Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.860
Filtrar
1.
Front Neural Circuits ; 18: 1326609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947492

RESUMEN

Gamma oscillations nested in a theta rhythm are observed in the hippocampus, where are assumed to play a role in sequential episodic memory, i.e., memorization and retrieval of events that unfold in time. In this work, we present an original neurocomputational model based on neural masses, which simulates the encoding of sequences of events in the hippocampus and subsequent retrieval by exploiting the theta-gamma code. The model is based on a three-layer structure in which individual Units oscillate with a gamma rhythm and code for individual features of an episode. The first layer (working memory in the prefrontal cortex) maintains a cue in memory until a new signal is presented. The second layer (CA3 cells) implements an auto-associative memory, exploiting excitatory and inhibitory plastic synapses to recover an entire episode from a single feature. Units in this layer are disinhibited by a theta rhythm from an external source (septum or Papez circuit). The third layer (CA1 cells) implements a hetero-associative net with the previous layer, able to recover a sequence of episodes from the first one. During an encoding phase, simulating high-acetylcholine levels, the network is trained with Hebbian (synchronizing) and anti-Hebbian (desynchronizing) rules. During retrieval (low-acetylcholine), the network can correctly recover sequences from an initial cue using gamma oscillations nested inside the theta rhythm. Moreover, in high noise, the network isolated from the environment simulates a mind-wandering condition, randomly replicating previous sequences. Interestingly, in a state simulating sleep, with increased noise and reduced synapses, the network can "dream" by creatively combining sequences, exploiting features shared by different episodes. Finally, an irrational behavior (erroneous superimposition of features in various episodes, like "delusion") occurs after pathological-like reduction in fast inhibitory synapses. The model can represent a straightforward and innovative tool to help mechanistically understand the theta-gamma code in different mental states.


Asunto(s)
Ritmo Gamma , Imaginación , Modelos Neurológicos , Ritmo Teta , Ritmo Gamma/fisiología , Ritmo Teta/fisiología , Humanos , Imaginación/fisiología , Memoria/fisiología , Hipocampo/fisiología , Redes Neurales de la Computación , Animales
2.
NeuroRehabilitation ; 54(4): 677-690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905062

RESUMEN

BACKGROUND: Intermittent theta burst stimulation (iTBS) has demonstrated efficacy in patients with cognitive impairment. However, activation patterns and mechanisms of iTBS for post-stroke cognitive impairment (PSCI) remain insufficiently understood. OBJECTIVE: To investigate the activation patterns and potential benefits of using iTBS in patients with PSCI. METHODS: A total of forty-four patients with PSCI were enrolled and divided into an iTBS group (iTBS and cognitive training) or a control group (cognitive training alone). Outcomes were assessed based on the activation in functional near-infrared spectroscopy (fNIRS), as well as Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and the modified Barthel Index (MBI). RESULTS: Thirty-eight patients completed the interventions and assessments. Increased cortical activation was observed in the iTBS group after the interventions, including the right superior temporal gyrus (STG), left frontopolar cortex (FPC) and left orbitofrontal cortex (OFC). Both groups showed significant improvements in LOTCA and MBI after the interventions (p < 0.05). Furthermore, the iTBS group augmented superior improvement in the total score of MBI and LOTCA compared to the control group, especially in visuomotor organization and thinking operations (p < 0.05). CONCLUSION: iTBS altered activation patterns and improved cognitive function in patients with PSCI. The activation induced by iTBS may contribute to the improvement of cognitive function.


Asunto(s)
Disfunción Cognitiva , Espectroscopía Infrarroja Corta , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Persona de Mediana Edad , Disfunción Cognitiva/etiología , Disfunción Cognitiva/rehabilitación , Disfunción Cognitiva/terapia , Anciano , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Estimulación Magnética Transcraneal/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Ritmo Teta/fisiología
3.
Proc Natl Acad Sci U S A ; 121(25): e2321614121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857401

RESUMEN

The medial prefrontal cortex (mPFC) is a key brain structure for higher cognitive functions such as decision-making and goal-directed behavior, many of which require awareness of spatial variables including one's current position within the surrounding environment. Although previous studies have reported spatially tuned activities in mPFC during memory-related trajectory, the spatial tuning of mPFC network during freely foraging behavior remains elusive. Here, we reveal geometric border or border-proximal representations from the neural activity of mPFC ensembles during naturally exploring behavior, with both allocentric and egocentric boundary responses. Unlike most of classical border cells in the medial entorhinal cortex (MEC) discharging along a single wall, a large majority of border cells in mPFC fire particularly along four walls. mPFC border cells generate new firing fields to external insert, and remain stable under darkness, across distinct shapes, and in novel environments. In contrast to hippocampal theta entrainment during spatial working memory tasks, mPFC border cells rarely exhibited theta rhythmicity during spontaneous locomotion behavior. These findings reveal spatially modulated activity in mPFC, supporting local computation for cognitive functions involving spatial context and contributing to a broad spatial tuning property of cortical circuits.


Asunto(s)
Corteza Prefrontal , Ritmo Teta , Corteza Prefrontal/fisiología , Corteza Prefrontal/citología , Animales , Ritmo Teta/fisiología , Masculino , Ratones , Corteza Entorrinal/fisiología , Neuronas/fisiología , Hipocampo/fisiología , Memoria Espacial/fisiología , Ratones Endogámicos C57BL , Memoria a Corto Plazo/fisiología
4.
PeerJ ; 12: e17451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854799

RESUMEN

Locomotor adaptation to abrupt and gradual perturbations are likely driven by fundamentally different neural processes. The aim of this study was to quantify brain dynamics associated with gait adaptation to a gradually introduced gait perturbation, which typically results in smaller behavioral errors relative to an abrupt perturbation. Loss of balance during standing and walking elicits transient increases in midfrontal theta oscillations that have been shown to scale with perturbation intensity. We hypothesized there would be no significant change in anterior cingulate theta power (4-7 Hz) with respect to pre-adaptation when a gait perturbation is introduced gradually because the gradual perturbation acceleration and stepping kinematic errors are small relative to an abrupt perturbation. Using mobile electroencephalography (EEG), we measured gait-related spectral changes near the anterior cingulate, posterior cingulate, sensorimotor, and posterior parietal cortices as young, neurotypical adults (n = 30) adapted their gait to an incremental split-belt treadmill perturbation. Most cortical clusters we examined (>70%) did not exhibit changes in electrocortical activity between 2-50 Hz. However, we did observe gait-related theta synchronization near the left anterior cingulate cortex during strides with the largest errors, as measured by step length asymmetry. These results suggest gradual adaptation with small gait asymmetry and perturbation magnitude may not require significant cortical resources beyond normal treadmill walking. Nevertheless, the anterior cingulate may remain actively engaged in error monitoring, transmitting sensory prediction error information via theta oscillations.


Asunto(s)
Adaptación Fisiológica , Electroencefalografía , Marcha , Ritmo Teta , Humanos , Masculino , Femenino , Marcha/fisiología , Ritmo Teta/fisiología , Adaptación Fisiológica/fisiología , Adulto Joven , Adulto , Electroencefalografía/métodos , Equilibrio Postural/fisiología , Giro del Cíngulo/fisiología , Fenómenos Biomecánicos/fisiología , Caminata/fisiología
5.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38858839

RESUMEN

Children with attention-deficit/hyperactivity disorder show deficits in processing speed, as well as aberrant neural oscillations, including both periodic (oscillatory) and aperiodic (1/f-like) activity, reflecting the pattern of power across frequencies. Both components were suggested as underlying neural mechanisms of cognitive dysfunctions in attention-deficit/hyperactivity disorder. Here, we examined differences in processing speed and resting-state-Electroencephalogram neural oscillations and their associations between 6- and 12-year-old children with (n = 33) and without (n = 33) attention-deficit/hyperactivity disorder. Spectral analyses of the resting-state EEG signal using fast Fourier transform revealed increased power in fronto-central theta and beta oscillations for the attention-deficit/hyperactivity disorder group, but no differences in the theta/beta ratio. Using the parameterization method, we found a higher aperiodic exponent, which has been suggested to reflect lower neuronal excitation-inhibition, in the attention-deficit/hyperactivity disorder group. While fast Fourier transform-based theta power correlated with clinical symptoms for the attention-deficit/hyperactivity disorder group only, the aperiodic exponent was negatively correlated with processing speed across the entire sample. Finally, the aperiodic exponent was correlated with fast Fourier transform-based beta power. These results highlight the different and complementary contribution of periodic and aperiodic components of the neural spectrum as metrics for evaluation of processing speed in attention-deficit/hyperactivity disorder. Future studies should further clarify the roles of periodic and aperiodic components in additional cognitive functions and in relation to clinical status.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Encéfalo , Cognición , Electroencefalografía , Humanos , Niño , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Masculino , Femenino , Encéfalo/fisiopatología , Cognición/fisiología , Análisis de Fourier , Ondas Encefálicas/fisiología , Ritmo Teta/fisiología , Ritmo beta/fisiología
6.
J Neural Eng ; 21(3)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38834054

RESUMEN

Objective. Therapeutic brain stimulation is conventionally delivered using constant-frequency stimulation pulses. Several recent clinical studies have explored how unconventional and irregular temporal stimulation patterns could enable better therapy. However, it is challenging to understand which irregular patterns are most effective for different therapeutic applications given the massively high-dimensional parameter space.Approach. Here we applied many irregular stimulation patterns in a single neural circuit to demonstrate how they can enable new dimensions of neural control compared to conventional stimulation, to guide future exploration of novel stimulation patterns in translational settings. We optogenetically excited the septohippocampal circuit with constant-frequency, nested pulse, sinusoidal, and randomized stimulation waveforms, systematically varying their amplitude and frequency parameters.Main results.We first found equal entrainment of hippocampal oscillations: all waveforms provided similar gamma-power increase, whereas no parameters increased theta-band power above baseline (despite the mechanistic role of the medial septum in driving hippocampal theta oscillations). We then compared each of the effects of each waveform on high-dimensional multi-band activity states using dimensionality reduction methods. Strikingly, we found that conventional stimulation drove predominantly 'artificial' (different from behavioral activity) effects, whereas all irregular waveforms induced activity patterns that more closely resembled behavioral activity.Significance. Our findings suggest that irregular stimulation patterns are not useful when the desired mechanism is to suppress or enhance a single frequency band. However, novel stimulation patterns may provide the greatest benefit for neural control applications where entraining a particular mixture of bands (e.g. if they are associated with different symptoms) or behaviorally-relevant activity is desired.


Asunto(s)
Hipocampo , Optogenética , Optogenética/métodos , Hipocampo/fisiología , Animales , Ritmo Teta/fisiología , Masculino
7.
Dev Cogn Neurosci ; 67: 101404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852382

RESUMEN

The theta band is one of the most prominent frequency bands in the electroencephalography (EEG) power spectrum and presents an interesting paradox: while elevated theta power during resting state is linked to lower cognitive abilities in children and adolescents, increased theta power during cognitive tasks is associated with higher cognitive performance. Why does theta power, measured during resting state versus cognitive tasks, show differential correlations with cognitive functioning? This review provides an integrated account of the functional correlates of theta across different contexts. We first present evidence that higher theta power during resting state is correlated with lower executive functioning, attentional abilities, language skills, and IQ. Next, we review research showing that theta power increases during memory, attention, and cognitive control, and that higher theta power during these processes is correlated with better performance. Finally, we discuss potential explanations for the differential correlations between resting/task-related theta and cognitive functioning, and offer suggestions for future research in this area.


Asunto(s)
Cognición , Electroencefalografía , Ritmo Teta , Humanos , Ritmo Teta/fisiología , Cognición/fisiología , Electroencefalografía/métodos , Niño , Adolescente , Atención/fisiología , Descanso/fisiología , Función Ejecutiva/fisiología , Encéfalo/fisiología
8.
Neuropsychologia ; 199: 108905, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38740179

RESUMEN

Linguistic research showed that the depth of syntactic embedding is reflected in brain theta power. Here, we test whether this also extends to non-linguistic stimuli, specifically music. We used a hierarchical model of musical syntax to continuously quantify two types of expert-annotated harmonic dependencies throughout a piece of Western classical music: prolongation and preparation. Prolongations can roughly be understood as a musical analogue to linguistic coordination between constituents that share the same function (e.g., 'pizza' and 'pasta' in 'I ate pizza and pasta'). Preparation refers to the dependency between two harmonies whereby the first implies a resolution towards the second (e.g., dominant towards tonic; similar to how the adjective implies the presence of a noun in 'I like spicy … '). Source reconstructed MEG data of sixty-five participants listening to the musical piece was then analysed. We used Bayesian Mixed Effects models to predict theta envelope in the brain, using the number of open prolongation and preparation dependencies as predictors whilst controlling for audio envelope. We observed that prolongation and preparation both carry independent and distinguishable predictive value for theta band fluctuation in key linguistic areas such as the Angular, Superior Temporal, and Heschl's Gyri, or their right-lateralised homologues, with preparation showing additional predictive value for areas associated with the reward system and prediction. Musical expertise further mediated these effects in language-related brain areas. Results show that predictions of precisely formalised music-theoretical models are reflected in the brain activity of listeners which furthers our understanding of the perception and cognition of musical structure.


Asunto(s)
Percepción Auditiva , Magnetoencefalografía , Música , Ritmo Teta , Humanos , Ritmo Teta/fisiología , Masculino , Femenino , Percepción Auditiva/fisiología , Adulto , Adulto Joven , Estimulación Acústica , Teorema de Bayes , Encéfalo/fisiología
9.
J Sports Sci ; 42(8): 665-675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38780523

RESUMEN

Prior studies have shown that experts possess an excellent ability for action anticipation. However, it is not clear how experts process the discrepancies between predicted outcomes and actual outcomes. Based on Bayesian theory, Experiment 1 in the current study explored this question by categorizing unexpected outcomes into gradually increasing discrepancies and comparing the performance of experts and novices on a congruence discrimination task. Our behavioral analysis revealed that experts outperformed novices significantly in detecting these discrepancies. The following electroencephalogram study in Experiment 2 was conducted focused exclusively on experts to examine the role of theta wave oscillations within the mid-frontal cortex in processing varying levels of discrepancy. The results showed that reaction time and theta oscillations gradually increased as the magnitude of discrepancy increased. These findings indicate that compared to the novices, experts have a better ability to perceptual the discrepancy. Also, the magnitude of discrepancies induced an increase in mid-frontal theta in experts, providing greater flexibility in their response strategies.


Asunto(s)
Adaptación Psicológica , Electroencefalografía , Tiempo de Reacción , Tenis , Humanos , Masculino , Tiempo de Reacción/fisiología , Adulto Joven , Tenis/fisiología , Tenis/psicología , Ritmo Teta/fisiología , Femenino , Teorema de Bayes , Anticipación Psicológica/fisiología , Adulto , Lóbulo Frontal/fisiología , Rendimiento Atlético/fisiología , Rendimiento Atlético/psicología , Encéfalo/fisiología , Habilidades de Afrontamiento
10.
Cortex ; 175: 28-40, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691923

RESUMEN

The angular gyrus (AG) and posterior cingulate cortex (PCC) demonstrate extensive structural and functional connectivity with the hippocampus and other core recollection network regions. Consequently, recent studies have explored neuromodulation targeting these and other regions as a potential strategy for restoring function in memory disorders such as Alzheimer's Disease. However, determining the optimal approach for neuromodulatory devices requires understanding how parameters like selected stimulation site, cognitive state during modulation, and stimulation duration influence the effects of deep brain stimulation (DBS) on electrophysiological features relevant to episodic memory. We report experimental data examining the effects of high-frequency stimulation delivered to the AG or PCC on hippocampal theta oscillations during the memory encoding (study) or retrieval (test) phases of an episodic memory task. Results showed selective enhancement of anterior hippocampal slow theta oscillations with stimulation of the AG preferentially during memory retrieval. Conversely, stimulation of the PCC attenuated slow theta oscillations. We did not observe significant behavioral effects in this (open-loop) stimulation experiment, suggesting that neuromodulation strategies targeting episodic memory performance may require more temporally precise stimulation approaches.


Asunto(s)
Cognición , Estimulación Encefálica Profunda , Hipocampo , Lóbulo Parietal , Ritmo Teta , Estimulación Encefálica Profunda/métodos , Ritmo Teta/fisiología , Hipocampo/fisiología , Masculino , Humanos , Lóbulo Parietal/fisiología , Cognición/fisiología , Memoria Episódica , Femenino , Giro del Cíngulo/fisiología , Adulto
11.
Eur J Neurosci ; 60(1): 3643-3658, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698531

RESUMEN

The pedunculopontine tegmental nucleus of the brainstem (PPTg) has extensive interconnections and neuronal-behavioural correlates. It is implicated in movement control and sensorimotor integration. We investigated whether single neuron activity in freely moving rats is correlated with components of skilled forelimb movement, and whether individual neurons respond to both motor and sensory events. We found that individual PPTg neurons showed changes in firing rate at different times during the reach. This type of temporally specific modulation is like activity seen elsewhere in voluntary movement control circuits, such as the motor cortex, and suggests that PPTg neural activity is related to different specific events occurring during the reach. In particular, many neuronal modulations were time-locked to the end of the extension phase of the reach, when fine distal movements related to food grasping occur, indicating strong engagement of PPTg in this phase of skilled individual forelimb movements. In addition, some neurons showed brief periods of apparent oscillatory firing in the theta range at specific phases of the reach-to-grasp movement. When movement-related neurons were tested with tone stimuli, many also responded to this auditory input, allowing for sensorimotor integration at the cellular level. Together, these data extend the concept of the PPTg as an integrative structure in generation of complex movements, by showing that this function extends to the highly coordinated control of the forelimb during skilled reach to grasp movement, and that sensory and motor-related information converges on single neurons, allowing for direct integration at the cellular level.


Asunto(s)
Neuronas , Núcleo Tegmental Pedunculopontino , Ritmo Teta , Animales , Núcleo Tegmental Pedunculopontino/fisiología , Neuronas/fisiología , Ratas , Masculino , Ritmo Teta/fisiología , Movimiento/fisiología , Miembro Anterior/fisiología , Ratas Long-Evans , Potenciales de Acción/fisiología , Estimulación Acústica/métodos
12.
J Affect Disord ; 359: 269-276, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795776

RESUMEN

Changes in EEG have been reported in both major depressive disorder (MDD) and bipolar disorder (BD). Specifically, power changes in EEG alpha and theta frequency bands during rest and task are known in both disorders. This leaves open whether there are changes in yet another component of the electrophysiological EEG signal, namely phase-related processes that may allow for distinguishing MDD and BD. For that purpose, we investigate EEG-based spontaneous phase in the resting state of MDD, BD and healthy controls. Our main findings show: (i) decreased spontaneous phase variability in frontal theta of both MDD and BD compared to HC; (ii) decreased spontaneous phase variability in central-parietal alpha in MDD compared to both BD and HC; (iii) increased delays or lags of alpha phase cycles in MDD (but not in BD), which (iv) correlate with the decreased phase variability in MDD. Together, we show similar (decreased frontal theta variability) and distinct (decreased central-parietal alpha variability with increased lags or delays) findings in the spontaneous phase dynamics of MDD and BD. This suggests potential relevance of theta and alpha phase dynamics in distinguishing MDD and BD in clinical differential-diagnosis.


Asunto(s)
Ritmo alfa , Trastorno Bipolar , Trastorno Depresivo Mayor , Electroencefalografía , Lóbulo Frontal , Ritmo Teta , Humanos , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/diagnóstico , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico , Adulto , Masculino , Femenino , Ritmo Teta/fisiología , Ritmo alfa/fisiología , Lóbulo Frontal/fisiopatología , Diagnóstico Diferencial , Persona de Mediana Edad , Lóbulo Parietal/fisiopatología , Adulto Joven , Descanso/fisiología , Corteza Cerebral/fisiopatología
13.
Neurosci Lett ; 834: 137847, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38821200

RESUMEN

When two conflicting images are presented to each eye, a phenomenon called binocular rivalry occurs in which we initially perceive one image, and then our perception switches to the other over time. An enhancement of θ-band phase coherence in visual mismatch oscillatory response (vMOR) is reported to be involved in the facilitation of perceptual alternation when the deviant stimulus is presented unconsciously. In this study, we investigated the modulation effect of θ-band transcranial alternating current stimulation (tACS) on perceptual alternation in binocular rivalry, with a focus on its relationship with the θ-band vMOR. The results showed that tACS had no significant effect on the mean proportion of perceptual alternation. Analyzing the differential effects of the modulation, however, we found a positive correlation between the increase in inter-trial phase coherence of the vMOR and the promotion of perceptual alternation under the unconscious deviant condition. Additionally, our findings indicate that the θ-band phase synchrony between frontal and occipital electrode sides, as measured by the phase lag index, is implicated in perceptual alternation, with an increase (decrease) in connection density observed in participants whose perceptual alternation was increased (decreased) by tACS. These results support the hypothesis that deviant visual stimuli evoke θ-band phase synchrony between the frontal and occipital cortices, thereby enhancing perceptual alternation in binocular rivalry.


Asunto(s)
Estimulación Luminosa , Ritmo Teta , Estimulación Transcraneal de Corriente Directa , Visión Binocular , Percepción Visual , Humanos , Masculino , Femenino , Adulto Joven , Visión Binocular/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Percepción Visual/fisiología , Adulto , Ritmo Teta/fisiología , Estimulación Luminosa/métodos , Sincronización Cortical/fisiología
14.
J Neurophysiol ; 131(6): 1240-1249, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691013

RESUMEN

Although many patients with mild traumatic brain injury (mTBI) suffer from postconcussional syndrome (PCS) including abnormal emotional responses, most conventional imaging studies fail to detect any causative brain lesion. We hypothesized that event-related electroencephalography (EEG) recordings with time-frequency analysis would show a distinguishable pattern in patients with mTBI with PCS compared with normal healthy controls. EEG signals were collected from a total of 18 subjects: eight patients with mTBI with PCS and 10 healthy control subjects. The signals were recorded while the subjects were presented with affective visual stimuli, including neutral, pleasant, and unpleasant emotional cues. Event-related spectral perturbation analysis was performed to calculate frontal midline theta activity and posterior midline gamma activity, followed by statistical analysis to identify whether patients with mTBI with PCS have distinct patterns of theta or gamma oscillations in response to affective stimuli. Compared with the healthy control group, patients with mTBI with PCS did not show a significant increase in the power of frontal theta activity in response to the pleasant stimuli, indicating less susceptibility toward pleasant cues. Moreover, the patient group showed attenuated gamma oscillatory activity, with no clear alteration in gamma oscillations in response to either pleasant or unpleasant cues. This study demonstrates that patients with mTBI with PCS exhibited altered patterns of oscillatory activities in the theta and gamma bands in response to affective visual stimuli compared with the normal control group. The current finding implicates that these distinguishable patterns of brain oscillation may represent the mechanism behind various psychiatric symptoms in patients with mTBI.NEW & NOTEWORTHY Patients with mild traumatic brain injury (mTBI) with postconcussional syndrome (PCS) exhibited altered patterns of changes in oscillatory activities in the theta and gamma bands in response to visual affective stimuli. Distinguishable patterns of brain oscillation may represent the mechanism behind various psychiatric symptoms in patients with mTBI.


Asunto(s)
Ritmo Gamma , Síndrome Posconmocional , Ritmo Teta , Humanos , Ritmo Gamma/fisiología , Masculino , Adulto , Femenino , Ritmo Teta/fisiología , Síndrome Posconmocional/fisiopatología , Persona de Mediana Edad , Estimulación Luminosa , Emociones/fisiología , Adulto Joven , Percepción Visual/fisiología , Electroencefalografía
15.
Int J Psychophysiol ; 201: 112355, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718899

RESUMEN

Processes typically encompassed by working memory (WM) include encoding, retention, and retrieval of information. Previous research has demonstrated that motivation can influence WM performance, although the specific WM processes affected by motivation are not yet fully understood. In this study, we investigated the effects of motivation on different WM processes, examining how task difficulty modulates these effects. We hypothesized that motivation level and personality traits of the participants (N = 48, 32 females; mean age = 21) would modulate the parietal alpha and frontal theta electroencephalography (EEG) correlates of WM encoding, retention, and retrieval phases of the Sternberg task. This effect was expected to be more pronounced under conditions of very high task difficulty. We found that increasing difficulty led to reduced accuracy and increased response time, but no significant relationship was found between motivation and accuracy. However, EEG data revealed that motivation influenced WM processes, as indicated by changes in alpha and theta oscillations. Specifically, higher levels of the Resilience trait-associated with mental toughness, hardiness, self-efficacy, achievement motivation, and low anxiety-were related to increased alpha desynchronization during encoding and retrieval. Increased scores of Subjective Motivation to perform well in the task were related to enhanced frontal midline theta during retention. Additionally, these effects were significantly stronger under conditions of high difficulty. These findings provide insights into the specific WM processes that are influenced by motivation, and underscore the importance of considering both task difficulty and intrinsic motivation in WM research.


Asunto(s)
Electroencefalografía , Memoria a Corto Plazo , Motivación , Humanos , Femenino , Memoria a Corto Plazo/fisiología , Motivación/fisiología , Masculino , Adulto Joven , Adulto , Ritmo alfa/fisiología , Ritmo Teta/fisiología , Personalidad/fisiología , Adolescente
16.
Cortex ; 176: 94-112, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763111

RESUMEN

The ability to weigh a reward against the effort required to acquire it is critical for decision-making. However, extant experimental paradigms oftentimes confound increased effort demand with decreased reward probability, thereby obscuring neural correlates underlying these cognitive processes. To resolve this issue, we designed novel tasks that disentangled probability of success - and therefore reward probability - from effort demand. In Experiment 1, reward magnitude and effort demand were varied while reward probability was kept constant. In Experiment 2, effort demand and reward probability were varied while reward magnitude remained fixed. Electroencephalogram (EEG) data was recorded to explore how frontal midline theta (FMT; an electrophysiological index of mPFC function) and component P3 (an index of incentive salience) respond to effort demand, and reward magnitude and probability. We found no evidence that FMT tracked effort demands or net value during cue evaluation. At feedback, however, FMT power was enhanced for high compared to low effort trials, but not modulated by reward magnitude or probability. Conversely, P3 was sensitive to reward magnitude and probability at both cue and feedback phases and only integrated expended effort costs at feedback, such that P3 amplitudes continued to scale with reward magnitude and probability but were also increased for high compared to low effort reward feedback. These findings suggest that, when likelihood of success is equal, FMT power does not track net value of prospective effort-based rewards. Instead, expended cognitive effort potentiates FMT power and enhances the saliency of rewards at feedback. SIGNIFICANCE STATEMENT: The way the brain weighs rewards against the effort required to achieve them is critical for understanding motivational disorders. Current paradigms confound increased effort demand with decreased reward probability, making it difficult to disentangle neural activity associated with effort costs from those associated with reward likelihood. Here, we explored the temporal dynamics of effort-based reward (via frontal midline theta (FMT) and component P3) while participants underwent a novel paradigm that kept probability of reward constant between mental effort demand conditions. Our findings suggest that the FMT does not track net value and that expended effort enhances, instead of attenuates, the saliency of rewards.


Asunto(s)
Toma de Decisiones , Electroencefalografía , Recompensa , Ritmo Teta , Humanos , Masculino , Femenino , Ritmo Teta/fisiología , Adulto Joven , Adulto , Toma de Decisiones/fisiología , Motivación/fisiología , Probabilidad , Lóbulo Frontal/fisiología , Señales (Psicología) , Corteza Prefrontal/fisiología , Adolescente
17.
Clin Neurophysiol ; 163: 56-67, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703700

RESUMEN

OBJECTIVE: How abnormal brain signaling impacts cognition in autism spectrum disorder (ASD) remained elusive. This study aimed to investigate the local and global brain signaling in ASD indicated by theta-band functional excitation-inhibition (fE/I) ratio and explored psychophysiological relationships between fE/I, cognitive deficits, and ASD symptomatology. METHODS: A total of 83 ASD and typically developing (TD) individuals participated in this study. Participants' interference control and set-shifting abilities were assessed. Resting-state electroencephalography (EEG) was used for estimating theta-band fE/I ratio. RESULTS: ASD individuals (n = 31 without visual EEG abnormality; n = 22 with visual EEG abnormality) generally performed slower in a cognitive task tapping interference control and set-maintenance abilities, but only ASD individuals with visually abnormal EEG performed significantly slower than their TD counterparts (Bonferroni-corrected ps < .001). Heightened theta-band fE/I ratios at the whole-head level, left and right hemispheres were observed in the ASD subgroup without visual EEG abnormality only (Bonferroni-corrected ps < .001), which remained highly significant when only data from medication-naïve participants were analyzed. In addition, higher left hemispheric fE/I ratios in ASD individuals without visual EEG abnormality were significantly correlated with faster interference control task performance, in turn faster reaction time was significantly associated with less severe restricted, repetitive behavior (Bonferroni-corrected ps ≤ .0017). CONCLUSIONS: Differential theta-band fE/I within the ASD population. Heightened theta-band fE/I in ASD without visual EEG abnormality may be associated with more efficient filtering of distractors and a less severe ASD symptom manifestation. SIGNIFICANCE: Brain signaling, indicated by theta-band fE/I, was different in ASD subgroups. Only ASD with visually-normal EEG showed heightened theta-band fE/I, which was associated with faster processing of visual distractors during a cognitive task. More efficient distractor filtering was associated with less restricted, repetitive behaviors.


Asunto(s)
Electroencefalografía , Ritmo Teta , Humanos , Masculino , Femenino , Ritmo Teta/fisiología , Electroencefalografía/métodos , Adulto , Adolescente , Adulto Joven , Trastorno del Espectro Autista/fisiopatología , Pruebas Neuropsicológicas , Niño
18.
Neurosci Biobehav Rev ; 162: 105696, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723734

RESUMEN

Human brain activity consists of different frequency bands associated with varying functions. Oscillatory activity of frontal brain regions in the theta range (4-8 Hz) is linked to cognitive processing and can be modulated by neurofeedback - a technique where participants receive real-time feedback about their brain activity and learn to modulate it. However, criticism of this technique evolved, and high heterogeneity of study designs complicates a valid evaluation of its effectiveness. This meta-analysis provides the first systematic overview over studies attempting to modulate frontal midline theta with neurofeedback in healthy human participants. Out of 1261 articles screened, 14 studies were eligible for systematic review and 11 for quantitative meta-analyses. Studies were evaluated following the DIAD model and the PRISMA guidelines. A significant across-study effect of medium size (Hedges' g = .66; 95%-CI [-0.62, 1.73]) with substantial between-study heterogeneity (Q(16) = 167.43, p < .001) was observed and subanalysis revealed effective frontal midline theta upregulation. We discuss moderators of effect sizes and provide guidelines for future research in this dynamic field.


Asunto(s)
Lóbulo Frontal , Neurorretroalimentación , Ritmo Teta , Humanos , Ritmo Teta/fisiología , Neurorretroalimentación/fisiología , Neurorretroalimentación/métodos , Lóbulo Frontal/fisiología
19.
Nature ; 629(8012): 630-638, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720085

RESUMEN

Hippocampal representations that underlie spatial memory undergo continuous refinement following formation1. Here, to track the spatial tuning of neurons dynamically during offline states, we used a new Bayesian learning approach based on the spike-triggered average decoded position in ensemble recordings from freely moving rats. Measuring these tunings, we found spatial representations within hippocampal sharp-wave ripples that were stable for hours during sleep and were strongly aligned with place fields initially observed during maze exploration. These representations were explained by a combination of factors that included preconfigured structure before maze exposure and representations that emerged during θ-oscillations and awake sharp-wave ripples while on the maze, revealing the contribution of these events in forming ensembles. Strikingly, the ripple representations during sleep predicted the future place fields of neurons during re-exposure to the maze, even when those fields deviated from previous place preferences. By contrast, we observed tunings with poor alignment to maze place fields during sleep and rest before maze exposure and in the later stages of sleep. In sum, the new decoding approach allowed us to infer and characterize the stability and retuning of place fields during offline periods, revealing the rapid emergence of representations following new exploration and the role of sleep in the representational dynamics of the hippocampus.


Asunto(s)
Hipocampo , Sueño , Memoria Espacial , Animales , Ratas , Potenciales de Acción/fisiología , Teorema de Bayes , Hipocampo/citología , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Modelos Neurológicos , Neuronas/fisiología , Sueño/fisiología , Memoria Espacial/fisiología , Ritmo Teta/fisiología , Vigilia/fisiología
20.
Clin EEG Neurosci ; 55(4): 426-444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38751127

RESUMEN

Background. EEG is an effective tool due to its ability to capture and interpret the changes in brain activity under different situations. Quantitative EEG (qEEG) can be essential in evaluating and treating children's learning problems. Methods and procedure. Fifty school-going children with difficulty in learning were studied. Analysis of the difference between pre-intervention and postintervention EEG power ratio of frequency bands, including Theta to Beta and Theta to Alpha, while eyes-closed, eyes-open, hyperventilation, writing, and reading conditions and the values for relative powers were calculated. The study correlated postintervention theta/beta ratio (TBR) and theta/alpha ratio (TAR) values with behavioral measures. Results. The findings suggested that there was a significant difference in pre-intervention and postintervention relative TAR and TBR power values. A significant increase of TAR and TBR power values was observed in eyes-closed (resting), hyperventilation, writing, and reading task conditions, indicative of a state of arousal at FP1FP2, T3T4, and O1O2 scalp locations. During eye open conditions, the TAR and TBR were significantly low at all 3 scalp locations, indicating a relaxed, conscious, and aware state of mind. Postintervention TAR and TBR values were significantly correlated with behavioral measures during 5 task conditions on several scalp locations. Conclusion. These quantitative electroencephalogram findings in children with learning problems indicate that with the increased complexity of the cognitive tasks, TAR and TBR increase, while postintervention, children could attain a relaxed and conscious state of mind during eyes-open condition.


Asunto(s)
Electroencefalografía , Discapacidades para el Aprendizaje , Humanos , Niño , Masculino , Femenino , Electroencefalografía/métodos , Discapacidades para el Aprendizaje/fisiopatología , Cognición/fisiología , Ritmo Teta/fisiología , Terapia Cognitivo-Conductual/métodos , Encéfalo/fisiología , Encéfalo/fisiopatología , Instituciones Académicas , Descanso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA