Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71.113
Filtrar
1.
Sci Rep ; 14(1): 10781, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734781

RESUMEN

Magnetic resonance (MR) acquisitions of the torso are frequently affected by respiratory motion with detrimental effects on signal quality. The motion of organs inside the body is typically decoupled from surface motion and is best captured using rapid MR imaging (MRI). We propose a pipeline for prospective motion correction of the target organ using MR image navigators providing absolute motion estimates in millimeters. Our method is designed to feature multi-nuclear interleaving for non-proton MR acquisitions and to tolerate local transmit coils with inhomogeneous field and sensitivity distributions. OpenCV object tracking was introduced for rapid estimation of in-plane displacements in 2D MR images. A full three-dimensional translation vector was derived by combining displacements from slices of multiple and arbitrary orientations. The pipeline was implemented on 3 T and 7 T MR scanners and tested in phantoms and volunteers. Fast motion handling was achieved with low-resolution 2D MR image navigators and direct implementation of OpenCV into the MR scanner's reconstruction pipeline. Motion-phantom measurements demonstrate high tracking precision and accuracy with minor processing latency. The feasibility of the pipeline for reliable in-vivo motion extraction was shown on heart and kidney data. Organ motion was manually assessed by independent operators to quantify tracking performance. Object tracking performed convincingly on 7774 navigator images from phantom scans and different organs in volunteers. In particular the kernelized correlation filter (KCF) achieved similar accuracy (74%) as scored from inter-operator comparison (82%) while processing at a rate of over 100 frames per second. We conclude that fast 2D MR navigator images and computer vision object tracking can be used for accurate and rapid prospective motion correction. This and the modular structure of the pipeline allows for the proposed method to be used in imaging of moving organs and in challenging applications like cardiac magnetic resonance spectroscopy (MRS) or magnetic resonance imaging (MRI) guided radiotherapy.


Asunto(s)
Fantasmas de Imagen , Humanos , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Respiración , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física) , Movimiento , Algoritmos
2.
Saudi Med J ; 45(5): 525-530, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38734441

RESUMEN

OBJECTIVES: To compare vascular scanning parameters (vessel diameter, peak systolic velocity, end-diastolic velocity, and resistive index) and scanning time before and after breathing control training program for selected abdominal vessels. METHODS: This study was pre and post quasi-experimental. The researchers designed a breathing training program that gives participants instructions through a video describing breathing maneuvers. Data were collected at the ultrasound laboratory/College of Health and Rehabilitation Sciences in Princess Nourah bint Abdul Rahman University, Riyadh, Saudi Arabia from January 2023 to November 2023. About 49 volunteers at the university participated in the study. Scanning was performed two times for the right renal artery, upper abdominal aorta, inferior vena cava, and superior mesenteric artery. Scanning time was measured before and after the program as well. A paired sample t-test was used to compare the parameters means and time before and after the program. RESULTS: The program had a significant effect on the following parameters: right renal artery peak systolic velocity (p=0.042), upper abdominal aortic peak systolic velocity, and resistive index (p=0.014, p=0.014 respectively), superior mesenteric artery and inferior vena cava diameters (p=0.010 and p=0.020). The scanning time was reduced significantly (p<0.001). CONCLUSION: The breathing training program saves time and improves ultrasound measurement quality. Hospitals and health centers should consider the importance of breathing control training programs before abdominal scanning.


Asunto(s)
Aorta Abdominal , Arteria Renal , Ultrasonografía , Vena Cava Inferior , Humanos , Masculino , Ultrasonografía/métodos , Femenino , Adulto , Aorta Abdominal/diagnóstico por imagen , Vena Cava Inferior/diagnóstico por imagen , Arteria Renal/diagnóstico por imagen , Abdomen/diagnóstico por imagen , Abdomen/irrigación sanguínea , Arteria Mesentérica Superior/diagnóstico por imagen , Adulto Joven , Ejercicios Respiratorios/métodos , Velocidad del Flujo Sanguíneo , Arabia Saudita , Respiración
3.
PLoS One ; 19(5): e0302758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748652

RESUMEN

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.


Asunto(s)
Buceo , Consumo de Oxígeno , Frecuencia Respiratoria , Orca , Animales , Orca/fisiología , Orca/metabolismo , Masculino , Frecuencia Respiratoria/fisiología , Femenino , Consumo de Oxígeno/fisiología , Buceo/fisiología , Metabolismo Energético/fisiología , Respiración , Conducta Alimentaria/fisiología
4.
Proc Natl Acad Sci U S A ; 121(19): e2318757121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38691591

RESUMEN

How breathing is generated by the preBötzinger complex (preBötC) remains divided between two ideological frameworks, and a persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "preinspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we find that small changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and preinspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or preinspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.


Asunto(s)
Potenciales de Acción , Animales , Potenciales de Acción/fisiología , Modelos Neurológicos , Neuronas/fisiología , Respiración , Red Nerviosa/fisiología , Centro Respiratorio/fisiología , Simulación por Computador , Sodio/metabolismo
5.
Biomed Eng Online ; 23(1): 45, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705982

RESUMEN

BACKGROUND: Sleep-disordered breathing (SDB) affects a significant portion of the population. As such, there is a need for accessible and affordable assessment methods for diagnosis but also case-finding and long-term follow-up. Research has focused on exploiting cardiac and respiratory signals to extract proxy measures for sleep combined with SDB event detection. We introduce a novel multi-task model combining cardiac activity and respiratory effort to perform sleep-wake classification and SDB event detection in order to automatically estimate the apnea-hypopnea index (AHI) as severity indicator. METHODS: The proposed multi-task model utilized both convolutional and recurrent neural networks and was formed by a shared part for common feature extraction, a task-specific part for sleep-wake classification, and a task-specific part for SDB event detection. The model was trained with RR intervals derived from electrocardiogram and respiratory effort signals. To assess performance, overnight polysomnography (PSG) recordings from 198 patients with varying degree of SDB were included, with manually annotated sleep stages and SDB events. RESULTS: We achieved a Cohen's kappa of 0.70 in the sleep-wake classification task, corresponding to a Spearman's correlation coefficient (R) of 0.830 between the estimated total sleep time (TST) and the TST obtained from PSG-based sleep scoring. Combining the sleep-wake classification and SDB detection results of the multi-task model, we obtained an R of 0.891 between the estimated and the reference AHI. For severity classification of SBD groups based on AHI, a Cohen's kappa of 0.58 was achieved. The multi-task model performed better than a single-task model proposed in a previous study for AHI estimation, in particular for patients with a lower sleep efficiency (R of 0.861 with the multi-task model and R of 0.746 with single-task model with subjects having sleep efficiency < 60%). CONCLUSION: Assisted with automatic sleep-wake classification, our multi-task model demonstrated proficiency in estimating AHI and assessing SDB severity based on AHI in a fully automatic manner using RR intervals and respiratory effort. This shows the potential for improving SDB screening with unobtrusive sensors also for subjects with low sleep efficiency without adding additional sensors for sleep-wake detection.


Asunto(s)
Respiración , Procesamiento de Señales Asistido por Computador , Síndromes de la Apnea del Sueño , Síndromes de la Apnea del Sueño/fisiopatología , Síndromes de la Apnea del Sueño/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Polisomnografía , Femenino , Aprendizaje Automático , Adulto , Redes Neurales de la Computación , Electrocardiografía , Anciano , Vigilia/fisiología , Sueño
6.
PLoS One ; 19(5): e0276568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713736

RESUMEN

BACKGROUND: Choral activities are correlated with various health and wellbeing parameters. However, an intervention combining a music program using wind instruments and choral activities has not yet been investigated. Thus, this study aimed to assess the effects of a 12-week intervention combining a wind instrument performance program and a choral program on stress factors, quality of life, and respiratory function in adolescents located in a metropolitan city with exposure to air pollution. METHOD: This randomized controlled trial consisted of 50 adolescents, and the subjects were randomly assigned to a combination wind instrument and choral training group, a choral training group, and a control group. Following a 12-week intervention program, respiratory function, stress factors, and quality of life were compared between the three groups. RESULTS: Regarding respiratory function, with the exception of maximal inspiratory pressure, all measured variables exhibited an interaction to indicate a variation in the pattern of change(p<0.05). Furthermore, regarding stress factors and quality of life, all measured variables exhibited an interaction to indicate a variation in the pattern of change(p<0.05). As a result of the post-hoc analysis, significant differences were found in all variables in experimental group 1 compared to other groups (p<0.05). CONCLUSION: The results showed that the 12-week intervention combining a wind instrument performance program and a choral program had positive effects in improving the respiratory function, stress factors, and quality of life in adolescents. This study findings are expected to support future studies aimed at promoting overall health including respiratory function and psychological factors through various music-based programs.


Asunto(s)
Ejercicios Respiratorios , Calidad de Vida , Estrés Psicológico , Humanos , Adolescente , Masculino , Femenino , Ejercicios Respiratorios/métodos , Música , Respiración , Pruebas de Función Respiratoria , Musicoterapia/métodos
7.
Chaos ; 34(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717411

RESUMEN

We tested the validity of the state space correspondence (SSC) strategy based on k-nearest neighbor cross-predictability (KNNCP) to assess the directionality of coupling in stochastic nonlinear bivariate autoregressive (NBAR) processes. The approach was applied to assess closed-loop cardiorespiratory interactions between heart period (HP) variability and respiration (R) during a controlled respiration (CR) protocol in 19 healthy humans (aged from 27 to 35 yrs, 11 females) and during active standing (STAND) in 25 athletes (aged from 20 to 40 yrs, all men) and 25 non-athletes (aged from 20 to 40 yrs, all men). Over simulated NBAR processes, we found that (i) the SSC approach can detect the correct causal relationship as the direction leads to better KNNCP from the past of the driver to the future state of the target and (ii) simulations suggest that the ability of the method is preserved in any condition of complexity of the interacting series. Over CR and STAND protocols, we found that (a) slowing the breathing rate increases the strength of the causal relationship in both temporal directions in a balanced modality; (b) STAND is more powerful in modulating the coupling strength on the pathway from HP to R; (c) regardless of protocol and experimental condition, the strength of the link from HP to R is stronger than that from R to HP; (d) significant causal relationships in both temporal directions are found regardless of the level of complexity of HP variability and R. The SSC strategy is useful to disentangle closed-loop cardiorespiratory interactions.


Asunto(s)
Frecuencia Cardíaca , Procesos Estocásticos , Humanos , Adulto , Masculino , Femenino , Frecuencia Cardíaca/fisiología , Respiración , Adulto Joven , Dinámicas no Lineales , Algoritmos
8.
Codas ; 36(3): e20220330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695436

RESUMEN

PURPOSE: The Awake Breathing Pattern Assessment (ABPA) is a prototypical clinical grid recently designed through an international consensus of Speech and Language Pathologists (SLPs) to categorize the awake and habitual breathing pattern during the orofacial myofunctional assessment. This cross-sectional study aims to explore the psychometric properties of the ABPA in a preschool population. METHODS: 133 children from 2;11 to 6 years old were assessed with the ABPA. The percentage of time spent breathing through the mouth was objectively measured by a CO2 sensor and used as a baseline measurement. We first performed a multivariate Latent Profile Analysis based on the CO2 measurement and a parental questionnaire to define the number of categories that best characterize the breathing pattern. Subsequently, we assessed the intra- and inter-rater reliability, internal consistency criterion validity, construct validity and sensitivity and specificity. RESULTS: The awake breathing pattern can best be described by two groups: nasal and mouth breathing. The ABPA, initially designed in three groups, was adjusted accordingly. This final version showed excellent intra-rater and inter-rater reliability. There was a significant correlation between the ABPA and the CO2 measurement. The ABPA showed a fair sensitivity and a good specificity. CONCLUSION: The reference tool based on CO2 data was used in children for the first time and was found to be reliable. The ABPA is a suitable tool for SLPs to confirm the diagnosis of mouth breathing in preschool children if more sensitive screening tools, like parental questionnaires, are used beforehand.


Asunto(s)
Respiración por la Boca , Humanos , Respiración por la Boca/diagnóstico , Respiración por la Boca/fisiopatología , Preescolar , Estudios Transversales , Reproducibilidad de los Resultados , Femenino , Masculino , Niño , Psicometría , Sensibilidad y Especificidad , Encuestas y Cuestionarios , Vigilia/fisiología , Respiración , Dióxido de Carbono/análisis
9.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38572945

RESUMEN

Interactions between the cardiac and respiratory systems play a pivotal role in physiological functioning. Nonetheless, the intricacies of cardio-respiratory couplings, such as cardio-respiratory phase synchronization (CRPS) and cardio-respiratory coordination (CRC), remain elusive, and an automated algorithm for CRC detection is lacking. This paper introduces an automated CRC detection algorithm, which allowed us to conduct a comprehensive comparison of CRPS and CRC during sleep for the first time using an extensive database. We found that CRPS is more sensitive to sleep-stage transitions, and intriguingly, there is a negative correlation between the degree of CRPS and CRC when fluctuations in breathing frequency are high. This comparative analysis holds promise in assisting researchers in gaining deeper insights into the mechanics of and distinctions between these two physiological phenomena. Additionally, the automated algorithms we devised have the potential to offer valuable insights into the clinical applications of CRC and CRPS.


Asunto(s)
Corazón , Fases del Sueño , Frecuencia Cardíaca/fisiología , Fases del Sueño/fisiología , Sueño/fisiología , Respiración
11.
Undersea Hyperb Med ; 51(1): 93-95, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38615358

RESUMEN

An arterial gas embolism (AGE) is a potentially fatal complication of scuba diving that is related to insufficient exhalation during ascent. During breath-hold diving, an arterial gas embolism is unlikely because the volume of gas in the lungs generally cannot exceed the volume at the beginning of the dive. However, if a diver breathes from a gas source at any time during the dive, they are at risk for an AGE or other pulmonary overinflation syndromes (POIS). In this case report, a breath-hold diver suffered a suspected AGE due to rapidly ascending without exhalation following breathing from an air pocket at approximately 40 feet.


Asunto(s)
Buceo , Embolia Aérea , Humanos , Embolia Aérea/etiología , Contencion de la Respiración , Respiración , Buceo/efectos adversos , Espiración
13.
Biomed Phys Eng Express ; 10(3)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38599190

RESUMEN

Background. Thoracoabdominal MRI is limited by respiratory motion, especially in populations who cannot perform breath-holds. One approach for reducing motion blurring in radially-acquired MRI is respiratory gating. Straightforward 'hard-gating' uses only data from a specified respiratory window and suffers from reduced SNR. Proposed 'soft-gating' reconstructions may improve scan efficiency but reduce motion correction by incorporating data with nonzero weight acquired outside the specified window. However, previous studies report conflicting benefits, and importantly the choice of soft-gated weighting algorithm and effect on image quality has not previously been explored. The purpose of this study is to map how variable soft-gated weighting functions and parameters affect signal and motion blurring in respiratory-gated reconstructions of radial lung MRI, using neonates as a model population.Methods. Ten neonatal inpatients with respiratory abnormalities were imaged using a 1.5 T neonatal-sized scanner and 3D radial ultrashort echo-time (UTE) sequence. Images were reconstructed using ungated, hard-gated, and several soft-gating weighting algorithms (exponential, sigmoid, inverse, and linear weighting decay outside the period of interest), with %Nprojrepresenting the relative amount of data included. The apparent SNR (aSNR) and motion blurring (measured by the maximum derivative of image intensity at the diaphragm, MDD) were compared between reconstructions.Results. Soft-gating functions produced higher aSNR and lower MDD than hard-gated images using equivalent %Nproj, as expected. aSNR was not identical between different gating schemes for given %Nproj. While aSNR was approximately linear with %Nprojfor each algorithm, MDD performance diverged between functions as %Nprojdecreased. Algorithm performance was relatively consistent between subjects, except in images with high noise.Conclusion. The algorithm selection for soft-gating has a notable effect on image quality of respiratory-gated MRI; the timing of included data across the respiratory phase, and not simply the amount of data, plays an important role in aSNR. The specific soft-gating function and parameters should be considered for a given imaging application's requirements of signal and sharpness.


Asunto(s)
Imagenología Tridimensional , Pulmón , Recién Nacido , Humanos , Imagenología Tridimensional/métodos , Respiración , Imagen por Resonancia Magnética/métodos , Algoritmos
14.
Wiad Lek ; 77(2): 208-213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38592980

RESUMEN

OBJECTIVE: Aim: To determine the dynamics of renewal of the function of external respiration in patients after laparoscopic cholecystectomy at the acute stage of rehabilitation under the influence of a rehabilitation program. PATIENTS AND METHODS: Materials and Methods: The study is randomized, simple with blinded assessors. The forced vital capacity (FVC, l), forced expiratory volume in the first second (FEV1, l) and peak expiratory flow rate (PEFR, l/s) were assessed. Spirometry was performed 120 patients on the first day of admission of patients to the surgical department for surgical intervention, on the second day and on the day of discharge. Methods of mathematical statistics: arithmetic mean (M) and standard error of the mean (}m), Student's t-test were calculated, differences at p<0,05 were considered statistically significant. RESULTS: Results: It has been established that laparoscopic cholecystectomy leads to a statistically significant decrease in the parameters of respiratory function in all age categories. More pronounced positive dynamics of respiratory function in the group of respiratory therapy. It was established that without respiratory therapy on the day of discharge there was no restoration (р<0.05) in groups of elderly patients of group of FVC l, FEV1 l, PEFR l/s; in middle-aged patients did no restoration FEV1, l, PEFR, l/s; in younger patients there was no recovery of FEV1, l. CONCLUSION: Conclusions: The results of the study indicate the effectiveness of the introduction of diaphragmatic breathing exercises in combination with early mobilization at the acute and subacute stages of rehabilitation in patients after laparoscopic cholecystectomy in order to restore the function of the respiratory system.


Asunto(s)
Colecistectomía Laparoscópica , Anciano , Humanos , Persona de Mediana Edad , Colecistectomía Laparoscópica/métodos , Volumen Espiratorio Forzado , Respiración , Pruebas de Función Respiratoria , Espirometría
15.
J Biomech Eng ; 146(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557592

RESUMEN

Development of respiratory tissue constructs is challenging due to the complex structure of native respiratory tissue and the unique biomechanical conditions induced by breathing. While studies have shown that the inclusion of biomechanical stimulus mimicking physiological conditions greatly benefits the development of engineered tissues, to our knowledge no studies investigating the influence of biomechanical stimulus on the development of respiratory tissue models produced through three-dimensional (3D) bioprinting have been reported. This paper presents a study on the utilization of a novel breath-mimicking ventilated incubator to impart biomechanical stimulus during the culture of 3D respiratory bioprinted constructs. Constructs were bioprinted using an alginate/collagen hydrogel containing human primary pulmonary fibroblasts with further seeding of human primary bronchial epithelial cells. Biomechanical stimulus was then applied via a novel ventilated incubator capable of mimicking the pressure and airflow conditions of multiple breathing conditions: standard incubation, shallow breathing, normal breathing, and heavy breathing, over a two-week time period. At time points between 1 and 14 days, constructs were characterized in terms of mechanical properties, cell proliferation, and morphology. The results illustrated that incubation conditions mimicking normal and heavy breathing led to greater and more continuous cell proliferation and further indicated a more physiologically relevant respiratory tissue model.


Asunto(s)
Bioimpresión , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Hidrogeles/química , Respiración , Impresión Tridimensional , Bioimpresión/métodos
16.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38610281

RESUMEN

In this study, we propose a low-cost piezoelectric flexible pressure sensor fabricated on Kapton® (Kapton™ Dupont) substrate by using aluminum nitride (AlN) thin film, designed for the monitoring of the respiration rate for a fast detection of respiratory anomalies. The device was characterized in the range of 15-30 breaths per minute (bpm), to simulate moderate difficult breathing, borderline normal breathing, and normal spontaneous breathing. These three breathing typologies were artificially reproduced by setting the expiratory to inspiratory ratios (E:I) at 1:1, 2:1, 3:1. The prototype was able to accurately recognize the breath states with a low response time (~35 ms), excellent linearity (R2 = 0.997) and low hysteresis. The piezoelectric device was also characterized by placing it in an activated carbon filter mask to evaluate the pressure generated by exhaled air through breathing acts. The results indicate suitability also for the monitoring of very weak breath, exhibiting good linearity, accuracy, and reproducibility, in very low breath pressures, ranging from 0.09 to 0.16 kPa. These preliminary results are very promising for the future development of smart wearable devices able to monitor different patients breathing patterns, also related to breathing diseases, providing a suitable real-time diagnosis in a non-invasive and fast way.


Asunto(s)
Respiración , Frecuencia Respiratoria , Humanos , Reproducibilidad de los Resultados , Compuestos de Aluminio
17.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38610446

RESUMEN

Respiratory problems are common amongst older people. The rapid increase in the ageing population has led to a need for developing technologies that can monitor such conditions unobtrusively. This paper presents a novel study that investigates Wi-Fi and ultra-wideband (UWB) antenna sensors to simultaneously monitor two different breathing parameters: respiratory rate, and exhaled breath. Experiments were carried out with two subjects undergoing three breathing cases in breaths per minute (BPM): (1) slow breathing (12 BPM), (2) moderate breathing (20 BPM), and (3) fast breathing (28 BPM). Respiratory rates were captured by Wi-Fi sensors, and the data were processed to extract the respiration rates and compared with a metronome that controlled the subjects' breathing. On the other hand, exhaled breath data were captured by a UWB antenna using a vector network analyser (VNA). Corresponding reflection coefficient data (S11) were obtained from the subjects at the time of exhalation and compared with S11 in free space. The exhaled breath data from the UWB antenna were compared with relative humidity, which was measured with a digital psychrometer during the breathing exercises to determine whether a correlation existed between the exhaled breath's water vapour content and recorded S11 data. Finally, captured respiratory rate and exhaled breath data from the antenna sensors were compared to determine whether a correlation existed between the two parameters. The results showed that the antenna sensors were capable of capturing both parameters simultaneously. However, it was found that the two parameters were uncorrelated and independent of one another.


Asunto(s)
Líquidos Corporales , Respiración , Humanos , Anciano , Espiración , Frecuencia Respiratoria , Envejecimiento
18.
Int J Yoga Therap ; 34(2024)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640400

RESUMEN

A previous study discovered that two speakers with moderate apraxia of speech increased their sequential motion rates after unilateral forced-nostril breathing (UFNB) practiced as an adjunct to speech-language therapy in an AB repeated-measures design. The current study sought to: (1) delineate possible UFNB plus practice effects from practice effects alone in motor speech skills; (2) examine the relationships between UFNB integrity, participant-reported stress levels, and motor speech performance; and (3) sample a participant-led UFNB training schedule to contribute to the literature's growing understanding of UFNB dosage. A single-subject (n-of-1 trial), ABAB reversal design was used across four motor speech behaviors. A 60-year-old female with chronic, severe apraxia of speech participated. The researchers developed a breathing app to assess UFNB practice integrity and administer the Simple Aphasia Stress Scale after each UFNB session. The participant improved from overall severe to moderate apraxia of speech on the Apraxia Battery for Adults. Visual inspection of graphs confirmed robust motor speech practice effects for all variables. Articulatory-kinematic variables demonstrated sensitivity to the UFNB-plus-practice condition and correlated to stress scale scores but not UFNB integrity scores. The participant achieved 20-minute UFNB sessions 4 times per week. Removal of UFNB during A2 (UFNB withdrawal) and after a 10-day break during B2 (UFNB full dosage) revealed UFNB practice effects on stress scale scores. UFNB with motor speech practice may benefit articulatory-kinematic skills compared to motor speech practice alone. Regular, cumulative UFNB practice appeared to lower self-perceived stress levels. These findings, along with prior work, provide a foundation to further explore yoga breathing and its use with speakers who have apraxia of speech.


Asunto(s)
Afasia , Apraxias , Yoga , Adulto , Femenino , Humanos , Persona de Mediana Edad , Habla , Apraxias/terapia , Respiración , Afasia/terapia
19.
Comput Methods Programs Biomed ; 250: 108158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604010

RESUMEN

BACKGROUND AND OBJECTIVE: In radiotherapy treatment planning, respiration-induced motion introduces uncertainty that, if not appropriately considered, could result in dose delivery problems. 4D cone-beam computed tomography (4D-CBCT) has been developed to provide imaging guidance by reconstructing a pseudo-motion sequence of CBCT volumes through binning projection data into breathing phases. However, it suffers from artefacts and erroneously characterizes the averaged breathing motion. Furthermore, conventional 4D-CBCT can only be generated post-hoc using the full sequence of kV projections after the treatment is complete, limiting its utility. Hence, our purpose is to develop a deep-learning motion model for estimating 3D+t CT images from treatment kV projection series. METHODS: We propose an end-to-end learning-based 3D motion modelling and 4DCT reconstruction model named 4D-Precise, abbreviated from Probabilistic reconstruction of image sequences from CBCT kV projections. The model estimates voxel-wise motion fields and simultaneously reconstructs a 3DCT volume at any arbitrary time point of the input projections by transforming a reference CT volume. Developing a Torch-DRR module, it enables end-to-end training by computing Digitally Reconstructed Radiographs (DRRs) in PyTorch. During training, DRRs with matching projection angles to the input kVs are automatically extracted from reconstructed volumes and their structural dissimilarity to inputs is penalised. We introduced a novel loss function to regulate spatio-temporal motion field variations across the CT scan, leveraging planning 4DCT for prior motion distribution estimation. RESULTS: The model is trained patient-specifically using three kV scan series, each including over 1200 angular/temporal projections, and tested on three other scan series. Imaging data from five patients are analysed here. Also, the model is validated on a simulated paired 4DCT-DRR dataset created using the Surrogate Parametrised Respiratory Motion Modelling (SuPReMo). The results demonstrate that the reconstructed volumes by 4D-Precise closely resemble the ground-truth volumes in terms of Dice, volume similarity, mean contour distance, and Hausdorff distance, whereas 4D-Precise achieves smoother deformations and fewer negative Jacobian determinants compared to SuPReMo. CONCLUSIONS: Unlike conventional 4DCT reconstruction techniques that ignore breath inter-cycle motion variations, the proposed model computes both intra-cycle and inter-cycle motions. It represents motion over an extended timeframe, covering several minutes of kV scan series.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Tomografía Computarizada Cuatridimensional , Planificación de la Radioterapia Asistida por Computador , Respiración , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Movimiento , Movimiento (Física) , Aprendizaje Profundo
20.
Respir Physiol Neurobiol ; 325: 104267, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679308

RESUMEN

The aim of this study was to characterize the breathing patterns of individuals with obesity during routine activities such as sitting and standing, and to identify potential contributors to alterations in these patterns. Measurements performed in 20 male subjects with obesity (BMI, 31.8±1.5 kg/m2) and 20 controls (BMI, 23.5±1.4 kg/m2) included anthropometric parameters, breathing-patterns in sitting and standing positions, spirometry, maximal respiratory pressures, and diaphragm B-mode ultrasonography. Individuals with obesity exhibited lower tidal volume and increased respiratory rate to maintain a similar minute-ventilation (p<0.05). Subjects with obesity demonstrated impaired spirometry and respiratory muscle strength, with inspiratory functions being notably compromised (p<0.05). Individuals with obesity had a greater diaphragm thickness at end inspiration but lower thickening-fraction at end quiet and forced breathings and reduced diaphragmatic displacement and excursion during maximal breaths (p<0.05). BMI was negatively associated with all respiratory function markers (p<0.05). Individuals with obesity exhibit a higher respiratory rate but lower tidal volume, likely to accommodate decreased compliance and excess thoracic and abdominal fat, further hindering inspiratory function. Moreover, increased adiposity is associated with a thicker but weaker diaphragm, primarily due to the diaphragm's mechanical disadvantage rather than its intrinsic inability to generate force.


Asunto(s)
Diafragma , Obesidad , Espirometría , Humanos , Masculino , Obesidad/fisiopatología , Diafragma/fisiopatología , Diafragma/diagnóstico por imagen , Adulto , Índice de Masa Corporal , Ultrasonografía , Volumen de Ventilación Pulmonar/fisiología , Persona de Mediana Edad , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA