Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.969
Filtrar
1.
Toxins (Basel) ; 16(10)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39453188

RESUMEN

Ricin is a highly potent toxin that has been used in various attempts at bioterrorism worldwide. Although a vaccine for preventing ricin poisoning (RiVax™) is in clinical development, there are currently no commercially available prophylaxis or treatments for ricin intoxication. Numerous studies have highlighted the potential of passive immunotherapy using anti-ricin monoclonal antibodies (mAbs) and have shown promising results in preclinical models. In this article, we describe the neutralizing and protective efficacy of a new generation of high-affinity anti-ricin mAbs, which bind and neutralize very efficiently both ricin isoforms D and E in vitro through cytotoxicity cell assays. In vivo, protection assay revealed that one of these mAbs (RicE5) conferred over 90% survival in a murine model challenged intranasally with a 5 LD50 of ricin and treated by intravenous administration of the mAbs 6 h post-intoxication. Notably, a 35% survival rate was observed even when treatment was administered 24 h post-exposure. Moreover, all surviving mice exhibited long-term immunity to high ricin doses. These findings offer promising results for the clinical development of a therapeutic candidate against ricin intoxication and may also pave the way for novel vaccination strategies against ricin or other toxins.


Asunto(s)
Anticuerpos Monoclonales , Ratones Endogámicos BALB C , Ricina , Ricina/inmunología , Ricina/toxicidad , Ricina/envenenamiento , Animales , Anticuerpos Monoclonales/inmunología , Femenino , Ratones , Humanos , Anticuerpos Neutralizantes , Afinidad de Anticuerpos , Células Vero
2.
Toxins (Basel) ; 16(10)2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39453216

RESUMEN

Malanin is a new type II ribosome-inactivating protein (RIP) purified from Malania oleifera, a rare, endangered tree is only found in the southwest of Guangxi Province and the southeast of Yunnan Province, China. The gene coding sequence of malanin was found from the cDNA library of M. oleifera seeds by employing the ten N-terminal amino acid sequences of malanin, DYPKLTFTTS for chain-A and DETXTDEEFN (X was commonly C) for chain-B. The results showed a 65% amino acid sequence homology between malanin and ricin by DNAMAN 9.0 software, the active sites of the two proteins were consistent, and the four disulfide bonds were in the same positions. The primary sequence and three-dimensional structures of malanin and ricin are likely to be very similar. Our studies suggest that the mechanism of action of malanin is expected to be analogous to ricin, indicating that it is a member of the type II ribosome-inactivating proteins. This result lays the foundation for further study of the anti-tumor activities of malanin, and for the application of malanin as a therapeutic agent against cancers.


Asunto(s)
Secuencia de Aminoácidos , Ricina , Ricina/química , Ricina/genética , Proteínas Inactivadoras de Ribosomas Tipo 2/química , Proteínas de Plantas/genética , Proteínas de Plantas/química , Modelos Moleculares
3.
Health Secur ; 22(5): 373-383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39436259

RESUMEN

In this article, we detail a comprehensive laboratory evaluation of an immunoassay for the rapid detection of ricin using the Meso Scale Diagnostics Sector PR2 Model 1800. For the assay evaluation, we used inclusivity, exclusivity, and informational panels comprised of extracts of 35 near-neighbor plant cultivar-extracts, 66 lectins, 26 white powders, 16 closely related toxins and proteins/toxoids, and a pool of 30 BioWatch filter extracts. The results show that the Meso Scale Diagnostics ricin detection assay exhibits good sensitivity and specificity with a limit of detection of 1.2 ng/mL. However, the dynamic range of the assay for the quantitation of ricin was limited. We observed a hook effect at higher ricin concentrations, which can lead to potential false negative results. A modification of the assay protocol that incorporates extra wash steps can decrease the hook effect and the potential for false negative results.


Asunto(s)
Mediciones Luminiscentes , Ricina , Ricina/análisis , Mediciones Luminiscentes/métodos , Inmunoensayo/métodos , Sensibilidad y Especificidad , Humanos , Límite de Detección , Técnicas Electroquímicas/métodos
4.
J Virol ; 98(10): e0064724, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39283123

RESUMEN

HIV-infected cells persisting in the face of suppressive antiretroviral therapy are the barrier to curing infection. Cytotoxic immunoconjugates targeted to HIV antigens on the cell surface may clear these cells. We showed efficacy in mouse and macaque models using immunotoxins, but immunogenicity blunted the effect. As an alternative, we propose antibody drug conjugates (ADCs), as used in cancer immunotherapy. In cancer, the target is a dividing cell, whereas it may not be in HIV. We screened cytotoxic drugs on human primary cells and cell lines. An anthracycline derivative, PNU-159682 (PNU), was highly cytotoxic to both proliferating and resting cells. Human anti-gp41 mAb 7B2 was conjugated to ricin A chain or PNU. The conjugates were tested in vitro for cytotoxic efficacy and anti-viral effect, and in vivo for tolerability. The specificity of killing for both conjugates was demonstrated on Env+ and Env- cells. The toxin conjugate was more potent and killed more rapidly, but 7B2-PNU was effective at levels achievable in patients. The ricin conjugate was well tolerated in mice; 7B2-PNU was toxic when administered intraperitoneally but was tolerated intravenously. We have produced an ADC with potential to target the persistent HIV reservoir in both dividing and non-dividing cells while avoiding immunogenicity. Cytotoxic anti-HIV immunoconjugates may have greatest utility as part of an "activate and purge" regimen, involving viral activation in the reservoir. This is a unique comparison of an immunotoxin and ADC targeted by the same antibody and tested in the same systems.IMPORTANCEHIV infection can be controlled with anti-retroviral therapy, but it cannot be cured. Despite years of therapy that suppresses HIV, patients again become viremic shortly after discontinuing treatment. A long-lived population of memory T cells retain the genes encoding HIV, and these cells secrete infectious HIV when no longer suppressed by therapy. This is the persistent reservoir of HIV infection. The therapies described here use anti-HIV antibodies conjugated to poisons to kill the cells in this reservoir. These poisons may be of several types, including protein toxins (immunotoxins) or anti-cancer drugs (antibody drug conjugates, ADCs). We have previously shown that an anti-HIV immunotoxin had therapeutic effects in animal models, but it elicited an anti-drug immune response. Here, we have prepared an anti-HIV ADC, which would be less likely to provoke an immune response, and show its potential for use in eliminating the persistent reservoir of HIV infection.


Asunto(s)
Anticuerpos Monoclonales , Proteína gp41 de Envoltorio del VIH , Infecciones por VIH , Inmunoconjugados , Humanos , Inmunoconjugados/farmacología , Animales , Ratones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Fármacos Anti-VIH/farmacología , VIH-1/inmunología , VIH-1/efectos de los fármacos , Anticuerpos Anti-VIH/inmunología , Linfocitos/inmunología , Linfocitos/efectos de los fármacos , Ricina/inmunología , Femenino , Inmunotoxinas/farmacología , Inmunotoxinas/inmunología
5.
Biochemistry ; 63(19): 2391-2396, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39297955

RESUMEN

Expression of camelid-derived, single-domain antibodies (VHHs) within the cytoplasm of mammalian cells as "intrabodies" has opened up novel avenues for medical countermeasures against fast-acting biothreat agents. In this report, we describe a heterodimeric intrabody that renders Vero cells virtually impervious to ricin toxin (RT), a potent Category B ribosome-inactivating protein. The intrabody consists of two structurally defined VHHs that target distinct epitopes on RT's enzymatic subunit (RTA): V9E1 targets RTA's P-stalk recruitment site, and V2A11 targets RTA's active site. Resistance to RT conferred by the biparatopic VHH construct far exceeded that of either of the VHHs alone and effectively inhibited all measurable RT-induced cytotoxicity in vitro. We propose that the targeted delivery of bispecific intrabodies to lung tissues may represent a novel means to shield the airways from the effects of inhalational RT exposure.


Asunto(s)
Ricina , Animales , Ricina/toxicidad , Chlorocebus aethiops , Células Vero , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/inmunología
6.
J Immunol Methods ; 533: 113732, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116931

RESUMEN

Breast cancer is one of the leading causes of cancer deaths worldwide. Thereafter, designing new treatments with higher specificity and efficacy is urgently required. In this regard, targeted immunotherapy using immunotoxins has shown great promise in treating cancer. To target a breast cancer cell, the authors used the antibody fragment against a receptor tyrosine kinase, EphA2, which is overexpressed in many cancers. This fragment was conjugated to a plant toxin, subunit A of ricin, in two different orientations from N to C-terminal (EphA2- C-Ricin and EphA2- N-Ricin). Then, these two immunotoxins were characterized using in vitro cell-based assays. Three different cell lines were treated, MDA-MB-231 (breast cancer) which has a high level of EphA2 expression, MCF-7 (breast cancer) which has a low level of EphA2 expression, and HEK293 (human embryonic kidney) which has a very low level of EphA2 expression. Moreover, binding ability, cytotoxicity, internalization, and apoptosis capacity of these two newly developed immunotoxins were investigated. The flow cytometry using Annexin V- Propidium iodide (PI) method indicated significant induction of apoptosis only in the MDA-MB-231 cells at different concentrations. It was also found that construct I, EphA2- C-Ricin immunotoxin, could bind, internalize, and induce apoptosis better than the EphA2- N-Ricin immunotoxin. In addition, the obtained data suggested that the N or C-terminal orientation conformation is of significant importance.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Inmunotoxinas , Receptor EphA2 , Anticuerpos de Cadena Única , Humanos , Neoplasias de la Mama/inmunología , Receptor EphA2/inmunología , Receptor EphA2/metabolismo , Receptor EphA2/genética , Inmunotoxinas/farmacología , Inmunotoxinas/inmunología , Inmunotoxinas/genética , Femenino , Células HEK293 , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Células MCF-7 , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacología , Ricina/inmunología , Línea Celular Tumoral
7.
J Med Case Rep ; 18(1): 410, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210364

RESUMEN

INTRODUCTION: Ricin intoxication is a serious condition with symptoms ranging from mild gastroenteritis to fatal outcomes due to shock and multi-organ failure. Intoxication from the ingestion of castor seeds is uncommon. However, its diagnosis is crucial, particularly with a clear history of exposure to castor seeds, regardless of the route of exposure (enteral or parenteral). Prompt diagnosis is essential to monitor and manage the patient effectively and to prevent potentially fatal outcomes. We report a case where ingestion of castor seeds resulted in gastroenteritis severe enough to necessitate emergency medical care. CASE REPORT: We present the case of a 47-year-old Belgian woman of Moroccan descent, previously healthy who was admitted to the emergency department with symptoms of colicky abdominal pain, diarrhea, and vomiting following the ingestion of six castor beans. The patient was diagnosed with ricin intoxication, admitted for observation, and received symptomatic treatment. She was discharged home after a complete recovery three days later. CONCLUSION: Our report underscores the clinical manifestations, hemodynamic changes, laboratory findings, and treatment of intoxication due to castor seed ingestion. It contributes to the limited literature on castor seed poisoning in humans, with a specific focus on cases in Belgium. This report aims to raise awareness among clinicians about this condition and emphasizes the importance of a comprehensive history-taking to prevent misdiagnosis and malpractice.


Asunto(s)
Intoxicación por Plantas , Ricina , Ricinus communis , Femenino , Humanos , Persona de Mediana Edad , Dolor Abdominal/inducido químicamente , Dolor Abdominal/diagnóstico , Dolor Abdominal/terapia , Bélgica , Ricina/envenenamiento , Ricinus communis/química , Ricinus communis/envenenamiento , Semillas/química , Semillas/envenenamiento , Resultado del Tratamiento , Vómitos/inducido químicamente , Vómitos/diagnóstico , Vómitos/terapia , Intoxicación por Plantas/diagnóstico , Intoxicación por Plantas/etiología , Intoxicación por Plantas/terapia
8.
Analyst ; 149(18): 4702-4713, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39101439

RESUMEN

Biological weapons, primarily dispersed as aerosols, can spread not only to the targeted area but also to adjacent regions following the movement of air driven by wind. Thus, there is a growing demand for toxin analysis because biological weapons are among the most influential and destructive. Specifically, such a technique should be hand-held, rapid, and easy to use because current methods require more time and well-trained personnel. Our study demonstrates the use of a novel lateral flow immunoassay, which has a confined structure like a double barbell in the detection area (so called c-LFA) for toxin detection such as staphylococcal enterotoxin B (SEB), ricinus communis (Ricin), and botulinum neurotoxin type A (BoNT-A). Additionally, we have explored the integration of machine learning (ML), specifically, a toxin chip boosting (TOCBoost) hybrid algorithm for improved sensitivity and specificity. Consequently, the ML powered c-LFA concurrently categorized three biological toxin types with an average accuracy as high as 95.5%. To our knowledge, the sensor proposed in this study is the first attempt to utilize ML for the assessment of toxins. The advent of the c-LFA orchestrated a paradigm shift by furnishing a versatile and robust platform for the rapid, on-site detection of various toxins, including SEB, Ricin, and BoNT-A. Our platform enables accessible and on-site toxin monitoring for non-experts and can potentially be applied to biosecurity.


Asunto(s)
Toxinas Botulínicas Tipo A , Enterotoxinas , Aprendizaje Automático , Ricina , Ricina/análisis , Inmunoensayo/métodos , Enterotoxinas/análisis , Toxinas Botulínicas Tipo A/análisis , Límite de Detección , Toxinas Biológicas/análisis
9.
Molecules ; 29(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999084

RESUMEN

Sensitively detecting hazardous and suspected bioaerosols is crucial for safeguarding public health. The potential impact of pollen on identifying bacterial species through fluorescence spectra should not be overlooked. Before the analysis, the spectrum underwent preprocessing steps, including normalization, multivariate scattering correction, and Savitzky-Golay smoothing. Additionally, the spectrum was transformed using difference, standard normal variable, and fast Fourier transform techniques. A random forest algorithm was employed for the classification and identification of 31 different types of samples. The fast Fourier transform improved the classification accuracy of the sample excitation-emission matrix fluorescence spectrum data by 9.2%, resulting in an accuracy of 89.24%. The harmful substances, including Staphylococcus aureus, ricin, beta-bungarotoxin, and Staphylococcal enterotoxin B, were clearly distinguished. The spectral data transformation and classification algorithm effectively eliminated the interference of pollen on other components. Furthermore, a classification and recognition model based on spectral feature transformation was established, demonstrating excellent application potential in detecting hazardous substances and protecting public health. This study provided a solid foundation for the application of rapid detection methods for harmful bioaerosols.


Asunto(s)
Algoritmos , Polen , Espectrometría de Fluorescencia , Staphylococcus aureus , Polen/química , Espectrometría de Fluorescencia/métodos , Staphylococcus aureus/clasificación , Staphylococcus aureus/aislamiento & purificación , Sustancias Peligrosas/análisis , Sustancias Peligrosas/clasificación , Enterotoxinas/análisis , Ricina/análisis , Aerosoles/análisis , Análisis de Fourier
10.
Chem Res Toxicol ; 37(7): 1218-1228, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963334

RESUMEN

Abrin and ricin are toxic proteins produced by plants. Both proteins are composed of two subunits, an A-chain and a B-chain. The A-chain is responsible for the enzymatic activity, which causes toxicity. The B-chain binds to glycoproteins on the cell surface to direct the A-chain to its target. Both toxins depurinate 28S rRNA, making it impossible to differentiate these toxins based on only their enzymatic activity. We developed an analytical workflow for both ricin and abrin using a single method and sample. We have developed a novel affinity enrichment technique based on the ability of the B-chain to bind a glycoprotein, asialofetuin. After the toxin is extracted with asialofetuin-coated magnetic beads, an RNA substrate is added. Then, depurination is detected by a benchtop matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer to determine the presence or absence of an active toxin. Next, the beads are subjected to tryptic digest. Toxin fingerprinting is done on a benchtop MALDI-TOF MS. We validated the assay through sensitivity and specificity studies and determined the limit of detection for each toxin as nanogram level for enzymatic activity and µg level for toxin fingerprinting. We examined potential cross-reactivity from proteins that are near neighbors of the toxins and examined potential false results in the presence of white powders.


Asunto(s)
Abrina , Ricina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ricina/análisis , Ricina/metabolismo , Ricina/química , Abrina/análisis , Abrina/metabolismo , Abrina/química
11.
Toxins (Basel) ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39057952

RESUMEN

Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins.


Asunto(s)
Abrina , Ricina , Espectrometría Raman , Ricina/análisis , Abrina/análisis , Espectrometría Raman/métodos , Glicoproteínas/análisis , Límite de Detección , Humanos , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/toxicidad
12.
Anal Bioanal Chem ; 416(23): 5145-5153, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39046503

RESUMEN

Ricin is a toxic protein regarded as a potential chemical weapon for bioterrorism or criminal use. In the event of a ricin incident, rapid analytical methods are essential for ricin confirmation in a diversity of matrices, from environmental to human or food samples. Mass spectrometry-based methods provide specific toxin identification but require prior enrichment by antibodies to reach trace-level detection in matrices. Here, we describe a novel assay using the glycoprotein asialofetuin as an alternative to antibodies for ricin enrichment, combined with the specific detection of signature peptides by high-resolution mass spectrometry. Additionally, optimizations made to the assay reduced the sample preparation time from 5 h to 80 min only. Method evaluation confirmed the detection of ricin at trace levels over a wide range of pH and in protein-rich samples, illustrating challenging matrices. This new method constitutes a relevant antibody-free solution for the fast and specific mass spectrometry detection of ricin in the situation of a suspected toxin incident, complementary to active ricin determination by adenine release assays.


Asunto(s)
Espectrometría de Masas , Proteómica , Ricina , Ricina/análisis , Proteómica/métodos , Espectrometría de Masas/métodos , Humanos , Límite de Detección
13.
BMC Genomics ; 25(1): 643, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937673

RESUMEN

BACKGROUND: The CBM13 family comprises carbohydrate-binding modules that occur mainly in enzymes and in several ricin-B lectins. The ricin-B lectin domain resembles the CBM13 module to a large extent. Historically, ricin-B lectins and CBM13 proteins were considered completely distinct, despite their structural and functional similarities. RESULTS: In this data mining study, we investigate structural and functional similarities of these intertwined protein groups. Because of the high structural and functional similarities, and differences in nomenclature usage in several databases, confusion can arise. First, we demonstrate how public protein databases use different nomenclature systems to describe CBM13 modules and putative ricin-B lectin domains. We suggest the introduction of a novel CBM13 domain identifier, as well as the extension of CAZy cross-references in UniProt to guard the distinction between CAZy and non-CAZy entries in public databases. Since similar problems may occur with other lectin families and CBM families, we suggest the introduction of novel CBM InterPro domain identifiers to all existing CBM families. Second, we investigated phylogenetic, nomenclatural and structural similarities between putative ricin-B lectin domains and CBM13 modules, making use of sequence similarity networks. We concluded that the ricin-B/CBM13 superfamily may be larger than initially thought and that several putative ricin-B lectin domains may display CAZyme functionalities, although biochemical proof remains to be delivered. CONCLUSIONS: Ricin-B lectin domains and CBM13 modules are associated groups of proteins whose database semantics are currently biased towards ricin-B lectins. Revision of the CAZy cross-reference in UniProt and introduction of a dedicated CBM13 domain identifier in InterPro may resolve this issue. In addition, our analyses show that several proteins with putative ricin-B lectin domains show very strong structural similarity to CBM13 modules. Therefore ricin-B lectin domains and CBM13 modules could be considered distant members of a larger ricin-B/CBM13 superfamily.


Asunto(s)
Lectinas , Filogenia , Dominios Proteicos , Ricina , Ricina/química , Ricina/genética , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Bases de Datos de Proteínas , Secuencia de Aminoácidos , Homología de Secuencia de Aminoácido
14.
Immunohorizons ; 8(6): 457-463, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38922287

RESUMEN

The underlying contribution of immune complexes in modulating adaptive immunity in mucosal tissues remains poorly understood. In this report, we examined, in mice, the proinflammatory response elicited by intranasal delivery of the biothreat agent ricin toxin (RT) in association with two toxin-neutralizing mAbs, SylH3 and PB10. We previously demonstrated that ricin-immune complexes (RICs) induce the rapid onset of high-titer toxin-neutralizing Abs that persist for months. We now demonstrate that such responses are dependent on CD4+ T cell help, because treatment of mice with an anti-CD4 mAb abrogated the onset of RT-specific Abs following intranasal RICs exposure. To define the inflammatory environment associated with RIC exposure, we collected bronchoalveolar lavage fluid (BALF) and sera from mice 6, 12, and 18 h after they had received RT or RICs by the intranasal route. A 32-plex cytometric bead array revealed an inflammatory profile elicited by RT that was dominated by IL-6 (>1500-fold increase in BALF) and secondarily by KC (CXCL1), G-CSF, GM-CSF, and MCP-1. RICs induced inflammatory profiles in both BALF and serum response that were similar to RT, albeit at markedly reduced levels. These results demonstrate that RICs retain the capacity to induce local and systemic inflammatory cytokines/chemokines that, in turn, may influence Ag sampling and presentation in the lung mucosa and draining lymph nodes. A better understanding of the fate of immune complexes following intranasal delivery has implications for the development of mucosal vaccines for biothreats and emerging infectious diseases.


Asunto(s)
Administración Intranasal , Complejo Antígeno-Anticuerpo , Líquido del Lavado Bronquioalveolar , Ricina , Animales , Ricina/inmunología , Ricina/administración & dosificación , Ratones , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/química , Femenino , Complejo Antígeno-Anticuerpo/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Inmunización/métodos , Inflamación/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/administración & dosificación , Citocinas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
15.
Toxins (Basel) ; 16(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922132

RESUMEN

Ricin and abrin are highly potent plant-derived toxins, categorized as type II ribosome-inactivating proteins. High toxicity, accessibility, and the lack of effective countermeasures make them potential agents in bioterrorism and biowarfare, posing significant threats to public safety. Despite the existence of many effective analytical strategies for detecting these two lethal toxins, current methods are often hindered by limitations such as insufficient sensitivity, complex sample preparation, and most importantly, the inability to distinguish between biologically active and inactive toxin. In this study, a cytotoxicity assay was developed to detect active ricin and abrin based on their potent cell-killing capability. Among nine human cell lines derived from various organs, HeLa cells exhibited exceptional sensitivity, with limits of detection reaching 0.3 ng/mL and 0.03 ng/mL for ricin and abrin, respectively. Subsequently, toxin-specific neutralizing monoclonal antibodies MIL50 and 10D8 were used to facilitate the precise identification and differentiation of ricin and abrin. The method provides straightforward and sensitive detection in complex matrices including milk, plasma, coffee, orange juice, and tea via a simple serial-dilution procedure without any complex purification and enrichment steps. Furthermore, this assay was successfully applied in the unambiguous identification of active ricin and abrin in samples from OPCW biotoxin exercises.


Asunto(s)
Abrina , Anticuerpos Neutralizantes , Ricina , Ricina/inmunología , Ricina/toxicidad , Ricina/análisis , Abrina/inmunología , Abrina/toxicidad , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Monoclonales/inmunología , Animales
16.
Toxins (Basel) ; 16(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922138

RESUMEN

A certified reference material of ricin (CRM-LS-1) was produced by the EuroBioTox consortium to standardise the analysis of this biotoxin. This study established the N-glycan structures and proportions including their loci and occupancy of ricin CRM-LS-1. The glycan profile was compared with ricin from different preparations and other cultivars and isoforms. A total of 15 different oligomannosidic or paucimannosidic structures were identified in CRM-LS-1. Paucimannose was mainly found within the A-chain and oligomannose constituted the major glycan type of the B-chain. Furthermore, the novel primary structure variants E138 and D138 and four different C-termini of the A-chain as well as two B-chain variants V250 and F250 were elucidated. While the glycan proportions and loci were similar among all variants in CRM-LS-1 and ricin isoforms D and E of all cultivars analysed, a different stoichiometry for isoforms D and E and the amino acid variants were found. This detailed physicochemical characterization of ricin regarding the glycan profile and amino acid sequence variations yields unprecedented insight into the molecular features of this protein toxin. The variable attributes discovered within different cultivars present signature motifs and may allow discrimination of the biotoxin's origin that are important in molecular forensic profiling. In conclusion, our data of in-depth CRM-LS-1 characterization combined with the analysis of other cultivars is representative for known ricin variants.


Asunto(s)
Polisacáridos , Ricina , Ricina/genética , Ricina/química , Ricina/análisis , Polisacáridos/química , Polisacáridos/análisis , Estándares de Referencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/química
17.
Anal Biochem ; 692: 115580, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825159

RESUMEN

Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by E. coli (STEC) and Shigella dysenteriae are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.


Asunto(s)
Polarización de Fluorescencia , Ribosomas , Ricina , Ricina/antagonistas & inhibidores , Ricina/metabolismo , Ricina/química , Polarización de Fluorescencia/métodos , Ribosomas/metabolismo , Resonancia por Plasmón de Superficie , Toxina Shiga/antagonistas & inhibidores , Toxina Shiga/metabolismo , Toxina Shiga/química , Unión Competitiva , Unión Proteica , Toxina Shiga II/antagonistas & inhibidores , Toxina Shiga II/metabolismo , Toxina Shiga II/química
18.
Sci Rep ; 14(1): 11637, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773158

RESUMEN

Ricin, an extremely potent toxin produced from the seeds of castor plant, Ricinus communis, is ribosome-inactivating protein that blocks cell-protein synthesis. It is considered a biological threat due to worldwide availability of castor beans, massive quantities as a by-product of castor oil production, high stability and ease of production. The consequence of exposure to lethal dose of ricin was extensively described in various animal models. However, it is assumed that in case of aerosolized ricin bioterror attack, the majority of individuals would be exposed to sublethal doses rather than to lethal ones. Therefore, the purpose of current study was to assess short- and long-term effects on physiological parameters and function following sublethal pulmonary exposure. We show that in the short-term, sublethal exposure of mice to ricin resulted in acute lung injury, including interstitial pneumonia, cytokine storm, neutrophil influx, edema and cellular death. This damage was manifested in reduced lung performance and physiological function. Interestingly, although in the long-term, mice recovered from acute lung damage and restored pulmonary and physiological functionality, the reparative process was associated with lasting fibrotic lesions. Therefore, restriction of short-term acute phase of the disease and management of long-term pulmonary fibrosis by medical countermeasures is expected to facilitate the quality of life of exposed survivors.


Asunto(s)
Ricina , Animales , Ricina/toxicidad , Ratones , Pulmón/efectos de los fármacos , Pulmón/patología , Citocinas/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Femenino , Modelos Animales de Enfermedad
19.
PLoS One ; 19(5): e0302967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722908

RESUMEN

Ricin is a highly toxic protein, capable of inhibiting protein synthesis within cells, and is produced from the beans of the Ricinus communis (castor bean) plant. Numerous recent incidents involving ricin have occurred, many in the form of mailed letters resulting in both building and mail sorting facility contamination. The goal of this study was to assess the decontamination efficacy of several commercial off-the-shelf (COTS) cleaners and decontaminants (solutions of sodium hypochlorite [bleach], quaternary ammonium, sodium percarbonate, peracetic acid, and hydrogen peroxide) against a crude preparation of ricin toxin. The ricin was inoculated onto four common building materials (pine wood, drywall joint tape, countertop laminate, and industrial carpet), and the decontaminants were applied to the test coupons using a handheld sprayer. Decontamination efficacy was quantified using an in-vitro cytotoxicity assay to measure the quantity of bioactive ricin toxin extracted from test coupons as compared to the corresponding positive controls (not sprayed with decontaminant). Results showed that decontamination efficacy varied by decontaminant and substrate material, and that efficacy generally improved as the number of spray applications or contact time increased. The solutions of 0.45% peracetic acid and the 20,000-parts per million (ppm) sodium hypochlorite provided the overall best decontamination efficacy. The 0.45% peracetic acid solution achieved 97.8 to 99.8% reduction with a 30-min contact time.


Asunto(s)
Descontaminación , Ricina , Descontaminación/métodos , Hipoclorito de Sodio/farmacología , Hipoclorito de Sodio/química , Materiales de Construcción , Ácido Peracético/farmacología , Ácido Peracético/química , Peróxido de Hidrógeno/química , Animales , Desinfectantes/farmacología , Desinfectantes/química
20.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611715

RESUMEN

The plant-derived toxin ricin is classified as a type 2 ribosome-inactivating protein (RIP) and currently lacks effective clinical antidotes. The toxicity of ricin is mainly due to its ricin toxin A chain (RTA), which has become an important target for drug development. Previous studies have identified two essential binding pockets in the active site of RTA, but most existing inhibitors only target one of these pockets. In this study, we used computer-aided virtual screening to identify a compound called RSMI-29, which potentially interacts with both active pockets of RTA. We found that RSMI-29 can directly bind to RTA and effectively attenuate protein synthesis inhibition and rRNA depurination induced by RTA or ricin, thereby inhibiting their cytotoxic effects on cells in vitro. Moreover, RSMI-29 significantly reduced ricin-mediated damage to the liver, spleen, intestine, and lungs in mice, demonstrating its detoxification effect against ricin in vivo. RSMI-29 also exhibited excellent drug-like properties, featuring a typical structural moiety of known sulfonamides and barbiturates. These findings suggest that RSMI-29 is a novel small-molecule inhibitor that specifically targets ricin toxin A chain, providing a potential therapeutic option for ricin intoxication.


Asunto(s)
Ricina , Animales , Ratones , Proteínas Inactivadoras de Ribosomas Tipo 2 , Desarrollo de Medicamentos , Hidrolasas , Hígado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA