Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.789
Filtrar
1.
mBio ; 15(8): e0104924, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953354

RESUMEN

Polyomaviruses are species-specific DNA viruses that can cause disease in immunocompromised individuals. Despite their role as the causative agents for several diseases, there are no currently approved antivirals for treating polyomavirus infection. Brincidofovir (BCV) is an antiviral approved for the treatment of poxvirus infections and has shown activity against other double-stranded DNA viruses. In this study, we tested the efficacy of BCV against polyomavirus infection in vitro and in vivo using mouse polyomavirus (MuPyV). BCV inhibited virus production in primary mouse kidney cells and brain cortical cells. BCV treatment of cells transfected with MuPyV genomic DNA resulted in a reduction in virus levels, indicating that viral inhibition occurs post-entry. Although in vitro BCV treatment had a limited effect on viral DNA and RNA levels, drug treatment was associated with a reduction in viral protein, raising the possibility that BCV acts post-transcriptionally to inhibit MuPyV infection. In mice, BCV treatment was well tolerated, and prophylactic treatment resulted in a reduction in viral DNA levels and a potent suppression of infectious virus production in the kidney and brain. In mice with chronic polyomavirus infection, therapeutic administration of BCV decreased viremia and reduced infection in the kidney. These data demonstrate that BCV exerts antiviral activity against polyomavirus infection in vivo, supporting further investigation into the use of BCV to treat clinical polyomavirus infections. IMPORTANCE: Widespread in the human population and able to persist asymptomatically for the life of an individual, polyomavirus infections cause a significant disease burden in the immunocompromised. Individuals undergoing immune suppression, such as kidney transplant patients or those treated for autoimmune diseases, are particularly at high risk for polyomavirus-associated diseases. Because no antiviral agent exists for treating polyomavirus infections, management of polyomavirus-associated diseases typically involves reducing or discontinuing immunomodulatory therapy. This can be perilous due to the risk of transplant rejection and the potential development of adverse immune reactions. Thus, there is a pressing need for the development of antivirals targeting polyomaviruses. Here, we investigate the effects of brincidofovir, an FDA-approved antiviral, on polyomavirus infection in vivo using mouse polyomavirus. We show that the drug is well-tolerated in mice, reduces infectious viral titers, and limits viral pathology, indicating the potential of brincidofovir as an anti-polyomavirus therapeutic.


Asunto(s)
Antivirales , Citosina , Organofosfonatos , Infecciones por Polyomavirus , Poliomavirus , Animales , Citosina/análogos & derivados , Citosina/farmacología , Citosina/uso terapéutico , Infecciones por Polyomavirus/tratamiento farmacológico , Infecciones por Polyomavirus/virología , Poliomavirus/efectos de los fármacos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Organofosfonatos/farmacología , Organofosfonatos/uso terapéutico , Replicación Viral/efectos de los fármacos , Riñón/virología , Riñón/efectos de los fármacos , Femenino , ADN Viral/genética , Células Cultivadas , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Encéfalo/virología
2.
Vet Microbiol ; 295: 110163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959807

RESUMEN

Avian influenza virus (AIV) infection and vaccination against live attenuated infectious bronchitis virus (aIBV) are frequent in poultry worldwide. Here, we evaluated the clinical effect of H9N2 subtype AIV and QX genotype aIBV co-infection in specific-pathogen-free (SPF) white leghorn chickens and explored the potential mechanisms underlying the observed effects using by 4D-FastDIA-based proteomics. The results showed that co-infection of H9N2 AIV and QX aIBV increased mortality and suppressed the growth of SPF chickens. In particular, severe lesions in the kidneys and slight respiratory signs similar to the symptoms of virulent QX IBV infection were observed in some co-infected chickens, with no such clinical signs observed in single-infected chickens. The replication of H9N2 AIV was significantly enhanced in both the trachea and kidneys, whereas there was only a slight effect on the replication of the QX aIBV. Proteomics analysis showed that the IL-17 signaling pathway was one of the unique pathways enriched in co-infected chickens compared to single infected-chickens. A series of metabolism and immune response-related pathways linked with co-infection were also significantly enriched. Moreover, co-infection of the two pathogens resulted in the enrichment of the negative regulation of telomerase activity. Collectively, our study supports the synergistic effect of the two pathogens, and pointed out that aIBV vaccines might increased IBV-associated lesions due to pathogenic co-infections. Exacerbation of the pathogenicity and mortality in H9N2 AIV and QX aIBV co-infected chickens possibly occurred because of an increase in H9N2 AIV replication, the regulation of telomerase activity, and the disturbance of cell metabolism and the immune system.


Asunto(s)
Pollos , Coinfección , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Pollos/virología , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/genética , Virus de la Bronquitis Infecciosa/patogenicidad , Virus de la Bronquitis Infecciosa/genética , Coinfección/virología , Coinfección/veterinaria , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Organismos Libres de Patógenos Específicos , Replicación Viral , Vacunas Atenuadas/inmunología , Genotipo , Virulencia , Proteómica , Riñón/virología , Riñón/patología
3.
Virus Res ; 347: 199428, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38942295

RESUMEN

In China, a novel pathogen within the genus Circovirus has been identified as a causative agent of the 'novel acute hemorrhage syndrome' (NAHS) in aquacultured populations of turbot (Scophthalmus maximus L.). Histopathological examination using light microscopy revealed extensive necrosis within the cardiac, splenic, and renal tissues of the afflicted fish. Utilizing transmission electron microscopy (TEM), we detected the presence of circovirus particles within the cytoplasm of these cells, with the virions consistently exhibiting a spherical morphology of 20-40 nm in diameter. TEM inspections confirmed the predominance of these virions in the heart, spleen, and kidney. Subsequent molecular characterization through polymerase chain reaction (PCR) analysis corroborated the TEM findings, with positive signals in the aforementioned tissues, in stark contrast to the lack of detection in gill, fin, liver, and intestinal tissues. The TEM observations, supported by PCR electrophoresis data, strongly suggest that the spleen and kidney are the primary targets of the viral infection. Further characterization using biophysical, biochemical assays, and genomic sequencing confirmed the viral classification within the genus Circovirus, resulting in the nomenclature of turbot circovirus (TurCV). The current research endeavors to shed light on the pathogenesis of this pathogen, offering insights into the infection mechanisms of TurCV in this novel piscine host, thereby contributing to the broader understanding of its impact on turbot health and aquaculture.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Peces , Peces Planos , Genoma Viral , Filogenia , Animales , Circovirus/genética , Circovirus/clasificación , Circovirus/aislamiento & purificación , China , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/patología , Enfermedades de los Peces/virología , Peces Planos/virología , Microscopía Electrónica de Transmisión , Genómica , Riñón/virología , Riñón/patología , Bazo/virología , Bazo/patología
4.
Pathol Res Pract ; 260: 155373, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901140

RESUMEN

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents diverse clinical manifestations and multi-organ involvement. This study aimed to evaluate the extra-pulmonary histopathological patterns underpinning COVID-19-induced lesions in cardiac, hepatic, renal, brainstem, and splenic tissues. MATERIALS AND METHODS: The research involved conventional forensic autopsies conducted between April 2020 and April 2021 on individuals with confirmed SARS-CoV-2 infection in Cluj-Napoca, Romania. Tissues were processed and stained for histological examination. Differences in patients with and without diffuse alveolar damage (DAD) were evaluated. RESULTS: In our study of 79 COVID-19 autopsies conducted on unvaccinated patients besides lung involvement, the patients had histological changes in at least two out of five (brain, heart, liver, kidney, and spleen) organs. Notable findings include hepatitis observed in 46.8 % of cases, 21.5 % with lobular hepatitis, and 41.8 % with liver steatosis. Additionally, 69.6 % exhibited acute tubular necrosis, and 55.7 % had varying degrees of splenic lymphocyte depletion. Almost 41 % of cases had pericardial effusion, 36.7 % myocarditis, 24.1 % myocardial infarction, and 12.7 % of cases had encephalitis. Acute tubular necrosis (78.6 %) was the most frequent histopathological finding observed in patients with DAD. Myocarditis was described in 45.9 % of the patients without DAD. DISCUSSION: The autopsy findings in our cohort of COVID-19 victims align with international scientific literature. Distinguishing viral-induced myocarditis, encephalitis, hepatitis, or systemic inflammatory syndrome remains challenging. CONCLUSION: Post-mortem analysis identified lesions associated with SARS-CoV-2 in multiple organs, highlighting the systemic nature of the virus and emphasizing the need for continued research into organ-specific damage and long-term sequelae of COVID-19.


Asunto(s)
Autopsia , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/patología , COVID-19/mortalidad , COVID-19/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Bazo/patología , Bazo/virología , Anciano de 80 o más Años , Hígado/patología , Hígado/virología , Rumanía , Riñón/patología , Riñón/virología , Adulto Joven , Miocardio/patología
5.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891942

RESUMEN

While considerable attention has been devoted to respiratory manifestations, such as pneumonia and acute respiratory distress syndrome (ARDS), emerging evidence underlines the significance of extrapulmonary involvement. In this study, we examined 15 hospitalized patients who succumbed to severe complications following SARS-CoV-2 infection. These patients were admitted to the Sibiu County Clinical Emergency Hospital in Sibiu, Romania, between March and October 2021. All patients were ethnic Romanians. Conducted within a COVID-19-restricted environment and adhering to national safety protocols, autopsies provided a comprehensive understanding of the disease's multisystemic impact. Detailed macroscopic evaluations and histopathological analyses of myocardial, renal, hepatic, splenic, and gastrointestinal tissues were performed. Additionally, reverse transcription-quantitative polymerase chain reaction (rt-qPCR) assays and immunohistochemical staining were employed to detect the viral genome and nucleocapsid within the tissues. Myocardial lesions, including ischemic microstructural changes and inflammatory infiltrates, were prevalent, indicative of COVID-19's cardiac implications, while renal pathology revealed the chronic alterations, acute tubular necrosis, and inflammatory infiltrates most evident. Hepatic examination identified hepatocellular necroinflammatory changes and hepatocytic cytopathy, highlighting the hepatic involvement of SARS-CoV-2 infection. Splenic parenchymal disorganization was prominent, indicating systemic immune dysregulation. Furthermore, gastrointestinal examinations unveiled nonspecific changes. Molecular analyses detected viral genes in various organs, with immunohistochemical assays confirming viral presence predominantly in macrophages and fibroblasts. These findings highlighted the systemic nature of SARS-CoV-2 infection, emphasizing the need for comprehensive clinical management strategies and targeted therapeutic approaches beyond respiratory systems.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/virología , COVID-19/genética , COVID-19/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Riñón/virología , Riñón/patología , Riñón/metabolismo , Hígado/virología , Hígado/patología , Hígado/metabolismo , Adulto , Bazo/virología , Bazo/patología , Bazo/metabolismo , Rumanía , Nucleocápside/genética , Nucleocápside/metabolismo , Miocardio/patología , Miocardio/metabolismo , Autopsia , Anciano de 80 o más Años , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas de la Nucleocápside de Coronavirus/metabolismo
6.
Methods Mol Biol ; 2808: 153-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743369

RESUMEN

Domestic cats are the natural host of feline morbilliviruses (FeMV). Although other species can also be infected (such as dogs and opossums), no laboratory animal infection model is established so far. In vitro models for studying the molecular pathogenesis are therefore needed. For this purpose, propagation and titration of FeMV are key techniques. Unlike other morbilliviruses, such as canine distemper virus (CDV) or measles virus (MV), FeMV is a slow growing virus in cell culture and is difficult to titrate using classical plaque techniques. Here we describe methods for the efficient isolation of FeMV from natural sources (e.g., urine), the propagation of viral stocks, and their titration. In addition, we establish the generation of a three-dimensional infection model mimicking the feline tubular epithelium.


Asunto(s)
Infecciones por Morbillivirus , Morbillivirus , Animales , Gatos , Morbillivirus/patogenicidad , Morbillivirus/genética , Morbillivirus/fisiología , Infecciones por Morbillivirus/veterinaria , Infecciones por Morbillivirus/virología , Riñón/virología , Riñón/citología , Enfermedades de los Gatos/virología , Células Cultivadas , Cultivo de Virus/métodos , Modelos Animales de Enfermedad , Cultivo Primario de Células/métodos
7.
Pathologie (Heidelb) ; 45(4): 254-260, 2024 Jul.
Artículo en Alemán | MEDLINE | ID: mdl-38598098

RESUMEN

Infections can affect the kidney via different pathways. Urinary tract infections can directly involve the renal tissue by spreading along pre-existing canalicular structures. Such an ascending infection can manifest as a highly active and purulent or even abscessing interstitial nephritis or as a chronic-fibrosing process in recurrent pyelonephritis. Viral infections can also use the canalicular route as in polyomavirus nephropathy or spread via the blood stream in a hematogenous manner as in the case of cytomegalovirus or hantavirus infections. Likewise, bacterial infections can reach the kidney via the blood in the case of systemic infection. Another large group of nephropathies taking place as a sequel of infections includes infection-related glomerulonephritides (IRGN), which are mediated by a series of immunological mechanisms. These IRGN can be subdivided according to their temporal association with the infectious process, occurring either after the infection has healed (postinfectious) or accompanying the ongoing infectious process (parainfectious). The latter, in particular, is of increasing importance in the daily practice of nephropathologists, especially in older patients. A number of other glomerulonephritis forms, i.e., membranous or membranoproliferative forms, can occur as a consequence of infection. In addition, infections can trigger nephropathies, such as thrombotic microangiopathy. The present article gives an overview of morphologic changes in renal parenchyma that take place as a consequence of infectious processes, with particular focus on IRGN.


Asunto(s)
Glomerulonefritis , Humanos , Glomerulonefritis/patología , Glomerulonefritis/inmunología , Infecciones Urinarias/patología , Infecciones Urinarias/microbiología , Riñón/patología , Riñón/virología , Enfermedades Renales/patología , Enfermedades Renales/virología , Nefritis Intersticial/patología , Nefritis Intersticial/virología , Infecciones Bacterianas/patología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/inmunología
8.
Artículo en Inglés | MEDLINE | ID: mdl-38621626

RESUMEN

Hybrid snakehead (male Channa argus × female Channa maculata) is an emerging fish breed with increasing production levels. However, infection with hybrid snakehead rhabdovirus (HSHRV) critically affects hybrid snakehead farming. In this study, a fish cell line called CAMK, derived from the kidneys of hybrid snakehead, was established and characterized. CAMK cells exhibited the maximum growth rate at 28 °C in Leibovitz's-15 medium supplemented with 10% fetal bovine serum(FBS). Karyotyping revealed diploid chromosomes in 54% of the cells at the 50th passage (2n = 66), and 16S rRNA sequencing validated that CAMK cells originated fromhybrid snakehead, and the detection of kidney-specific antibodies suggested that it originated from kidney. .The culture was free from mycoplasma contamination, and the green fluorescent protein gene was effectively transfected into CAMK cells, indicating their potential use for in vitro gene expression investigations. Furthermore, qRT-PCR and immunofluorescence analysis revealed that HSHRV could replicate in CAMK cells, indicating that the cells were susceptible to the virus. Transmission electron microscopy revealed that the viral particles had bullet-like morphology. The replication efficiency of HSHRV was 107.33 TCID50/mL. Altogether, we successfully established and characterized a kidney cell line susceptible to the virus. These findings provide a valuable reference for further genetic and virological studies.


Asunto(s)
Peces , Riñón , Rhabdoviridae , Animales , Riñón/virología , Riñón/citología , Línea Celular , Femenino , Masculino , Peces/virología , Rhabdoviridae/fisiología , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología
9.
Am J Physiol Renal Physiol ; 326(6): F931-F941, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634132

RESUMEN

Coronavirus disease 2019 (COVID-19) induces respiratory dysfunction as well as kidney injury. Although the kidney is considered a target organ of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and affected by the COVID-19-induced cytokine storm, the mechanisms of renal reaction in SARS-CoV-2 infection are unknown. In this study, a murine COVID-19 model was induced by nasal infection with mouse-adapted SARS-CoV-2 (MA10). MA10 infection induced body weight loss along with lung inflammation in mice 4 days after infection. Serum creatinine levels and the urinary albumin/creatinine ratio increased on day 4 after MA10 infection. Measurement of the urinary neutrophil gelatinase-associated lipocalin/creatinine ratio and hematoxylin and eosin staining revealed tubular damage in MA10-infected murine kidneys, indicating kidney injury in the murine COVID-19 model. Interferon (IFN)-γ and interleukin-6 upregulation in the sera of MA10-infected mice, along with the absence of MA10 in the kidneys, implied that the kidneys were affected by the MA10 infection-induced cytokine storm rather than by direct MA10 infection of the kidneys. RNA-sequencing analysis revealed that antiviral genes, such as the IFN/Janus kinase (JAK) pathway, were upregulated in MA10-infected kidneys. Upon administration of the JAK inhibitor baricitinib on days 1-3 after MA10 infection, an antiviral pathway was suppressed, and MA10 was detected more frequently in the kidneys. Notably, JAK inhibition upregulated the hypoxia response and exaggerated kidney injury. These results suggest that endogenous antiviral activity protects against SARS-CoV-2-induced kidney injury in the early phase of infection, providing valuable insights into the pathogenesis of COVID-19-associated nephropathy.NEW & NOTEWORTHY Patients frequently present with acute kidney injury or abnormal urinary findings after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we investigated how the kidneys respond during SARS-CoV-2 infection using a murine coronavirus disease 2019 (COVID-19) model and showed that Janus kinase-mediated endogenous antiviral activity protects against kidney injury in the early phase of SARS-CoV-2 infection. These findings provide valuable insights into the renal pathophysiology of COVID-19.


Asunto(s)
COVID-19 , Inhibidores de las Cinasas Janus , Purinas , Pirazoles , SARS-CoV-2 , Sulfonamidas , Animales , COVID-19/complicaciones , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Sulfonamidas/farmacología , Ratones , Purinas/farmacología , Pirazoles/farmacología , Modelos Animales de Enfermedad , Lesión Renal Aguda/virología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Azetidinas/farmacología , Azetidinas/uso terapéutico , Quinasas Janus/metabolismo , Quinasas Janus/antagonistas & inhibidores , Riñón/patología , Riñón/virología , Riñón/metabolismo , Riñón/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Masculino , Ratones Endogámicos C57BL
10.
Viruses ; 16(4)2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675978

RESUMEN

African swine fever (ASF) is a disease that is a growing threat to the global swine industry. Regulations and restrictions are placed on swine movement to limit the spread of the virus. However, these are costly and time-consuming. Therefore, this study aimed to determine if high-pressure processing (HPP) sanitization techniques would be effective against the ASF virus. Here, it was hypothesized that HPP could inactivate or reduce ASF virus infectivity in tissue homogenates. To test this hypothesis, 30 aliquots of each homogenate (spleen, kidney, loin) were challenge-infected with the Turin/83 strain of ASF, at a 10 7.20 median hemadsorption dose (HAD)50/mL. Subsequently, eight aliquots of each homogenate were treated with 600 millipascal (600 MPa) HPP for 3, 5, and 7 min. Six untreated aliquots were used as the controls. Virological results showed a reduction in the viral titer of more than 7-log. These results support the validity of the study hypothesis since HPP treatment was effective in inactivating ASFV in artificially prepared samples. Overall, this study suggests the need for further investigation of other ASFV-contaminated meat products.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Fiebre Porcina Africana/virología , Presión , Riñón/virología , Carga Viral , Inactivación de Virus , Bazo/virología
11.
Curr Opin Microbiol ; 79: 102475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615393

RESUMEN

In recent years, multiple coronaviruses have emerged, with the latest one, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing a global pandemic. Besides respiratory symptoms, some patients experienced extrapulmonary effects, such as cardiac damage or renal injury, indicating the broad tropism of SARS-CoV-2. The ability of the virus to effectively invade the renal cellular environment can eventually cause tissue-specific damage and disease. Indeed, patients with severe coronavirus disease 2019 exhibited a variety of symptoms such as acute proximal tubular injury, ischemic collapse, and severe acute tubular necrosis resulting in irreversible kidney failure. This review summarizes the current knowledge on how it is believed that SARS-CoV-2 influences the renal environment and induces kidney disease, as well as current therapy approaches.


Asunto(s)
COVID-19 , Riñón , SARS-CoV-2 , Tropismo Viral , Humanos , COVID-19/virología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Riñón/virología , Riñón/fisiopatología , Riñón/patología , Enfermedades Renales/virología , Animales
12.
Transplant Proc ; 56(3): 494-498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342747

RESUMEN

The deficiency of organ donors remains a barrier to kidney transplantation. Living donor kidney transplantation (LDKT) can overcome graft shortage, resulting in better outcomes. Many efforts are being made to expand the donor pool, such as hepatitis B surface antigen (HBsAg)-positive donors to negative recipients and anatomically complicated donor kidneys with size discrepancies. We report a case in which we overcame various problems in LDKT. The recipient was a 56-year-old, 106-kg, HBsAg negative male with diabetic nephropathy. The donor was a 63-year-old female, 56-kg, hepatitis B virus (HBV) carrier with dual renal arteries. Preoperative antiviral medication was provided to the donor for negative conversion of HBV-DNA. The recipient was given HBV vaccination (antihepatitis B antibody: 2.25-36.16 mIU/mL). Anti-HBV immunoglobulin was intraoperatively administered to prevent transmission. The donor and recipient had an absolute weight difference (50 kg). In addition, the donor's kidney had a main and an accessory artery in the upper pole, which were anastomosed to the recipient's right external iliac and inferior epigastric artery, respectively. Follow-up serum creatinine levels decreased. Doppler ultrasonography showed good vascular flow within the reference range of the resistive index. The recipient's follow-up HBV-DNA titer was negative with antiviral medication. We successfully performed LDKT from an HBV-positive donor to a negative recipient by perioperative antiviral treatment and overcame a significant size discrepancy and anatomic challenges by preserving even a small portion of the kidney graft.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Trasplante de Riñón , Donadores Vivos , Humanos , Persona de Mediana Edad , Femenino , Masculino , Antígenos de Superficie de la Hepatitis B/sangre , Hepatitis B/cirugía , Tamaño de los Órganos , Riñón/virología
13.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334329

RESUMEN

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Riñón , Organoides , SARS-CoV-2 , Internalización del Virus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/virología , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/virología , Lisinopril/farmacología , Lisinopril/metabolismo , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/virología , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/virología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/virología , Receptores de Coronavirus/metabolismo , Modelos Biológicos , Serina Endopeptidasas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre/citología
14.
J Virol ; 96(14): e0062422, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35867560

RESUMEN

HIV-1 persistence in different cell types presents the main obstacle to an HIV-1 cure. We have previously shown that the renal epithelium is a site of HIV-1 infection and that the kidney represents a separate viral compartment from blood. Whether renal cells can harbor latent virus that can be reactivated upon treatment with latency reversing agents (LRAs) is unknown. To address this question, we developed an in vitro HIV-1 latency model in renal tubule epithelial (RTE) cells using a dual color HIV-1 reporter virus, R7/E-/GFP/EF1a-mCherry (R7GEmC), and evaluated the effect of LRAs, both as single agents and in combination, on viral reactivation. Our data show that HIV-1 can establish latency in RTE cells early postinfection. While the pool of latently infected cells expanded overtime, the percentage of productively infected cells declined. Following LRA treatment only a small fraction of latently infected cells, both T cells and RTE cells, could be reactivated, and the drug combinations more effective in reactivating HIV transcription in RTE cells differed from those more active in T cells. Our study demonstrates that HIV can establish latency in RTE cells and that current LRAs are only marginally effective in inducing HIV-1 reactivation. This suggests that further study of LRA dynamics in non-T cells may be warranted to assess the suitability of LRAs as a sterilizing cure strategy. IMPORTANCE Anti-retroviral therapy (ART) has dramatically reduced HIV-related morbidity and mortality. Despite this success, a number of challenges remain, including the long-term persistence of multiple, clinically latent viral reservoirs capable of reactivation in the absence of ART. As efforts proceed toward HIV eradication or functional cure, further understanding of the dynamics of HIV-1 replication, establishment of latency and mechanisms of reactivation in reservoirs harboring the virus throughout the body is necessary. HIV-1 can infect renal epithelial cells and the expression of viral genes in those cells contributes to the development of HIV associated nephropathy (HIVAN) in untreated individuals. The significance of our work is in developing the first model of HIV-1 latency in renal epithelial cells. This model enhances our understanding of HIV-1 latency and persistence in the kidney and can be used to screen candidate latency reversing agents.


Asunto(s)
Células Epiteliales , Infecciones por VIH , Riñón , Activación Viral , Latencia del Virus , Linfocitos T CD4-Positivos , Células Cultivadas , Células Epiteliales/virología , VIH-1 , Humanos , Riñón/citología , Riñón/virología
15.
J Virol Methods ; 307: 114567, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709972

RESUMEN

Tilapia lake virus (TiLV) is an emerging viral pathogen of tilapiines worldwide in wild and farmed tilapia. TiLV is an orthomyxo-like, negative sense segmented RNA virus, belonging to genus Tilapinevirus, family Amnoonviridae. Here we developed a quantitative real-time PCR (qRT-PCR) assay testing primer sets targeting the 10 segments of TiLV. Sensitivity, specificity, efficiency and reproducibility of these assays were examined. Detection sensitivity was equivalent to 2 TCID50/ml when tested on supernatants from cell culture-grown TiLV. Specificity tests showed that all primer sets amplified their respective TiLV segments, and standard curves showed linear correlation of R2 > 0.998 and amplification efficiencies between 93 % and 98 %. Intra- and inter-assay coefficients of variation (CV %) were in the range of 0.0 %- 2.6 % and 0.0 %- 5.9 %, respectively. Sensitivity tests showed that primer sets targeting segments 1, 2, 3 and 4 had the highest detection sensitivities (100.301 TCID50/ml). The qRT-PCR used for detection of viral genome in TiLV infected organs gave virus titers equivalent to 3.80 log10, 3.94 log10 and 3.52 log10 TCID50/ml for brain, kidney and liver tissues, respectively as calculated on the basis of Ct values. These findings suggest that primer optimization for qPCR should not only focus on attaining high amplification efficiency but also sensitivity comparison of primer sets targeting different viral segments in order to develop a method with the highest sensitivity.


Asunto(s)
Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/virología , Virus ARN/aislamiento & purificación , Tilapia , Animales , Animales Salvajes , Encéfalo/virología , Explotaciones Pesqueras , Riñón/virología , Hígado/virología , Virus ARN/clasificación , Virus ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
J Virol ; 96(11): e0063422, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35575553

RESUMEN

The global amphibian declines are compounded by infections with members of the Ranavirus genus such as Frog Virus 3 (FV3). Premetamorphic anuran amphibians are believed to be significantly more susceptible to FV3 while this pathogen targets the kidneys of both pre- and postmetamorphic animals. Paradoxically, FV3-challenged Xenopus laevis tadpoles exhibit lower kidney viral loads than adult frogs. Presently, we demonstrate that X. laevis tadpoles are intrinsically more resistant to FV3 kidney infections than cohort-matched metamorphic and postmetamorphic froglets and that this resistance appears to be epigenetically conferred by endogenous retroviruses (ERVs). Using a X. laevis kidney-derived cell line, we show that enhancing ERV gene expression activates cellular double-stranded RNA-sensing pathways, resulting in elevated mRNA levels of antiviral interferon (IFN) cytokines and thus greater anti-FV3 protection. Finally, our results indicate that large esterase-positive myeloid-lineage cells, rather than renal cells, are responsible for the elevated ERV/IFN axis seen in the tadpole kidneys. This conclusion is supported by our observation that CRISPR-Cas9 ablation of colony-stimulating factor-3 results in abolished homing of these myeloid cells to tadpole kidneys, concurrent with significantly abolished tadpole kidney expression of both ERVs and IFNs. We believe that the manuscript marks an important step forward in understanding the mechanisms controlling amphibian antiviral defenses and thus susceptibility and resistance to pathogens like FV3. IMPORTANCE Global amphibian biodiversity is being challenged by pathogens like the Frog Virus 3 (FV3) ranavirus, underlining the need to gain a greater understanding of amphibian antiviral defenses. While it was previously believed that anuran (frog/toad) amphibian tadpoles are more susceptible to FV3, we demonstrated that tadpoles are in fact more resistant to this virus than metamorphic and postmetamorphic froglets. We showed that this resistance is conferred by large myeloid cells within the tadpole kidneys (central FV3 target), which possess an elevated expression of endogenous retroviruses (ERVs). In turn, these ERVs activate cellular double-stranded RNA-sensing pathways, resulting in a greater expression of antiviral interferon cytokines, thereby offering the observed anti-FV3 protection.


Asunto(s)
Infecciones por Virus ADN , Retrovirus Endógenos , Ranavirus , Xenopus laevis , Animales , Línea Celular , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Resistencia a la Enfermedad , Retrovirus Endógenos/inmunología , Interferones/inmunología , Riñón/virología , Larva/inmunología , Larva/virología , ARN Bicatenario , Ranavirus/patogenicidad , Xenopus laevis/virología
17.
Ren Fail ; 44(1): 434-449, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35260039

RESUMEN

Kidney transplantation is the treatment of choice in end-stage renal disease. The main issue which does not allow to utilize it fully is the number of organs available for transplant. Introduction of highly effective oral direct-acting antivirals (DAAs) to the treatment of chronic hepatitis C virus infection (HCV) enabled transplantation of HCV viremic organs to naive recipients. Despite an increasing number of reports on the satisfying effects of using HCV viremic organs, including kidneys, they are more often rejected than those from HCV negative donors. The main reason is the presence of HCV viremia and not the quality of the organ. The current state of knowledge points to the fact that a kidney transplant from an HCV nucleic acid testing positive (NAT+) donor to naive recipients is an effective and safe solution to the problem of the insufficient number of organs available for transplantation. It does not, however, allow to draw conclusions as to the long-term consequence of such an approach. This review analyzes the possibilities and limitations of the usage of HCV NAT + donor organs. Abbreviations: DAA: direct-acting antivirals; HCV: hepatitis C virus; NAT: nucleic acid testing; OPTN: Organ Procurement and Transplantation Network; KDIGO: Kidney Disease: Improving Global Outcomes; Ab: antigen; eGFR: estimated glomerular filtration rate; D: donor; R: recipient; CMV: cytomegalovirus; HBV: hepatitis B virus; UNOS: United Network for Organ Sharing; PHS: Public Health Service; EBR/GZR: elbasvir/grazoprevir; SVR: sustained virologic response; RAS: resistance-associated substitutions; SOF: soforbuvir; GLE/PIB: glecaprevir/pibrentasvir; ACR: acute cellular rejection; AR: acute rejection; DSA: donor-specific antibodies; KTR: kidney transplant recipients; AASLD: American Association for the Study of Liver Disease; IDSA: Infectious Diseases Society of America; PPI: proton pump inhibitors; CKD: chronic kidney disease; GN: glomerulonephritis; KAS: The Kidney Allocation system.


Asunto(s)
Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/transmisión , Trasplante de Riñón , Riñón/virología , Rechazo de Injerto/virología , Humanos , Obtención de Tejidos y Órganos , Viremia/virología
18.
J Am Soc Nephrol ; 33(7): 1293-1307, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35236774

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS: Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/uso terapéutico , Animales , COVID-19/terapia , Riñón/virología , Pulmón/virología , Ratones , SARS-CoV-2
19.
Front Immunol ; 13: 835156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237273

RESUMEN

Complement plays an important role in the direct defense to pathogens, but can also activate immune cells and the release of pro-inflammatory cytokines. However, in critically ill patients with COVID-19 the immune system is inadequately activated leading to severe acute respiratory syndrome (SARS) and acute kidney injury, which is associated with higher mortality. Therefore, we characterized local complement deposition as a sign of activation in both lungs and kidneys from patients with severe COVID-19. Using immunohistochemistry we investigated deposition of complement factors C1q, MASP-2, factor D (CFD), C3c, C3d and C5b-9 as well as myeloperoxidase (MPO) positive neutrophils and SARS-CoV-2 virus particles in lungs and kidneys from 38 patients who died from COVID-19. In addition, tissue damage was analyzed using semi-quantitative scores followed by correlation with complement deposition. Autopsy material from non-COVID patients who died from cardiovascular causes, cerebral hemorrhage and pulmonary embolism served as control (n=8). Lung injury in samples from COVID-19 patients was significantly more pronounced compared to controls with formation of hyaline membranes, thrombi and edema. In addition, in the kidney tubular injury was higher in these patients and correlated with lung injury (r=0.361*). In autopsy samples SARS-CoV-2 spike protein was detected in 22% of the lungs of COVID-19 patients but was lacking in kidneys. Complement activation was significantly stronger in lung samples from patients with COVID-19 via the lectin and alternative pathway as indicated by deposition of MASP-2, CFD, C3d and C5b9. Deposits in the lung were predominantly detected along the alveolar septa, the hyaline membranes and in the alveolar lumina. In the kidney, complement was significantly more deposited in patients with COVID-19 in peritubular capillaries and tubular basement membranes. Renal COVID-19-induced complement activation occurred via the lectin pathway, while activation of the alternative pathway was similar in both groups. Furthermore, MPO-positive neutrophils were found in significantly higher numbers in lungs and kidneys of COVID-19 patients and correlated with local MASP-2 deposition. In conclusion, in patients who died from SARS-CoV-2 infection complement was activated in both lungs and kidneys indicating that complement might be involved in systemic worsening of the inflammatory response. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury in COVID-19.


Asunto(s)
COVID-19/inmunología , Vía Alternativa del Complemento/inmunología , Lectinas/inmunología , Anciano , Anciano de 80 o más Años , Autopsia , COVID-19/patología , COVID-19/virología , Proteínas del Sistema Complemento/inmunología , Femenino , Humanos , Riñón/inmunología , Riñón/patología , Riñón/virología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Peroxidasa/inmunología , SARS-CoV-2/inmunología
20.
Biomolecules ; 12(2)2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35204798

RESUMEN

The onset of coronavirus disease (COVID-19) as a pandemic infection, has led to increasing insights on its pathophysiology and clinical features being revealed, such as a noticeable kidney involvement. In this study, we describe the histopathological, immunofluorescence, and ultrastructural features of biopsy-proven kidney injury observed in a series of SARS-CoV-2 positive cases in our institution from April 2020 to November 2021. We retrieved and retrospectively reviewed nine cases (two pediatric and seven adults) that experienced nephrotic syndrome (six cases), acute kidney injury (two cases), and a clinically silent microhematuria and leukocyturia. Kidney biopsies were investigated by means of light microscopy, direct immunofluorescence, and electron microscopy. The primary diagnoses were minimal change disease (four cases), acute tubular necrosis (two cases), collapsing glomerulopathy (two cases), and C3 glomerulopathy (one case). None of the cases showed viral or viral-like particles on ultrastructural analysis. Novel and specific histologic features on kidney biopsy related to SARS-CoV-2 infection have been gradually disclosed and reported, harboring relevant clinical and therapeutic implications. Recognizing and properly diagnosing renal involvement in patients experiencing COVID-19 could be challenging (due to the lack of direct proof of viral infection, e.g., viral particles) and requires a proper integration of clinical and pathological data.


Asunto(s)
COVID-19/complicaciones , Enfermedades Renales/complicaciones , Enfermedades Renales/virología , Riñón/lesiones , Riñón/virología , Adolescente , Anciano , Anciano de 80 o más Años , Biopsia , COVID-19/patología , COVID-19/virología , Femenino , Humanos , Italia , Riñón/patología , Riñón/ultraestructura , Enfermedades Renales/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA