Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.506
Filtrar
1.
J Infect ; 88(6): 106169, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697269

RESUMEN

Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0 % (95 % CI 24.0-39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0 % (95 % CI 12.0-20.0), 10 % (95 % CI 6-15), 4.0 % (95 % CI 2.0-6.0), 4 % (95 % CI 3-6), and 2.3 % (95 % CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (39 %), followed by G3P[8] (11.7 %), G9P[8] (8.7 %), and G2P[4] (7.1 %); although, unusual genotypes were also observed, including G3P[6] (2.7 %), G8P[6] (1.7 %), G1P[6] (1.5 %), G10P[8] (0.9 %), G8P[4] (0.5 %), and G4P[8] (0.4 %). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6 %, 613/725 vs 14.9 %, 108/725), with the GII.4 (79.3 %) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.


Asunto(s)
Gastroenteritis , Humanos , Gastroenteritis/virología , Gastroenteritis/epidemiología , Preescolar , Lactante , África/epidemiología , Prevalencia , Diarrea/virología , Diarrea/epidemiología , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Recién Nacido , Genotipo , Virosis/epidemiología , Virosis/virología , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación
2.
J Med Virol ; 96(5): e29681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38773815

RESUMEN

Rotavirus gastroenteritis is accountable for an estimated 128 500 deaths among children younger than 5 years worldwide, and the majority occur in low-income countries. Although the clinical trials of rotavirus vaccines in Bangladesh revealed a significant reduction of severe rotavirus disease by around 50%, the vaccines are not yet included in the routine immunization program. The present study was designed to provide data on rotavirus diarrhea with clinical profiles and genotypes before (2017-2019) and during the COVID-19 pandemic period (2020-2021). Fecal samples were collected from 2% of the diarrheal patients at icddr,b Dhaka hospital of all ages between January 2017 and December 2021 and were tested for VP6 rotavirus antigen using ELISA. The clinical manifestations such as fever, duration of diarrhea and hospitalization, number of stools, and dehydration and so on were collected from the surveillance database (n = 3127). Of the positive samples, 10% were randomly selected for genotyping using Sanger sequencing method. A total of 12 705 fecal samples were screened for rotavirus A antigen by enzyme immunoassay. Overall, 3369 (27%) were rotavirus antigen-positive, of whom children <2 years had the highest prevalence (88.6%). The risk of rotavirus A infection was 4.2 times higher in winter than in summer. Overall, G3P[8] was the most prominent genotype (45.3%), followed by G1P[8] (32.1%), G9P[8] (6.8%), and G2P[4] (6.1%). The other unusual combinations, such as G1P[4], G1P[6], G2P[6], G3P[4], G3P[6], and G9P[6], were also present. Genetic analysis on Bangladeshi strains revealed that the selection pressure (dN/dS) was estimated as <1. The number of hospital visits showed a 37% drop during the COVID-19 pandemic relative to the years before the pandemic. Conversely, there was a notable increase in the rate of rotavirus positivity during the pandemic (34%, p < 0.00) compared to the period before COVID-19 (23%). Among the various clinical symptoms, only the occurrence of watery stool significantly increased during the pandemic. The G2P[4] strain showed a sudden rise (19%) in 2020, which then declined in 2021. In the same year, G1P[8] was more prevalent than G3P[8] (40% vs. 38%, respectively). The remaining genotypes were negligible and did not exhibit much fluctuation. This study reveals that the rotavirus burden remained high during the COVID-19 prepandemic and pandemic in Bangladesh. Considering the lack of antigenic variations between the circulating and vaccine-targeted strains, integrating the vaccine into the national immunization program could reduce the prevalence of the disease, the number of hospitalizations, and the severity of cases.


Asunto(s)
COVID-19 , Heces , Genotipo , Infecciones por Rotavirus , Rotavirus , Humanos , Bangladesh/epidemiología , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Preescolar , Lactante , COVID-19/epidemiología , COVID-19/virología , COVID-19/prevención & control , Heces/virología , Femenino , Masculino , Niño , Diarrea/virología , Diarrea/epidemiología , Adolescente , Adulto , Antígenos Virales/genética , Recién Nacido , Gastroenteritis/epidemiología , Gastroenteritis/virología , Adulto Joven , Prevalencia , SARS-CoV-2/genética , SARS-CoV-2/clasificación , Persona de Mediana Edad , Estaciones del Año
3.
Vet Ital ; 60(1)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38722261

RESUMEN

Obtaining the complete or near-complete genome sequence of pathogens is becoming increasingly crucial for epidemiology, virology, clinical science and practice. This study aimed to detect viruses and conduct genetic characterization of genomes using metagenomics in order to identify the viral agents responsible for a calf's diarrhoea. The findings showed that bovine coronavirus (BCoV) and bovine rotavirus (BRV) are the primary viral agents responsible for the calf's diarrhoea. The current study successfully obtained the first-ever near-complete genome sequence of a bovine coronavirus (BCoV) from Türkiye. The G+C content was 36.31% and the genetic analysis revealed that the Turkish BCoV strain is closely related to respiratory BCoV strains from France and Ireland, with high nucleotide sequence and amino acid identity and similarity. In the present study, analysis of the S protein of the Turkish BCoV strain revealed the presence of 13 amino acid insertions, one of which was found to be shared with the French respiratory BCoV. The study also identified a BRV strain through metagenomic analysis and detected multiple mutations within the structural and non-structural proteins of the BRV strain, suggesting that the BRV Kirikkale strain may serve as an ancestor for reassortants with interspecies transmission, especially involving rotaviruses that infect rabbits and giraffes.


Asunto(s)
Coronavirus Bovino , Genoma Viral , Metagenómica , Rotavirus , Animales , Metagenómica/métodos , Coronavirus Bovino/genética , Coronavirus Bovino/aislamiento & purificación , Bovinos , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Turquía , Enfermedades de los Bovinos/virología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/virología
4.
J Med Virol ; 96(5): e29650, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727133

RESUMEN

To analyze the epidemiological characteristics of group A rotavirus (RVA) diarrhea in Beijing between 2019 and 2022 and evaluate the effectiveness of the RV5 vaccine. Stool specimens were collected from patients with acute diarrhea, and RVA was detected and genotyped. The whole genome of RVA was sequenced by fragment amplification and Sanger sequencing. Phylogenetic trees were constructed using Bayesian and maximum likelihood methods. Descriptive epidemiological methods were used to analyze the characteristics of RVA diarrhea. Test-negative design was used to evaluate the vaccine effectiveness (VE) of the RV5. Compared with 2011-2018, RVA-positive rates in patients with acute diarrhea under 5 years of age and adults decreased significantly between 2019 and 2022, to 9.45% (249/634) and 3.66% (220/6016), respectively. The predominant genotype of RVA had changed from G9-VIP[8]-III between 2019 and 2021 to G8-VP[8]-III in 2022, and P[8] sequences from G8-VP[8]-III strains formed a new branch called P[8]-IIIb. The complete genotype of G8-VP[8]-III was G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. The VE of 3 doses of RV5 was 90.4% (95% CI: 28.8%-98.7%) against RVA diarrhea. The prevalence of RVA decreased in Beijing between 2019 and 2022, and the predominant genotype changed to G8P[8], which may be related to RV5 vaccination. Continuous surveillance is necessary to evaluate vaccine effectiveness and improve vaccine design.


Asunto(s)
Diarrea , Heces , Genotipo , Filogenia , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Rotavirus/genética , Rotavirus/clasificación , Rotavirus/inmunología , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/prevención & control , Diarrea/virología , Diarrea/epidemiología , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/inmunología , Preescolar , Prevalencia , Beijing/epidemiología , Masculino , Lactante , Femenino , Adulto , Heces/virología , Persona de Mediana Edad , Niño , Adulto Joven , Adolescente , Eficacia de las Vacunas , Anciano , Genoma Viral , Recién Nacido
5.
Rev Assoc Med Bras (1992) ; 70(4): e20230972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716934

RESUMEN

OBJECTIVE: Our objective was to determine the frequency of rotavirus, adenovirus, and rota-adenovirus co-infections and investigate the fecal leukocyte rate associated with these infections in patients with gastroenteritis. METHODS: This is a retrospective study. We identified patients who were admitted to the pediatric emergency department with acute gastroenteritis and had their stool samples tested for rotavirus and/or adenovirus antigens. Among them, we determined the individuals who underwent stool microscopy tests on the same day and recorded their results. RESULTS: A total of 1,577 patients who underwent testing for rotavirus and/or adenovirus antigens in their stool samples were identified. Among these patients, 583 individuals had concurrent fecal microscopy results. The prevalence of solely rotavirus antigen positivity was 16.4%, solely adenovirus antigen positivity was 2.9%, and rota-adenovirus co-infections were detected in 1.8% of the children. The fecal leukocyte rates in children infected with rotavirus, adenovirus, and rota-adenovirus co-infections were 4.8, 13.3, and 88.9%, respectively. CONCLUSION: The presence of fecal leukocytes was detected at a high rate in cases of viral gastroenteritis, especially in rota-adenovirus co-infections. Therefore, clinicians should not consider only bacterial pathogens in the presence of fecal leukocytes.


Asunto(s)
Coinfección , Heces , Gastroenteritis , Infecciones por Rotavirus , Humanos , Gastroenteritis/virología , Gastroenteritis/epidemiología , Estudios Retrospectivos , Heces/virología , Femenino , Masculino , Preescolar , Lactante , Infecciones por Rotavirus/epidemiología , Enfermedad Aguda , Coinfección/epidemiología , Niño , Recuento de Leucocitos , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenoviridae/epidemiología , Leucocitos , Rotavirus/aislamiento & purificación , Rotavirus/inmunología , Adenoviridae/aislamiento & purificación
6.
J Med Virol ; 96(5): e29679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767190

RESUMEN

Acute gastroenteritis (AGE) represents a world public health relevant problem especially in children. Enteric viruses are the pathogens mainly involved in the episodes of AGE, causing about 70.00% of the cases. Apart from well-known rotavirus (RVA), adenovirus (AdV) and norovirus (NoV), there are various emerging viral pathogens potentially associated with AGE episodes. In this study, the presence of ten different enteric viruses was investigated in 152 fecal samples collected from children hospitalized for gastroenteritis. Real time PCR results showed that 49.3% of them were positive for viral detection with the following prevalence: norovirus GII 19.7%, AdV 15.8%, RVA 10.5%, human parechovirus (HPeV) 5.3%, enterovirus (EV) 3.3%, sapovirus (SaV) 2.6%. Salivirus (SalV), norovirus GI and astrovirus (AstV) 1.3% each, aichivirus (AiV) found in only one patient. In 38.2% of feces only one virus was detected, while co-infections were identified in 11.8% of the cases. Among young patients, 105 were ≤5 years old and 56.0% tested positive for viral detection, while 47 were >5 years old with 40.0% of them infected. Results obtained confirm a complex plethora of viruses potentially implicated in gastroenteritis in children, with some of them previously known for other etiologies but detectable in fecal samples. Subsequent studies should investigate the role of these viruses in causing gastroenteritis and explore the possibility that other symptoms may be ascribed to multiple infections.


Asunto(s)
COVID-19 , Coinfección , Heces , Gastroenteritis , Humanos , Gastroenteritis/virología , Gastroenteritis/epidemiología , Preescolar , Coinfección/virología , Coinfección/epidemiología , Heces/virología , Lactante , Italia/epidemiología , Niño , Masculino , Femenino , COVID-19/epidemiología , COVID-19/virología , Sapovirus/aislamiento & purificación , Sapovirus/genética , Virus/aislamiento & purificación , Virus/clasificación , Virus/genética , Prevalencia , Norovirus/aislamiento & purificación , Norovirus/genética , Adolescente , Virosis/epidemiología , Virosis/virología , Recién Nacido , SARS-CoV-2 , Rotavirus/aislamiento & purificación , Rotavirus/genética , Adenoviridae/aislamiento & purificación
7.
Funct Integr Genomics ; 24(3): 92, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733534

RESUMEN

In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.


Asunto(s)
Evolución Molecular , Variación Genética , Filogenia , Infecciones por Rotavirus , Rotavirus , Rotavirus/genética , Rotavirus/clasificación , Brasil , Humanos , Infecciones por Rotavirus/virología , Genotipo , Animales
8.
Front Immunol ; 15: 1364429, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690265

RESUMEN

Background: This meta-analysis was performed to assess the prevalence and circulating strains of rotavirus (RV) among Chinese children under 5 years of age after the implantation of the RV vaccine. Material and methods: Studies published between 2019 and 2023, focused on RV-based diarrhea among children less than 5 years were systematically reviewed using PubMed, Embase, Web of Science, CNKI, Wanfang and SinoMed Data. We synthesized their findings to examine prevalence and genetic diversity of RV after the RV vaccine implementation using a fixed-effects or random-effects model. Results: Seventeen studies met the inclusion criteria for this meta-analysis. The overall prevalence of RV was found to be 19.00%. The highest infection rate was noted in children aged 12-23months (25.79%), followed by those aged 24-35 months (23.91%), and 6-11 months (22.08%). The serotype G9 emerged as the most predominant RV genotype, accounting for 85.48% of infections, followed by G2 (7.70%), G8 (5.74%), G1 (4.86%), and G3 (3.21%). The most common P type was P[8], representing 64.02% of RV cases. Among G-P combinations, G9P[8] was the most frequent, responsible for 78.46% of RV infections, succeeded by G8P[8] (31.22%) and G3P[8] (8.11%). Conclusion: Despite the variation of serotypes observed in China, the G1, G2, G3, G8 and G9 serotypes accounted for most RV strains. The genetic diversity analysis highlights the dynamic nature of RV genotypes, necessitating ongoing surveillance to monitor changes in strain distribution and inform future vaccine strategies.


Asunto(s)
Variación Genética , Infecciones por Rotavirus , Rotavirus , Humanos , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Rotavirus/genética , China/epidemiología , Prevalencia , Lactante , Preescolar , Genotipo , Vacunas contra Rotavirus/inmunología , Masculino
9.
Sci Total Environ ; 931: 172683, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663617

RESUMEN

Wastewater monitoring is an efficient and effective way to surveil for various pathogens in communities. This is especially beneficial in areas of high transmission, such as preK-12 schools, where infections may otherwise go unreported. In this work, we apply wastewater disease surveillance using school and community wastewater from across Houston, Texas to monitor three major enteric viruses: astrovirus, sapovirus genogroup GI, and group A rotavirus. We present the results of a 10-week study that included the analysis of 164 wastewater samples for astrovirus, rotavirus, and sapovirus in 10 preK-12 schools, 6 wastewater treatment plants, and 2 lift stations using newly designed RT-ddPCR assays. We show that the RT-ddPCR assays were able to detect astrovirus, rotavirus, and sapovirus in school, lift station, and wastewater treatment plant (WWTP) wastewater, and that a positive detection of a virus in a school sample was paired with a positive detection of the same virus at a downstream lift station or wastewater treatment plant over 97 % of the time. Additionally, we show how wastewater detections of rotavirus in schools and WWTPs were significantly associated with citywide viral intestinal infections. School wastewater can play a role in the monitoring of enteric viruses and in the detection of outbreaks, potentially allowing public health officials to quickly implement mitigation strategies to prevent viral spread into surrounding communities.


Asunto(s)
Rotavirus , Sapovirus , Instituciones Académicas , Aguas Residuales , Aguas Residuales/virología , Sapovirus/aislamiento & purificación , Rotavirus/aislamiento & purificación , Texas , Monitoreo del Ambiente/métodos , Humanos , Mamastrovirus/aislamiento & purificación
10.
Vaccine ; 42(15): 3514-3521, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38670845

RESUMEN

Group A rotavirus (RVA) is the primary etiological agent of acute gastroenteritis (AGE) in children under 5 years of age. Despite the global implementation of vaccines, rotavirus infections continue to cause over 120,000 deaths annually, with a majority occurring in developing nations. Among infants, the P[8] rotavirus strain is the most prevalent and can be categorized into four distinct lineages. In this investigation, we expressed five VP4(aa26-476) proteins from different P[8] lineages of human rotavirus in E. coli and assessed their immunogenicity in rabbits. Among the different P[8] strains, the Wa-VP4 protein, derived from the MT025868.1 strain of the P[8]-1 lineage, exhibited successful purification in a highly homogeneous form and significantly elicited higher levels of neutralizing antibodies (nAbs) against both homologous and heterologous rotaviruses compared to other VP4 proteins derived from different P[8] lineages in rabbits. Furthermore, we assessed the immunogenicity of the Wa-VP4 protein in mice, pigs, and cynomolgus monkeys, observing that it induced robust production of nAbs in all animals. Interestingly, there was no significant difference between in nAb titers against homologous and heterologous rotaviruses in pigs and mankeys. Collectively, these findings suggest that the Wa-VP4* protein may serve as a potential candidate for a rotavirus vaccine.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside , Macaca fascicularis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Porcinos , Conejos , Ratones , Rotavirus/inmunología , Rotavirus/genética , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/inmunología , Femenino , Ratones Endogámicos BALB C , Humanos , Inmunogenicidad Vacunal , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/genética
11.
J Med Virol ; 96(4): e29565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558056

RESUMEN

Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Gatos , Humanos , Animales , Preescolar , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/genética , Genoma Viral , Filogenia , Gastroenteritis/epidemiología , Gastroenteritis/veterinaria , Gastroenteritis/genética , Genotipo , Brotes de Enfermedades , Nucleótidos
12.
BMC Microbiol ; 24(1): 114, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575861

RESUMEN

BACKGROUND: Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS: The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION: It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.


Asunto(s)
Enfermedades de los Bovinos , Microbioma Gastrointestinal , Limosilactobacillus fermentum , Probióticos , Infecciones por Rotavirus , Rotavirus , Animales , Bovinos , Rotavirus/genética , Infecciones por Rotavirus/tratamiento farmacológico , Infecciones por Rotavirus/veterinaria , Microbioma Gastrointestinal/genética , Disbiosis , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Heces/microbiología , Probióticos/uso terapéutico , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología
13.
Biomed Environ Sci ; 37(3): 278-293, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582992

RESUMEN

Objective: This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A (RVA) in the Pearl River Delta region of Guangdong Province, China. Methods: This study included individuals aged 28 days-85 years. A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens, including RVA, using a Gastrointestinal Pathogen Panel, followed by genotyping, virus isolation, and complete sequencing to assess the genetic diversity of RVA. Results: The overall RVA infection rate was 14.59% (103/706), with an irregular epidemiological pattern. The proportion of co-infection with RVA and other pathogens was 39.81% (41/103). Acute gastroenteritis is highly prevalent in young children aged 0-1 year, and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea. G9P[8] (58.25%, 60/103) was found to be the predominant genotype in the RVA strains, and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis. Recombination analysis showed that gene reassortment events, selection pressure, codon usage bias, gene polymorphism, and post-translational modifications (PTMs) occurred in the G9P[8] and G3P[8] strains. Conclusion: This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China, further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity. Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Niño , Humanos , Lactante , Preescolar , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Filogenia , Heces , Gastroenteritis/epidemiología , Genotipo , China/epidemiología , Polimorfismo Genético
14.
Front Cell Infect Microbiol ; 14: 1367385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628550

RESUMEN

Introduction: Neonatal calf diarrhea (NCD) is one of the most common diseases in calves, causing huge economic and productivity losses to the bovine industry worldwide. The main pathogens include bovine rotavirus (BRV), bovine coronavirus (BCoV), and Enterotoxigenic Escherichia coli (ETEC) K99. Since multiple infectious agents can be involved in calf diarrhea, detecting each causative agent by traditional methods is laborious and expensive. Methods: In this study, we developed a one-step multiplex Real-Time PCR assay to simultaneously detect BRV, BCoV, and E. coli K99+. The assay performance on field samples was evaluated on 1100 rectal swabs of diseased cattle with diarrhea symptoms and compared with the conventional gel-based RT-PCR assay detect BRV, BCoV, and E. coli K99+. Results: The established assay could specifically detect the target pathogens without cross-reactivity with other pathogens. A single real-time PCR can detect ~1 copy/µL for each pathogen, and multiplex real-time PCR has a detection limit of 10 copies/µL. Reproducibility as measured by standard deviation and coefficient of variation were desirable. The triple real-time PCR method established in this study was compared with gel-based PT-PCR. Both methods are reasonably consistent, while the real-time PCR assay was more sensitive and could rapidly distinguish these three pathogens in one tube. Analysis of surveillance data showed that BRV and BCoV are major enteric viral pathogens accounting for calves' diarrhea in China. Discussion: The established assay has excellent specificity and sensitivity and was suitable for clinical application. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications and calf diarrhea research. ​.


Asunto(s)
Enfermedades de los Bovinos , Escherichia coli Enterotoxigénica , Rotavirus , Animales , Bovinos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reproducibilidad de los Resultados , Diarrea/diagnóstico , Diarrea/veterinaria , Rotavirus/genética , Enfermedades de los Bovinos/diagnóstico , Heces
15.
J Agric Food Chem ; 72(14): 7607-7617, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563422

RESUMEN

Gastrointestinal (GI)-associated viruses, including rotavirus (RV), norovirus (NV), and enterovirus, usually invade host cells, transmit, and mutate their genetic information, resulting in influenza-like symptoms, acute gastroenteritis, encephalitis, or even death. The unique structures of human milk oligosaccharides (HMOs) enable them to shape the gut microbial diversity and endogenous immune system of human infants. Growing evidence suggests that HMOs can enhance host resistance to GI-associated viruses but without a systematic summary to review the mechanism. The present review examines the lactose- and neutral-core HMOs and their antiviral effects in the host. The potential negative impacts of enterovirus 71 (EV-A71) and other GI viruses on children are extensive and include neurological sequelae, neurodevelopmental retardation, and cognitive decline. However, the differences in the binding affinity of HMOs for GI viruses are vast. Hence, elucidating the mechanisms and positive effects of HMOs against different viruses may facilitate the development of novel HMO derived oligosaccharides.


Asunto(s)
Leche Humana , Rotavirus , Lactante , Niño , Humanos , Leche Humana/química , Rotavirus/genética , Rotavirus/metabolismo , Sistema Inmunológico , Antivirales/farmacología , Oligosacáridos/metabolismo
16.
Int Immunopharmacol ; 133: 112079, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615376

RESUMEN

Porcine rotavirus (PoRV) poses a threat to the development of animal husbandry and human health, leading to substantial economic losses. VP6 protein is the most abundant component in virus particles and also the core structural protein of the virus. Firstly, this study developed an antibiotic-resistance-free, environmentally friendly expression vector, named asd-araC-PBAD-alr (AAPA). Then Recombinant Lactiplantibacillus plantarum (L. plantarum) strains induced by arabinose to express VP6 and VP6-pFc fusion proteins was constructed. Subsequently, This paper discovered that NC8/Δalr-pCXa-VP6-S and NC8/Δalr-pCXa-VP6-pFc-S could enhance host immunity and prevent rotavirus infection in neonatal mice and piglets. The novel recombinant L. plantarum strains constructed in this study can serve as oral vaccines to boost host immunity, offering a new strategy to prevent PoRV infection.


Asunto(s)
Proteínas de la Cápside , Lactobacillus plantarum , Enfermedades de los Porcinos , Animales , Porcinos , Lactobacillus plantarum/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Ratones , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/virología , Antígenos Virales/inmunología , Rotavirus/inmunología , Ratones Endogámicos BALB C , Animales Recién Nacidos
17.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(4): 506-512, 2024 Apr 10.
Artículo en Chino | MEDLINE | ID: mdl-38678345

RESUMEN

Objective: To investigate the epidemiological characteristics and genotype trends of rotavirus infection among the population with diarrhea in China, from 2009 to 2020 and provide evidence for strategic surveillance and prevention. Methods: Surveillance data on diarrhea syndrome from 252 sentinel hospitals across 28 provinces (municipalities, autonomous regions) were obtained from the information management system of the Infectious Disease Surveillance Technology Platform of the National Science and Technology Major Project. Descriptive epidemiological methods were employed to analyze the distribution of rotavirus diarrhea cases in different climatic zones, populations, and times from 2009 to 2020, as well as the genotyping characteristics and changing trends of group A rotavirus diarrhea cases. Results: From 2009 to 2020, a total of 114 606 diarrhea cases were tested for rotavirus, and the positive rate was 19.1% (21 872/114 606); group A rotavirus was dominant (98.2%, 21 471/21 872). The positive rate of rotavirus was the highest in 2009 (36.9%, 2 436/6 604) and 2010 (30.6%, 5 130/16 790), fluctuated between 14.0% to 18.0% from 2011 to 2017, raised slightly in 2018 (20.3%, 2 211/10 900), and declined continuously in the following two years (15.5%, 2 262/14 611 and 9.5%, 470/4 963). The positive rate of males (20.2%, 13 660/67 471) was significantly higher than that of females (17.4%, 8 212/47 135). Children under five had the highest positive rate (28.4%, 18 261/64 300), more than four times that of adults. The positive rate peaked from December to February in the mediate temperate zone, warm temperate zone, and subtropical zone, while there were two peaks from November to January and May to June in the frigid zone of the plateau. The dominant genotype of group A rotavirus gradually changed from G3P[8] and G1P[8] to G9P[8] during 2009-2020. Conclusions: The overall rotavirus infection rate in China was on a downward trend. Meanwhile, significant variations of positive rates were observed in seasonal epidemics and different age groups from 2009 to 2020. Rotavirus diarrhea in children was still a prominent concern. Vaccination of rotavirus vaccine should be promoted, and the epidemiological characteristics and genotypes of rotavirus diarrhea should be continuously monitored.


Asunto(s)
Diarrea , Genotipo , Infecciones por Rotavirus , Rotavirus , Humanos , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , China/epidemiología , Rotavirus/genética , Diarrea/epidemiología , Diarrea/virología , Femenino , Masculino , Lactante , Preescolar , Niño
18.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38592735

RESUMEN

The rotavirus capsid protein VP6 forms the middle of three protein layers and is responsible for many critical steps in the viral life cycle. VP6 as a structural protein can be used in various applications including as a subunit vaccine component. The head domain of VP6 (VP6H) contains key sequences that allow the protein to trimerize and that represent epitopes that are recognized by human antibodies in the viral particle. The domain is rich in ß-sheet secondary structures. Here, VP6H was solubilised from bacterial inclusion bodies and purified using a single affinity chromatography step. Spectral (far-UV circular dichroism and intrinsic tryptophan fluorescence) analysis revealed that the purified domain had native-like secondary and tertiary structures. The domain could maintain structure up to 44°C during thermal denaturation following which structural changes result in an intermediate forming and finally irreversible aggregation and denaturation. The chemical denaturation with urea and guanidinium hydrochloride produces intermediates that represent a loss in the cooperativity. The VP6H domain is stable and can fold to produce its native structure in the absence of the VP6 base domain but cannot be defined as an independent folding unit.


Asunto(s)
Antígenos Virales , Proteínas de la Cápside , Rotavirus , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Antígenos Virales/química , Antígenos Virales/genética , Rotavirus/química , Desnaturalización Proteica , Dominios Proteicos , Dicroismo Circular , Pliegue de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
PLoS Pathog ; 20(4): e1011750, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574119

RESUMEN

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.


Asunto(s)
Rotavirus , Rotavirus/genética , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Calcio/metabolismo , Liposomas/análisis , Liposomas/metabolismo
20.
J Virol ; 98(5): e0021224, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591886

RESUMEN

Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Enfermedades de los Porcinos , Vacunas de Subunidad , Animales , Porcinos , Rotavirus/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Ratones , Femenino , Ratones Endogámicos BALB C , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Diarrea/prevención & control , Diarrea/virología , Diarrea/veterinaria , Diarrea/inmunología , Genotipo , Inmunidad Celular , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA