmacología , Herbicidas/toxicidad , Resistencia a los Herbicidas/genética , Estudio de Asociación del Genoma Completo , Genes de Plantas , Sitios de Carácter Cuantitativo
4.
Genome Biol ; 25(1): 139, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802856

RESUMEN

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Asunto(s)
Genómica , Malezas , Malezas/genética , Genómica/métodos , Control de Malezas/métodos , Genoma de Planta , Productos Agrícolas/genética , Resistencia a los Herbicidas/genética , Fitomejoramiento/métodos
5.
J Agric Food Chem ; 72(21): 12014-12028, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38748759

RESUMEN

Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.


Asunto(s)
Acetil-CoA Carboxilasa , Resistencia a los Herbicidas , Herbicidas , Proteínas de Plantas , Poaceae , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Herbicidas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Poaceae/genética , Poaceae/metabolismo , Poaceae/efectos de los fármacos , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Mutación , Malezas/efectos de los fármacos , Malezas/genética , Malezas/metabolismo
6.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752706

RESUMEN

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Asunto(s)
Acetil-CoA Carboxilasa , Inhibidores Enzimáticos , Resistencia a los Herbicidas , Herbicidas , Mutación , Oryza , Proteínas de Plantas , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/química , Oryza/genética , Oryza/enzimología , Herbicidas/farmacología , Herbicidas/química , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Malezas/efectos de los fármacos , Malezas/genética , Malezas/enzimología
7.
PLoS One ; 19(5): e0295489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776262

RESUMEN

Feralization of genetically engineered (GE) crops increases the risk that transgenes will become integrated into natural and naturalizing plant populations. A key assumption of the management of GE crops is that populations of escaped plants are short-lived and therefore the risks they pose are limited. However, few populations of escaped crop plants have been tracked over the long term so our understanding of their persistence in ruderal or natural landscapes is limited. We repeated a large-scale road survey of feral GE canola populations in North Dakota, USA, initially conducted in 2010. Our objectives in 2021 were to determine the current distribution of feral canola populations, and to establish the relative frequency of GE and non-GE phenotypes in populations of canola throughout North Dakota. Our results indicate that, although the incidence of feral canola was less in 2021 than 2010, escaped canola populations remain common throughout the state. The prevalence of alternate forms of GE herbicide resistance changed between surveys, and we found an overabundance of non-GE plants compared to the frequency of non-transgenic forms in cultivation. Indirect evidence of persistence includes sampling plants with multiple transgenic traits, and finding populations far from transportation routes. We conclude that feral canola populations expressing transgenic herbicide resistance are established outside of cultivation, that they may be under selection for loss of the transgene, but that they nonetheless pose long-term risks by harboring transgenes in the unmanaged landscape.


Asunto(s)
Productos Agrícolas , Plantas Modificadas Genéticamente , Transgenes , Plantas Modificadas Genéticamente/genética , Productos Agrícolas/genética , Brassica napus/genética , North Dakota , Resistencia a los Herbicidas/genética , Estados Unidos , Ingeniería Genética , Fenotipo
8.
Sci Rep ; 14(1): 8001, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580796

RESUMEN

Glyphosate, the most widely used herbicide, is linked with environmental harm and there is a drive to replace it in agricultural systems. We model the impacts of discontinuing glyphosate use and replacing it with cultural control methods. We simulate winter wheat arable systems reliant on glyphosate and typical in northwest Europe. Removing glyphosate was projected to increase weed abundance, herbicide risk to the environment, and arable plant diversity and decrease food production. Weed communities with evolved resistance to non-glyphosate herbicides were not projected to be disproportionately affected by removing glyphosate, despite the lack of alternative herbicidal control options. Crop rotations with more spring cereals or grass leys for weed control increased arable plant diversity. Stale seedbed techniques such as delayed drilling and choosing ploughing instead of minimum tillage had varying effects on weed abundance, food production, and profitability. Ploughing was the most effective alternative to glyphosate for long-term weed control while maintaining production and profit. Our findings emphasize the need for careful consideration of trade-offs arising in scenarios where glyphosate is removed. Integrated Weed Management (IWM) with more use of cultural control methods offers the potential to reduce chemical use but is sensitive to seasonal variability and can incur negative environmental and economic impacts.


Asunto(s)
Glifosato , Herbicidas , Productos Agrícolas/genética , Plantas Modificadas Genéticamente , Resistencia a los Herbicidas , Control de Malezas/métodos , Herbicidas/farmacología , Malezas
9.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598868

RESUMEN

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Poaceae , Compuestos de Sulfonilurea , Resistencia a los Herbicidas/genética , Compuestos de Sulfonilurea/farmacología , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Herbicidas/farmacología , Poaceae/genética , Poaceae/efectos de los fármacos , Poaceae/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Imidazoles/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación , Simulación del Acoplamiento Molecular , Benzoatos , Pirimidinas
10.
Mol Ecol ; 33(11): e17368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676602

RESUMEN

Weedy rice, a pervasive and troublesome weed found across the globe, has often evolved through fertilization of rice cultivars with little importance of crop-weed gene flow. In Argentina, weedy rice has been reported as an important constraint since the early 1970s, and, in the last few years, strains with herbicide-resistance are suspected to evolve. Despite their importance, the origin and genetic composition of Argentinian weedy rice as well its adaptation to agricultural environments has not been explored so far. To study this, we conducted genotyping-by-sequencing on samples of Argentinian weedy and cultivated rice and compared them with published data from weedy, cultivated and wild rice accessions distributed worldwide. In addition, we conducted a phenotypic characterization for weedy-related traits, a herbicide resistance screening and genotyped accessions for known mutations in the acetolactate synthase (ALS) gene, which confers herbicide resistance. Our results revealed large phenotypic variability in Argentinian weedy rice. Most strains were resistant to ALS-inhibiting herbicides with a high frequency of the ALS mutation (A122T) present in Argentinian rice cultivars. Argentinian cultivars belonged to the three major genetic groups of rice: japonica, indica and aus while weeds were mostly aus or aus-indica admixed, resembling weedy rice strains from the Southern Cone region. Phylogenetic analysis supports a single origin for aus-like South American weeds, likely as seed contaminants from the United States, and then admixture with local indica cultivars. Our findings demonstrate that crop to weed introgression can facilitate rapid adaptation to agriculture environments.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Oryza , Oryza/genética , Resistencia a los Herbicidas/genética , Argentina , Acetolactato Sintasa/genética , Malezas/genética , Fenotipo , Genotipo , Adaptación Fisiológica/genética , Productos Agrícolas/genética , Flujo Génico , Agricultura , Mutación
11.
Environ Res ; 252(Pt 1): 118839, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570131

RESUMEN

Weeds pose multifaceted challenges in rice cultivation, leading to substantial economic losses through reduced yield and poor grain quality. Harnessing the natural genetic diversity in germplasm collections becomes crucial for identifying novel herbicide resistance loci in crops. A comprehensive analysis was conducted on 475 rice accessions from the KRICE depository, assessing their response to TFT (tefuryltrione) and probing the underlying HIS1 (HPPD INHIBITOR SENSITIVE 1) genotypic variations. The HIS1 gene, responsible for detoxifying benzobicyclon (BBC) and imparting broad-spectrum herbicide resistance, holds significant promise in rice breeding. This study explores the genetic landscape of HIS1 within Korean rice collection (KRICE), aiming to unveil genetic variations, haplotype diversity, and evolutionary relationships across diverse rice ecotypes. The indica ecotype showed the highest nucleotide diversity, while the wild and temperate japonica groups exhibited low diversity, hinting at selective sweeps and possible population expansion. Negative Tajima's D values in temperate japonica and wild groups indicate an excess of low-frequency mutations, potentially resulting from selective sweeps. In contrast, with positive Tajima's D values, admixture, indica, and aus groups suggest balancing selection. Furthermore, haplotype analysis uncovered 42 distinct haplotypes within KRICE, with four shared haplotypes between cultivated and wild accessions, four specific to cultivated accessions, and 34 specific to wild types. Phenotypic assessments of these haplotypes revealed that three haplotypes, viz., Hap_1 (predominant in japonica), Hap_2 (predominant in indica), and Hap_3 (specific to indica), displayed significant differences from aus-specific Hap_4 and indica-specific Hap_5. This study offers insights into genetic diversity, selective pressures, and ecotype-specific responses, ultimately paving the way for developing HPPD-inhibiting herbicide-resistant rice cultivars.


Asunto(s)
Variación Genética , Haplotipos , Herbicidas , Oryza , Oryza/genética , Resistencia a los Herbicidas/genética , Evolución Molecular
12.
Plant Sci ; 345: 112104, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685454

RESUMEN

Weeds are the primary biotic constraint affecting sesame growth and production. Here, we applied EMS mutagenesis to an elite sesame cultivar and discovered a novel point mutation in the sesame SiALS gene conferring resistance to imidazolinone, a group of acetolactate-synthase (ALS)-inhibitors. The mutant line exhibited high resistance to imazamox, an ALS-inhibitor, with hybrid plants displaying an intermediate response. Field-based validation confirmed the mutant line's substantial resistance, leading to a significantly higher yield under imazamox treatment. Under pre-emergence application of imazapic, the mutant plants sustained growth, whereas wild-type and weed were effectively controlled. Field trials using s-metolachlor and imazapic combined resulted in weed-free plots compared to untreated controls. Consequently, this treatment showed a significantly greater yield (2280 vs. 880 Kg ha-1) than the commercial practice (s-metolachlor). Overall, our study unveils the potential of utilizing this point mutation in sesame breeding programs, offering new opportunities for integrated weed management strategies for sesame cultivation. Developing herbicide-resistant crop plants holds promise for supporting sustainable production and addressing the challenges of weed infestations in sesame farming.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas , Sesamum , Control de Malezas , Control de Malezas/métodos , Resistencia a los Herbicidas/genética , Sesamum/genética , Sesamum/crecimiento & desarrollo , Herbicidas/farmacología , Acetolactato Sintasa/genética , Malezas/genética , Malezas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo
13.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582590

RESUMEN

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Asunto(s)
4-Cloro-7-nitrobenzofurazano , Acetil-CoA Carboxilasa , Butanos , Herbicidas , Nitrilos , Oxazoles , Propionatos , Acetil-CoA Carboxilasa/metabolismo , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Herbicidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Mutación , Resistencia a los Herbicidas/genética
14.
Pestic Biochem Physiol ; 201: 105911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685231

RESUMEN

Ammannia auriculata Willd. is a noxious broadleaf weed, commonly infesting rice ecosystems across southern China. A putative resistant A. auriculata population (AHSC-5) was sampled from a rice field of Anhui Province, where bensulfuron-methyl (BM) was unable to control its occurrence. This study aimed to determine the sensitivities of the AHSC-5 population to common-use herbicides, and to investigate the underlying resistance mechanisms. The bioassays showed that the AHSC-5 population was 138.1-fold resistant to BM, compared with the susceptible population (JSGL-1). Pretreatment of malathion reduced the resistance index to 19.5. ALS sequencing revealed an Asp376Glu substitution in the AHSC-5 population, and in vitro ALS activity assays found that 50% activity inhibition (I50) of BM in AHSC-5 was 75.4 times higher than that of JSGL-1. Moreover, the AHSC-5 population displayed cross-resistance to pyrazosulfuron-ethyl (10.6-fold), bispyribac­sodium (3.6-fold), and imazethapyr (2.2-fold), and was in the process of evolving multiple resistance to synthetic auxin herbicides fluroxypyr (2.3-fold) and florpyrauxifen-benzyl (3.1-fold). This study proved the BM resistance in A. auriculata caused by the Asp376Glu mutation and P450-regulated metabolism. This multi-resistant population can still be controlled by penoxsulam, MCPA, bentazone, and carfentrazone-ethyl, which aids in developing targeted and effective weed management strategies.


Asunto(s)
Acetolactato Sintasa , Sistema Enzimático del Citocromo P-450 , Resistencia a los Herbicidas , Herbicidas , Acetolactato Sintasa/genética , Acetolactato Sintasa/antagonistas & inhibidores , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Malatión/farmacología , Compuestos de Sulfonilurea/farmacología , Malezas/efectos de los fármacos , Malezas/genética , Sustitución de Aminoácidos
15.
Pestic Biochem Physiol ; 201: 105882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685248

RESUMEN

White mustard, (Sinapis alba), a problematic broadleaf weed in many Mediterranean countries in arable fields has been detected as resistant to tribenuron-methyl in Tunisia. Greenhouse and laboratory studies were conducted to characterize Target-Site Resistance (TSR) and the Non-Target Site Resistance (NTSR) mechanisms in two suspected white mustard biotypes. Herbicide dose-response experiments confirmed that the two S. alba biotypes were resistant to four dissimilar acetolactate synthase (ALS)-pinhibiting herbicide chemistries indicating the presence of cross-resistance mechanisms. The highest resistance factor (>144) was attributed to tribenuron-methyl herbicide and both R populations survived up to 64-fold the recommended field dose (18.7 g ai ha-1). In this study, the metabolism experiments with malathion (a cytochrome P450 inhibitor) showed that malathion reduced resistance to tribenuron-methyl and imazamox in both populations, indicating that P450 may be involved in the resistance. Sequence analysis of the ALS gene detected target site mutations in the two R biotypes, with amino acid substitutions Trp574Leu, the first report for the species, and Pro197Ser. Molecular docking analysis showed that ALSPro197Ser enzyme cannot properly bind to tribenuron-methyl's aromatic ring due to a reduction in the number of hydrogen bonds, while imazamox can still bind. However, Trp574Leu can weaken the binding affinity between the mutated ALS enzyme and both herbicides with the loss of crucial interactions. This investigation provides substantial evidence for the risk of evolving multiple resistance in S. alba to auxin herbicides while deciphering the TSR and NTSR mechanisms conferring cross resistance to ALS inhibitors.


Asunto(s)
Acetolactato Sintasa , Resistencia a los Herbicidas , Herbicidas , Malatión , Mutación , Sinapis , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo , Acetolactato Sintasa/antagonistas & inhibidores , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Sinapis/efectos de los fármacos , Sinapis/genética , Malatión/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arilsulfonatos/farmacología , Simulación del Acoplamiento Molecular , Imidazoles/farmacología
16.
Plant Physiol Biochem ; 208: 108506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461753

RESUMEN

Acetolactate synthase inhibitors (ALS inhibitors) and glyphosate are two classes of herbicides that act by inhibiting an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. Besides amino acid synthesis inhibition, both herbicides trigger similar physiological effects in plants. The main aim of this study was to evaluate the role of glutathione metabolism, with special emphasis on glutathione S-transferases (GSTs), in the mode of action of glyphosate and ALS inhibitors in Amaranthus palmeri. For that purpose, plants belonging to a glyphosate-sensitive (GLS) and a glyphosate-resistant (GLR) population were treated with different doses of glyphosate, and plants belonging to an ALS-inhibitor sensitive (AIS) and an ALS-inhibitor resistant (AIR) population were treated with different doses of the ALS inhibitor nicosulfuron. Glutathione-related contents, GST activity, and related gene expressions (glutamate-cysteine ligase, glutathione reductase, Phi GST and Tau GST) were analysed in leaves. According to the results of the analytical determinations, there were virtually no basal differences between GLS and GLR plants or between AIS and AIR plants. Glutathione synthesis and turnover did not follow a clear pattern in response to herbicides, but GST activity and gene expression (especially Phi GSTs) increased with both herbicides in treated sensitive plants, possibly related to the rocketing H2O2 accumulation. As GSTs offered the clearest results, these were further investigated with a multiple resistant (MR) population, compressing target-site resistance to both glyphosate and the ALS inhibitor pyrithiobac. As in single-resistant plants, measured parameters in the MR population were unaffected by herbicides, meaning that the increase in GST activity and expression occurs due to herbicide interactions with the target enzymes.


Asunto(s)
Amaranthus , Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Peróxido de Hidrógeno/metabolismo , Resistencia a los Herbicidas , Glifosato , Glutatión/metabolismo , Transferasas/metabolismo
17.
Sci Rep ; 14(1): 6201, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485959

RESUMEN

Globally, pesticides improve crop yields but at great environmental cost, and their overuse has caused resistance. This incurs large financial and production losses but, despite this, very diversified farm management that might delay or prevent resistance is uncommon in intensive farming. We asked farmers to design more diversified cropping strategies aimed at controlling herbicide resistance, and estimated resulting weed densities, profits, and yields compared to prevailing practice. Where resistance is low, it is financially viable to diversify pre-emptively; however, once resistance is high, there are financial and production disincentives to adopting diverse rotations. It is therefore as important to manage resistance before it becomes widespread as it is to control it once present. The diverse rotations targeting high resistance used increased herbicide application frequency and volume, contributing to these rotations' lack of financial viability, and raising concerns about glyphosate resistance. Governments should encourage adoption of diverse rotations in areas without resistance. Where resistance is present, governments may wish to incentivise crop diversification despite the drop in wheat production as it is likely to bring environmental co-benefits. Our research suggests we need long-term, proactive, food security planning and more integrated policy-making across farming, environment, and health arenas.


Asunto(s)
Herbicidas , Control de Malezas , Control de Malezas/métodos , Resistencia a los Herbicidas , Productos Agrícolas , Herbicidas/farmacología , Glifosato , Agricultura/métodos , Malezas
18.
Evolution ; 78(6): 1121-1132, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38518120

RESUMEN

Understanding the evolutionary forces that maintain phenotypic variation in ecologically relevant traits has long been one of the central goals of evolutionary ecology. While the maintenance of variation in plant defense is most often hypothesized to be due to trait trade-offs or spatiotemporal variation in herbivore abundance, the role that heterogeneous selective agents may play on the maintenance of variation in plant defense is less examined. Trichomes are hair-like appendages on plant surfaces that can defend against multiple damaging agents such as pathogens, herbivores, and UV radiation. It is currently unknown however if conflicting selection from such heterogeneous agents of damage may act to maintain the variation observed in trichome traits. Here, we assess whether trichomes serve as an herbicide resistance trait and how it coincides with the conventionally studied defensive strategy of herbivory resistance. In a series of experiments, we exposed the annual invasive velvetleaf (Abutilon theophrasti) to glyphosate (active ingredient in "Roundup") to investigate whether trichome traits (type and density) are linked to herbicide resistance and to test whether herbicide influences selection on plant trichomes. We found that an increased proportion of branched trichomes positively impacted herbicide resistance and chewing herbivory resistance. We also found evidence that glyphosate imposes positive selection on branched trichomes in velvetleaf. Overall, our results indicate that branched trichomes can contribute to both herbicide and herbivory resistance, serving a concordant rather than conflicting role to reduce plant injury. Our findings further suggest that novel anthropogenic agents of selection can alter the composition of plant defense traits, potentially impacting trait-mediated interactions among external stressors.


Asunto(s)
Glicina , Resistencia a los Herbicidas , Herbivoria , Tricomas , Animales , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Glifosato , Defensa de la Planta contra la Herbivoria
19.
Pest Manag Sci ; 80(7): 3675-3683, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38459963

RESUMEN

BACKGROUND: Resistance to dicamba in Chenopodium album was first documented over a decade ago, however, the molecular basis of dicamba resistance in this species has not been elucidated. In this research, the resistance mechanism in a dicamba-resistant C. album phenotype was investigated using a transcriptomics (RNA-sequence) approach. RESULTS: The dose-response assay showed that the resistant (R) phenotype was nearly 25-fold more resistant to dicamba than a susceptible (S) phenotype of C. album. Also, dicamba treatment significantly induced transcription of the known auxin-responsive genes, Gretchen Hagen 3 (GH3), small auxin-up RNAs (SAURs), and 1-aminocyclopropane-1-carboxylate synthase (ACS) genes in the susceptible phenotype. Comparing the transcripts of auxin TIR/AFB receptors and auxin/indole-3-acetic acid (AUX/IAA) proteins identified from C. album transcriptomic analysis revealed that the R phenotype contained a novel mutation at the first codon of the GWPPV degron motif of IAA16, resulting in an amino acid substitution of glycine (G) with aspartic acid (D). Sequencing the IAA16 gene in other R and S individuals further confirmed that all the R individuals contained the mutation. CONCLUSION: In this research, we describe the dicamba resistance mechanism in the only case of dicamba-resistant C. album reported to date. Prior work has shown that the dicamba resistance allele confers significant growth defects to the R phenotype investigated here, suggesting that dicamba-resistant C. album carrying this novel mutation in the IAA16 gene may not persist at high frequencies upon removal of dicamba application. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Chenopodium album , Dicamba , Resistencia a los Herbicidas , Mutación , Proteínas de Plantas , Chenopodium album/genética , Chenopodium album/efectos de los fármacos , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dicamba/farmacología , Herbicidas/farmacología , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo
20.
J Agric Food Chem ; 72(11): 5595-5608, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446412

RESUMEN

Metabolic resistance to the maize-selective, HPPD-inhibiting herbicide, mesotrione, occurs via Phase I ring hydroxylation in resistant waterhemp and Palmer amaranth; however, mesotrione detoxification pathways post-Phase I are unknown. This research aims to (1) evaluate Palmer amaranth populations for mesotrione resistance via survivorship, foliar injury, and aboveground biomass, (2) determine mesotrione metabolism rates in Palmer amaranth populations during a time course, and (3) identify mesotrione metabolites including and beyond Phase I oxidation. The Palmer amaranth populations, SYNR1 and SYNR2, exhibited higher survival rates (100%), aboveground biomass (c.a. 50%), and lower injury (25-30%) following mesotrione treatment than other populations studied. These two populations also metabolized mesotrione 2-fold faster than sensitive populations, PPI1 and PPI2, and rapidly formed 4-OH-mesotrione. Additionally, SYNR1 and SYNR2 formed 5-OH-mesotrione, which is not produced in high abundance in waterhemp or naturally tolerant maize. Metabolite features derived from 4/5-OH-mesotrione and potential Phase II mesotrione-conjugates were detected and characterized by liquid chromatography-mass spectrometry (LCMS).


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Amaranthus , Ciclohexanonas , Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Amaranthus/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Resistencia a los Herbicidas , Colorante de Amaranto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA