Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 49(16): 9444-9458, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34387688

RESUMEN

The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5' leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250-500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10-20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.


Asunto(s)
Archaea/enzimología , Magnesio/metabolismo , ARN de Archaea/genética , Ribonucleasa P/genética , Conformación de Ácido Nucleico/efectos de los fármacos , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Precursores del ARN/genética , ARN de Archaea/ultraestructura , ARN Catalítico , Ribonucleasa P/ultraestructura
2.
RNA ; 26(12): 1755-1766, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32826323

RESUMEN

Ribonucleic acids (RNAs) play essential roles in living cells. Many of them fold into defined three-dimensional (3D) structures to perform functions. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have enabled structure determinations of RNA to atomic resolutions. However, most RNA molecules are structurally flexible, limiting the resolution of their structures solved by cryo-EM. In modeling these molecules, several computational methods are limited by the requirement of massive computational resources and/or the low efficiency in exploring large-scale structural variations. Here we use hierarchical natural move Monte Carlo (HNMMC), which takes advantage of collective motions for groups of nucleic acid residues, to refine RNA structures into their cryo-EM maps, preserving atomic details in the models. After validating the method on a simulated density map of tRNA, we applied it to objectively obtain the model of the folding intermediate for the specificity domain of ribonuclease P from Bacillus subtilis and refine a flexible ribosomal RNA (rRNA) expansion segment from the Mycobacterium tuberculosis (Mtb) ribosome in different conformational states. Finally, we used HNMMC to model atomic details and flexibility for two distinct conformations of the complete genomic RNA (gRNA) inside MS2, a single-stranded RNA virus, revealing multiple pathways for its capsid assembly.


Asunto(s)
Método de Montecarlo , Virus ARN/ultraestructura , ARN Ribosómico/ultraestructura , ARN de Transferencia/ultraestructura , ARN/ultraestructura , Ribosomas/ultraestructura , Bacillus subtilis/enzimología , Proteínas de la Cápside/genética , Proteínas de la Cápside/ultraestructura , Modelos Moleculares , ARN/genética , Virus ARN/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Ribonucleasa P/genética , Ribonucleasa P/ultraestructura , Ribosomas/genética
3.
Nat Commun ; 10(1): 2617, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197137

RESUMEN

Ribonuclease P (RNase P) is an essential ribozyme responsible for tRNA 5' maturation. Here we report the cryo-EM structures of Methanocaldococcus jannaschii (Mja) RNase P holoenzyme alone and in complex with a tRNA substrate at resolutions of 4.6 Å and 4.3 Å, respectively. The structures reveal that the subunits of MjaRNase P are strung together to organize the holoenzyme in a dimeric conformation required for efficient catalysis. The structures also show that archaeal RNase P is a functional chimera of bacterial and eukaryal RNase Ps that possesses bacterial-like two RNA-based anchors and a eukaryal-like protein-aided stabilization mechanism. The 3'-RCCA sequence of tRNA, which is a key recognition element for bacterial RNase P, is dispensable for tRNA recognition by MjaRNase P. The overall organization of MjaRNase P, particularly within the active site, is similar to those of bacterial and eukaryal RNase Ps, suggesting a universal catalytic mechanism for all RNase Ps.


Asunto(s)
Proteínas Arqueales/ultraestructura , Ribonucleasa P/ultraestructura , Proteínas Arqueales/metabolismo , Biocatálisis , Microscopía por Crioelectrón , Holoenzimas/ultraestructura , Methanocaldococcus/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Ribonucleasa P/metabolismo
4.
Science ; 362(6415)2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30262633

RESUMEN

Ribonuclease P (RNase P) is a universal ribozyme responsible for processing the 5'-leader of pre-transfer RNA (pre-tRNA). Here, we report the 3.5-angstrom cryo-electron microscopy structures of Saccharomyces cerevisiae RNase P alone and in complex with pre-tRNAPhe The protein components form a hook-shaped architecture that wraps around the RNA and stabilizes RNase P into a "measuring device" with two fixed anchors that recognize the L-shaped pre-tRNA. A universally conserved uridine nucleobase and phosphate backbone in the catalytic center together with the scissile phosphate and the O3' leaving group of pre-tRNA jointly coordinate two catalytic magnesium ions. Binding of pre-tRNA induces a conformational change in the catalytic center that is required for catalysis. Moreover, simulation analysis suggests a two-metal-ion SN2 reaction pathway of pre-tRNA cleavage. These results not only reveal the architecture of yeast RNase P but also provide a molecular basis of how the 5'-leader of pre-tRNA is processed by eukaryotic RNase P.


Asunto(s)
División del ARN , Precursores del ARN/química , Ribonucleasa P/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , Holoenzimas/química , Holoenzimas/ultraestructura , Conformación Proteica , Ribonucleasa P/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Especificidad por Sustrato
5.
Biochem Biophys Res Commun ; 482(1): 68-74, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27810361

RESUMEN

Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the processing of 5' leader sequences of precursor tRNAs (pre-tRNA). RNase P proteins PhoRpp21 and PhoRpp29 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologs of human nuclear RNase P proteins Rpp21 and Rpp29 respectively, fold into a heterodimeric structure and synergistically function in the activation of the specificity domain (S-domain) in RNase P RNA (PhopRNA). To elucidate the molecular basis for their cooperativity, we first analyzed binding ability to PhopRNA using a pull-down assay. The result showed that PhoRpp21 is able to bind to PhopRNA in the absence of PhoRpp29, whereas PhoRpp29 alone has reduced affinity to PhopRNA, suggesting that PhoRpp21 primarily functions as a binding element for PhopRNA in the PhoRpp21-PhoRpp29 complex. Mutational analyses suggested that although individual positively charged clusters contribute little to the PhopRNA binding, Lys53, Lys54, and Lys56 at the N-terminal helix (α2) in PhoRpp21 and 10 C-terminal residues in PhoRpp29 are essential for PhopRNA activation. Moreover, deletion of a single stranded loop linking P11 and P12 helices in the PhopRNA S-domain impaired the PhoRpp21-PhoRpp29 complex binding to PhopRNA. Collectively, the present results suggest that PhoRpp21 binds the loop between P11 and P12 helices through overall positively charged clusters on the surface of the complex and serves as a scaffold for PhoRpp29 to optimize structural conformation of its N-terminal helix (α2) in PhoRpp21, as well as C-terminal residues in PhoRpp29, for RNase P activity.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Precursores del ARN/química , Precursores del ARN/ultraestructura , Ribonucleasa P/química , Ribonucleasa P/ultraestructura , Proteínas Arqueales , Sitios de Unión , Catálisis , Simulación por Computador , Activación Enzimática , Humanos , Unión Proteica , Conformación Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
6.
Biochem Biophys Res Commun ; 474(3): 541-546, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27114305

RESUMEN

PhoRpp38 in the hyperthermophilic archaeon Pyrococcus horikoshii, a homologue of human ribonuclease P (RNase P) protein Rpp38, belongs to the ribosomal protein L7Ae family that specifically recognizes a kink-turn (K-turn) motif. A previous biochemical study showed that PhoRpp38 specifically binds to two stem-loops, SL12 and SL16, containing helices P12.1/12.2 and P15/16 respectively, in P. horikoshii RNase P RNA (PhopRNA). In order to gain insight into the PhoRpp38 binding mode to PhopRNA, we determined the crystal structure of PhoRpp38 in complex with the SL12 mutant (SL12M) at a resolution of 3.4 Å. The structure revealed that Lys35 on the ß-strand (ß1) and Asn38, Glu39, and Lys42 on the α-helix (α2) in PhoRpp38 interact with characteristic G•A and A•G pairs in SL12M, where Ile93, Glu94, and Val95, on a loop between α4 and ß4 in PhoRpp38, interact with the 3-nucleotide bulge (G-G-U) in the SL12M. The structure demonstrates the previously proposed secondary structure of SL12, including helix P12.2. Structure-based mutational analysis indicated that amino acid residues involved in the binding to SL12 are also responsible for the binding to SL16. This result suggested that each PhoRpp38 binds to the K-turns in SL12 and SL16 in PhopRNA. A pull-down assay further suggested the presence of a second K-turn in SL12. Based on the present results, together with available data, we discuss a structural basis for recognition of K-turn motifs in PhopRNA by PhoRpp38.


Asunto(s)
Archaea/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Autoantígenos/química , Autoantígenos/ultraestructura , Ribonucleasa P/química , Ribonucleasa P/ultraestructura , Secuencia de Aminoácidos , Sitios de Unión , Activación Enzimática , Humanos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
7.
J Biochem ; 159(1): 31-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26152732

RESUMEN

PhoPop5 and PhoRpp30 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologues of human ribonuclease P (RNase P) proteins hPop5 and Rpp30, respectively, fold into a heterotetramer [PhoRpp30-(PhoPop5)2-PhoRpp30], which plays a crucial role in the activation of RNase P RNA (PhopRNA). Here, we examined the functional implication of PhoPop5 and PhoRpp30 in the tetramer. Surface plasmon resonance (SPR) analysis revealed that the tetramer strongly interacts with an oligonucleotide including the nucleotide sequence of a stem-loop SL3 in PhopRNA. In contrast, PhoPop5 had markedly reduced affinity to SL3, whereas PhoRpp30 had little affinity to SL3. SPR studies of PhoPop5 mutants further revealed that the C-terminal helix (α4) in PhoPop5 functions as a molecular recognition element for SL3. Moreover, gel filtration indicated that PhoRpp30 exists as a monomer, whereas PhoPop5 is an oligomer in solution, suggesting that PhoRpp30 assists PhoPop5 in attaining a functionally active conformation by shielding hydrophobic surfaces of PhoPop5. These results, together with available data, allow us to generate a structural and mechanistic model for the PhopRNA activation by PhoPop5 and PhoRpp30, in which the two C-terminal helices (α4) of PhoPop5 in the tetramer whose formation is assisted by PhoRpp30 act as binding elements and bridge SL3 and SL16 in PhopRNA.


Asunto(s)
Proteínas Arqueales/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Pyrococcus horikoshii/genética , ARN de Archaea/metabolismo , Ribonucleasa P/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/ultraestructura , Autoantígenos/genética , Secuencia de Bases , Humanos , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Subunidades de Proteína/genética , Ribonucleasa P/genética , Ribonucleasa P/ultraestructura , Resonancia por Plasmón de Superficie
8.
Nucleic Acids Res ; 40(7): 3275-88, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22167472

RESUMEN

Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/ultraestructura , Ribonucleasa P/química , Ribonucleasa P/ultraestructura , Proteínas Portadoras/química , Endodesoxirribonucleasas/química , Modelos Moleculares , Subunidades de Proteína/química , ARN/química , Ribonucleasas/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química
9.
Q Rev Biophys ; 40(2): 113-61, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17931443

RESUMEN

Ribonuclease P is among the first ribozymes discovered, and is the only ubiquitously occurring ribozyme besides the ribosome. The bacterial RNase P RNA is catalytically active without its protein subunit and has been studied for over two decades as a model system for RNA catalysis, structure and folding. This review focuses on the thermodynamic, kinetic and structural frameworks derived from the folding studies of bacterial RNase P RNA.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Pliegue de Proteína , Ribonucleasa P/química , Ribonucleasa P/ultraestructura , Simulación por Computador , Activación Enzimática , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA