Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Anal Methods ; 16(18): 2857-2868, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38639051

RESUMEN

The pentavalent arsenic compound roxarsone (RSN) is used as a feed additive in poultry for rapid growth, eventually ending up in poultry litter. Poultry litter contains chicken manure, which plays a vital role as an affordable fertilizer by providing rich nutrients to agricultural land. Consequently, the extensive use of poultry droppings serves as a conduit for the spread of toxic forms of arsenic in the soil and surface water. RSN can be easily oxidized to release highly carcinogenic As(III) and As(IV) species. Thus, investigations were conducted for the sensitive detection of RSN electrochemically by developing a sensor material based on lanthanum manganese oxide (LMO) and functionalized carbon nanofibers (f-CNFs). The successfully synthesised LMO/f-CNF composite was confirmed by chemical, compositional, and morphological studies. The electrochemical activity of the prepared composite material was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results confirmed that LMO/f-CNF showed enhanced electrocatalytic activity and improved current response with a good linear range (0.01-0.78 µM and 2.08-497 µM, respectively), exhibiting a low limit of detection (LOD) of 0.004 µM with a high sensitivity of 13.24 µA µM-1 cm-2 towards the detection of RSN. The noteworthy features of LMO/f-CNF composite with its superior electrochemical performance enabled reliable reproducibility, exceptional stability and reliable practical application in the analysis of tap water and food sample, affording a recovery range of 86.1-98.87%.


Asunto(s)
Compuestos de Calcio , Técnicas Electroquímicas , Lantano , Nanofibras , Óxidos , Roxarsona , Titanio , Nanofibras/química , Lantano/química , Óxidos/química , Técnicas Electroquímicas/métodos , Roxarsona/química , Roxarsona/análisis , Titanio/química , Compuestos de Calcio/química , Contaminantes Químicos del Agua/análisis , Carbono/química , Límite de Detección , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Animales , Compuestos de Manganeso/química
2.
Chemosphere ; 339: 139688, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37532198

RESUMEN

In environmental systems, the soil is a principal route of contamination by various potentially toxic species. Roxarsone (RX) is an arsenic (V) organic compound used to treat parasitic diseases and as an additive for animal fattening. When the animal excretes RX, the residues may lead to environmental contamination. Due to their physicochemical properties, the soil's humic substances (HS) are important in species distribution in the environment and are involved in various specific interaction/adsorption processes. Since RX, an arsenic (V) compound, is considered an emerging contaminant, its interaction with HS was evaluated in simulated environmental conditions. The HS-RX interaction was analyzed by monitoring intrinsic HS fluorescence intensity variations caused by complexation with RX, forming non-fluorescent supramolecular complexes that yielded a binding constant Kb (on the order of 103). The HS-RX interaction occurred through static quenching due to complex formation in the ground state, which was confirmed by spectrophotometry. The process was spontaneous (ΔG < 0), and the predominant interaction forces were van der Waals and hydrogen bonding (ΔH < 0 and ΔS < 0), with an electrostatic component evidenced by the influence of ionic strength in the interaction process. Structural changes in the HS were verified by synchronized and 3D fluorescence, with higher variation in the region referring to the protein-like fraction. In addition, metal ions (except ions Cu(II)) favored HS-RX interaction. When interacting with HS, the RX epitope was suggested by 1H NMR, which indicated that the entire molecule interacts with the superstructure. An enzyme inhibition assay verified the ability to reduce the alkaline phosphatase activity of free and complexed RX (RX-HS). Finally, this work revealed the main parameters associated with HS and RX interaction in simulated environmental conditions, thus, providing data that may help our understanding of the dynamics of organic arsenic-influenced soils.


Asunto(s)
Arsénico , Roxarsona , Contaminantes del Suelo , Animales , Sustancias Húmicas/análisis , Suelo/química , Roxarsona/química , Contaminantes del Suelo/análisis , Iones
3.
J Hazard Mater ; 454: 131483, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116328

RESUMEN

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.


Asunto(s)
Roxarsona , Roxarsona/química , Microplásticos , Plásticos , Suelo/química , Polietileno
4.
J Environ Sci (China) ; 129: 30-44, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36804240

RESUMEN

The retention and fate of Roxarsone (ROX) onto typical reactive soil minerals were crucial for evaluating its potential environmental risk. However, the behavior and molecular-level reaction mechanism of ROX and its substituents with iron (hydr)oxides remains unclear. Herein, the binding behavior of ROX on ferrihydrite (Fh) was investigated through batch experiments and in-situ ATR-FTIR techniques. Our results demonstrated that Fh is an effective geo-sorbent for the retention of ROX. The pseudo-second-order kinetic and the Langmuir model successfully described the sorption process. The driving force for the binding of ROX on Fh was ascribed to the chemical adsorption, and the rate-limiting step is simultaneously dominated by intraparticle and film diffusion. Isotherms results revealed that the sorption of ROX onto Fh appeared in uniformly distributed monolayer adsorption sites. The two-dimensional correlation spectroscopy and XPS results implied that the nitro, hydroxyl, and arsenate moiety of ROX molecules have participated in binding ROX onto Fh, signifying that the predominated mechanisms were attributed to the hydrogen bonding and surface complexation. Our results can help to better understand the ROX-mineral interactions at the molecular level and lay the foundation for exploring the degradation, transformation, and remediation technologies of ROX and structural analog pollutants in the environment.


Asunto(s)
Roxarsona , Roxarsona/química , Compuestos Férricos/química , Hierro , Suelo/química , Minerales/química , Adsorción
5.
J Environ Manage ; 328: 116945, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36512947

RESUMEN

The contamination of organoarsenic is becoming increasingly prominent while SR-AOPs were confirmed to be valid for their remediation. This study has found that the novel metal/carbon catalyst (Fe/C-Mn) prepared by solid waste with hierarchical pores could simultaneously degrade roxarsone (ROX) and remove As(V). A total of 95.6% of ROX (20 mg/L) could be removed at the concentration of 1.0 g/L of catalyst and 0.4 g/L of oxidant in the Fe/C-Mn/PMS system within 90 min. The scavenging experiment and electrochemical test revealed that both single-electron and two-electron pathways contributed to the ROX decomposition. Spectroscopic analysis suggested the ROX has been successfully mineralized while As(V) was fixed with the surface Fe and Mn. Density functional theory (DFT) calculation and chromatographic analysis indicated that the As7, N8, O9 and O10 sites of ROX molecule were vulnerable to being attacked by nucleophilic, electrophilic and radical, resulting in the formation of several intermediates such as phenolic compounds. Additionally, the low metal leaching concentration during recycling and high anti-interference ability in various water matrices manifested the practicability of Fe/C-Mn/PMS system.


Asunto(s)
Roxarsona , Roxarsona/química , Roxarsona/metabolismo , Manganeso , Carbón Orgánico , Metales , Electrólitos
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122213, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36527969

RESUMEN

The influence of Fe(III) on the interaction between roxarsone (ROX) and humic acid (HA) was investigated by multi-spectroscopic techniques. The fluorescence quenching experiment indicated that the fluorescence intensity of HA-ROX was quenched by Fe(III) through a static quenching process. Synchronous fluorescence spectra provided further information concerning the competitive combination between ROX and Fe(III) for HA. The results of the dialysis equilibrium experiment confirmed the existence of Fe(III) (0.05-0.1 mmol/L) promotes the combination of HA and ROX. Binding mechanisms were further characterized by FTIR spectroscopy, and the carboxyl functional group is involved in the binding process of HA/Fe/ROX. In addition, acidic and neutral conditions are more conducive to the combination of ROX and HA/Fe than alkaline conditions. The above discussion is of great significance in understanding the environmental fate of ROX under the coexistence of Fe(III) and HA.


Asunto(s)
Roxarsona , Roxarsona/química , Sustancias Húmicas/análisis , Compuestos Férricos/química , Diálisis Renal , Espectroscopía Infrarroja por Transformada de Fourier
7.
Inorg Chem ; 61(41): 16370-16379, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36184926

RESUMEN

Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 µM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.


Asunto(s)
Arsénico , Nanopartículas , Roxarsona , Técnicas Electroquímicas , Electrodos , Límite de Detección , Praseodimio , Reproducibilidad de los Resultados , Roxarsona/análisis , Roxarsona/química , Vanadatos , Agua
8.
Chemosphere ; 308(Pt 2): 136326, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084835

RESUMEN

Organoarsenical antibiotics pose a severe threat to the environment and human health. In aquatic environment, dissolved organic matter (DOM)-mediated photochemical transformation is one of the main processes in the fate of organoarsenics. Dicarbonyl is a typical redox-active moiety in DOM. However, the knowledge on the photoconversion of organoarsenics by DOM, especially the contributions of dicarbonyl moieties is still limited. Here, we systematically investigated the photochemical transformation of three organoarsenics with the simplest ß-diketone, acetylacetone (AcAc), as a model dicarbonyl moiety of DOM. The presence of AcAc significantly enhanced the photochemical conversion of roxarsone (ROX), whereas only minor effects were observed for 3-amino-4-hydroxyphenylarsonic acid (HAPA) and arsanilic acid (ASA), because the latter two (with an amino (-NH2) group) are more photoactive than ROX (with a nitro (-NO2) group). The results demonstrate that AcAc was a potent photo-activator and the reduction of -NO2 to -NH2 might be a rate-limiting step in the phototransformation of ROX. At a 1:1 M ratio of AcAc to ROX, the photochemical transformation rate of ROX was increased by 7 folds. In O2-rich environment, singlet oxygen, peroxide radicals, and ·OH were the main reactive species that led to the breakage of the C-As bond in ROX and the oxidation of the released arsono group to arsenate, whereas the triplet-excited state of AcAc (3AcAc*) and carbon-centered radicals from the photolysis of AcAc dominated in the reductive transformation of ROX. In anoxic environment, 3-amino-4-hydroxyphenylarsonic acid was one of the main reductive transformation intermediates of ROX, whose photolysis rate was about 35 times that of ROX. The knowledge obtained here is of great significance to better understand the fate of organoarsenics in natural environment.


Asunto(s)
Roxarsona , Contaminantes Químicos del Agua , Antibacterianos , Ácido Arsanílico , Arseniatos , Carbono , Humanos , Dióxido de Nitrógeno , Oxidación-Reducción , Pentanonas , Peróxidos , Fotólisis , Roxarsona/química , Oxígeno Singlete , Contaminantes Químicos del Agua/análisis
9.
Environ Microbiol ; 24(2): 762-771, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33998126

RESUMEN

Organoarsenicals enter the environment from biogenic and anthropogenic sources. Trivalent inorganic arsenite (As(III)) is microbially methylated to more toxic methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)) that oxidize in air to MAs(V) and DMAs(V). Sources include the herbicide monosodium methylarsenate (MSMA or MAs(V)), which is microbially reduced to MAs(III), and the aromatic arsenical roxarsone (3-nitro-4-hydroxybenzenearsonic acid or Rox), an antimicrobial growth promoter for poultry and swine. Here we show that Sphingobacterium wenxiniae LQY-18T , isolated from activated sludge, is resistant to trivalent MAs(III) and Rox(III). Sphingobacterium wenxiniae detoxifies MAs(III) and Rox(III) by oxidation to MAs(V) and Rox(V). Sphingobacterium wenxiniae has a novel chromosomal gene, termed arsU1. Expressed in Escherichia coli arsU1 confers resistance to MAs(III) and Rox(III) but not As(III) or pentavalent organoarsenicals. Purified ArsU1 catalyses oxidation of trivalent methylarsenite and roxarsone. ArsU1 has six conserved cysteine residues. The DNA sequence for the three C-terminal cysteines was deleted, and the other three were mutated to serines. Only C45S and C122S lost activity, suggesting that Cys45 and Cys122 play a role in ArsU1 function. ArsU1 requires neither FMN nor FAD for activity. These results demonstrate that ArsU1 is a novel MAs(III) oxidase that contributes to S. wenxiniae tolerance to organoarsenicals.


Asunto(s)
Arsénico , Arsenicales , Roxarsona , Sphingobacterium , Animales , Roxarsona/química , Aguas del Alcantarillado , Sphingobacterium/genética , Porcinos
10.
J Hazard Mater ; 389: 122091, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-31972529

RESUMEN

Roxarsone is a phenyl-substituted arsonic acid comprising both arsenate and benzene rings. Few adsorbents are designed for the effective capture of both the organic and inorganic moieties of ROX molecules. Herein, nano zerovalent iron (nZVI) particles were incorporated on the surface of sludge-based biochar (SBC) to fabricate a dual-affinity sorbent that attracts both the arsenate and benzene rings of ROX. The incorporation of nZVI particles significantly increased the binding affinity and sorption capacity for ROX molecules compared to pristine SBC and pure nZVI. The enhanced elimination of ROX molecules was ascribed to synergetic adsorption and degradation reactions, through π-π* electron donor/acceptor interactions, H-bonding, and As-O-Fe coordination. Among these, the predominate adsorption force was As-O-Fe coordination. During the sorption process, some ROX molecules were decomposed into inorganic arsenic and organic metabolites by the reactive oxygen species (ROS) generated during the early stages of the reaction. The degradation pathways of ROX were proposed according to the oxidation intermediates. This work provides a theoretical and experimental basis for the design of adsorbents according to the structure of the target pollutant.


Asunto(s)
Carbón Orgánico/química , Hierro/química , Nanocompuestos/química , Roxarsona/aislamiento & purificación , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Restauración y Remediación Ambiental/métodos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Roxarsona/química , Contaminantes del Suelo/química , Contaminantes del Suelo/aislamiento & purificación , Contaminantes Químicos del Agua/química
11.
Chemosphere ; 233: 431-439, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31176907

RESUMEN

The transformation of roxarsone (ROX) during UV disinfection with Fe(III) has been investigated. Fe(OH)2+, as the main Fe(III) species at pH = 3, produces HO under UV irradiation leading to the oxidation of ROX. Dissolved oxygen plays a very important role in the continuous conversion of generated Fe2+ to Fe3+, which ensures a Fe(III)-Fe(II) cycle in the system. The presence of Cl-/HCO3-/NO3- has little influence on the ROX transformation, whereas PO43- achieves an obvious inhibitory effect. The transformation of ROX leads to the formation of inorganic arsenic consisting of a much higher amount of As(V) than As(III). LC-MS analysis shows that phenol, o-nitrophenol and arsenic acid were the main transformation products. Both the radical scavenger experiment and electron spin resonance data confirm that the HO is responsible for ROX transformation. The toxic transformation products are found to have potential environmental risks for the natural environment, organisms and human beings.


Asunto(s)
Desinfección/métodos , Compuestos Férricos/química , Roxarsona , Rayos Ultravioleta , Contaminantes Químicos del Agua , Purificación del Agua/métodos , Iones , Oxidación-Reducción , Procesos Fotoquímicos , Roxarsona/química , Roxarsona/efectos de la radiación , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación
12.
Mikrochim Acta ; 186(7): 420, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31187268

RESUMEN

A sensitive electrochemical (voltammetric; DPV) sensor has been developed for the determination of coccidiostat drug (roxarsone) based on the use of an SPCE (screen-printed carbon electrode) modified with tungsten disulfide nanosheets (WS2 NSs). The electrochemical detection of roxarsone on the WS2-modified SPCE was examined by electrochemical strategies. XPS, XRD, Raman, SEM, TEM, EDS and EIS were used to characterize the nanosheets. The effects of scan rate, pH values (phosphate buffer) and buffer concentration were optimized. A selective roxarsone sensor was developed that works best at -0.64 V (vs. Ag/AgCl) and performs much better than the bare SPCE. Features include (a) a wider linear range (0.05 to 490 µM), (b) a nanomolar detection limit (0.03 µM) and (c) high sensitivity (29 µA·µM-1·cm-2). The modified SPCEs have been successfully applied to the determination of roxarsone in spiked meat samples where they gave high accuracy and good recoveries. Graphical abstract Synthesis of WS2 nanosheets and electrochemical detection of roxarsone.


Asunto(s)
Coccidiostáticos/análisis , Nanoestructuras/química , Roxarsona/análisis , Sulfuros/química , Compuestos de Tungsteno/química , Catálisis , Coccidiostáticos/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Contaminación de Alimentos/análisis , Límite de Detección , Carne/análisis , Oxidación-Reducción , Reproducibilidad de los Resultados , Roxarsona/química
13.
Ultrason Sonochem ; 56: 430-436, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31101281

RESUMEN

We report a facile and ultrasound assisted sonochemical synthesis of a Tungsten disulfide nanorods decorated nitrogen-doped reduced graphene oxide based nanocomposite. The WS2 NRs/N-rGOs nanocomposite was characterized by FESEM, HRTEM, XRD, XPS and electrochemical methods and its application towards the electrochemical detection of organo-arsenic drug (coccidiostat). The WS2 NRs/N-rGOs modified SPCE was used for the electrochemical reduction of roxarsone (ROX) and it showed superior electrocatalytic performance in terms of reduction peak current and shift in overpotential when compared to those of WS2 NRs/SPCE, N-rGOs/SPCE and based SPCE. The WS2 NRs/N-rGOs modified SPCE showed an excellent sensing ability towards ROX in nitrogen saturated phosphate buffer (PB) then the other controlled modified and unmodified electrodes. The WS2 NRs/N-rGOs/SPCE displays high sensitive response towards ROX and gives wide linearity in the range of 0.1-442.6 µM ROX in neutral phosphate buffer (pH 7.0) and the sensitivity of the sensor is calculated as 14.733 µA µM-1 cm-2. The WS2 NRs/N-rGOs nanocomposite modified sensor also exhibits valuable ability of anti-interference to electroactive analytes. Furthermore, the as-prepared WS2 NRs/N-rGOs/SPCE has been applied to the determination of ROX in biological and pharmaceutical samples.


Asunto(s)
Antibacterianos/análisis , Electroquímica/instrumentación , Grafito/química , Límite de Detección , Nanotubos/química , Nitrógeno/química , Roxarsona/análisis , Sulfuros/química , Compuestos de Tungsteno/química , Antibacterianos/química , Catálisis , Técnicas de Química Sintética , Electrodos , Concentración de Iones de Hidrógeno , Cinética , Porosidad , Roxarsona/química
14.
J Mol Recognit ; 31(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28332252

RESUMEN

Roxarsone, one of feed add drugs containing arsenic, has been most widely used in poultry and swine industry. Roxarsone discharged into the environment has caused serious pollution problem. Herein, a reusable functional material for selective recognition and adsorption of roxarsone and its derivatives were designed and synthesized. The interaction mechanism is based on acid-base interaction and surface molecular imprinting. Dual functionalized core-shell structure with silica gel as the core was prepared to use as carrier for surface molecularly imprinted polymers. Surface molecularly imprinted polymers for roxarsone was successfully designed and synthesized using 3-aminopropyltriethoxysilane and methyl acryloyloxypropyltriethoxy silane as functional monomers, Ethylene glycol dimethacrylate as crosslinker, Azobisisobutyronitrile as initiator, acetonitrile as solvent. Binding study showed that the recognition selectivity for roxarsone and its derivatives can be significantly improved (3.5-4 folds) with molecular imprinting. Moreover, the prepared functional material for selective recognition and adsorption of Roxarsone was reusable for multiple times without significant decreasing their adsorption capacities.


Asunto(s)
Impresión Molecular , Compuestos Orgánicos/química , Aves de Corral , Roxarsona/química , Animales , Arsénico/química , Arsénico/toxicidad , Nitrilos/química , Polímeros/química , Propilaminas/química , Unión Proteica , Roxarsona/análogos & derivados , Silanos/química , Propiedades de Superficie
15.
Sci Total Environ ; 616-617: 1235-1241, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29074235

RESUMEN

In order to evaluate the influence of roxarsone (ROX) on the livestock wastewater treatment, a lab-scale pilot employing an anoxic-oxic (A-O) process was investigated by adding different concentrations of ROX at different periods. The mass balance of arsenic (As) in the A-O system was established through the analysis of As speciation and As migration in the gas, liquid and solid phases. The results showed that around 80% of total ROX (initial concentration was 50mgROXL-1) was eliminated in the anoxic reactor (R1) in which at least about 11% of total ROX was transformed to inorganic Asv (iAsv) due to the direct breaking of the C-As bond of ROX. Inorganic AsIII (iAsIII) and arsine (AsH3) were produced in R1, while the generated iAsIII in the effluent of R1 was almost completely oxidized to iAsV in the aerobic reactor (R2). However, the concentration of ROX in the effluent of R2 was almost the same as that in the effluent of R1. After 85days operation, iAsV and residual ROX as the main forms of As were observed after the A-O process. Furthermore, the mass balance of As at steady state revealed that around 0.08%, 3.91% and 96.01% of total As was transformed into gas (biogas), solid (excess sludge) and liquid (effluent). Additionally, the 16S rRNA analysis demonstrated that the existence of ROX in livestock wastewater may play a crucial role in the diversity of bacterial community in the A-O system.


Asunto(s)
Roxarsona/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Animales , Ganado , Roxarsona/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
16.
Artículo en Inglés | MEDLINE | ID: mdl-28276888

RESUMEN

The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.


Asunto(s)
Monitoreo del Ambiente/métodos , Consorcios Microbianos/efectos de los fármacos , Roxarsona/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Suelo/química , Animales , Biodegradación Ambiental , Biodiversidad , Relación Dosis-Respuesta a Droga , Cinética , Roxarsona/química , Contaminantes del Suelo/química
17.
J Agric Food Chem ; 64(46): 8902-8908, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27790904

RESUMEN

Roxarsone (Rox), an organoarsenic compound, served as a feed additive in the poultry industry for more than 60 years. Residual amounts of Rox present in chicken meat could give rise to potential human exposure to Rox. However, studies on the bioavailability of Rox in humans are scarce. We report here the accumulation and transepithelial transport of Rox using the human colon-derived adenocarcinoma cell line (Caco-2) model. The cellular accumulation and transepithelial passage of Rox in Caco-2 cells were evaluated and compared to those of arsenobetaine (AsB), arsenite (AsIII), and arsenate (AsV). When Caco-2 cells were exposed to 3 µM Rox, AsB, and AsIII separately for 24 h, the maximum accumulation was reached at 12 h. After 24-h exposure, the accumulated Rox was 6-20 times less than AsB and AsIII. The permeability of Rox from the apical to basolateral side of Caco-2 monolayers was similar to AsV but less than AsIII and AsB. The results of lower bioavailability of Rox are consistent with previous observations of relatively lower amounts of Rox retained in the breast meat of Rox-fed chickens. These data provide useful information for assessing human exposure to and intestinal bioavailability of Roxarsone.


Asunto(s)
Arsenicales/metabolismo , Roxarsona/metabolismo , Animales , Arsenicales/química , Transporte Biológico , Células CACO-2 , Células Inmovilizadas/química , Células Inmovilizadas/metabolismo , Pollos , Seguridad de Productos para el Consumidor , Contaminación de Alimentos/análisis , Humanos , Cinética , Carne/análisis , Roxarsona/química
18.
Environ Sci Technol ; 50(15): 7956-63, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27366920

RESUMEN

Microbes play a critical role in the global arsenic biogeocycle. Most studies have focused on redox cycling of inorganic arsenic in bacteria and archaea. The parallel cycles of organoarsenical biotransformations are less well characterized. Here we describe organoarsenical biotransformations in the environmental microbe Shewanella putrefaciens. Under aerobic growth conditions, S. putrefaciens reduced the herbicide MSMA (methylarsenate or MAs(V)) to methylarsenite (MAs(III)). Even though it does not contain an arsI gene, which encodes the ArsI C-As lyase, S. putrefaciens demethylated MAs(III) to As(III). It cleaved the C-As bond in aromatic arsenicals such as the trivalent forms of the antimicrobial agents roxarsone (Rox(III)), nitarsone (Nit(III)) and phenylarsenite (PhAs(III)), which have been used as growth promoters for poultry and swine. S. putrefaciens thiolated methylated arsenicals, converting MAs(V) into the more toxic metabolite monomethyl monothioarsenate (MMMTAs(V)), and transformed dimethylarsenate (DMAs(V)) into dimethylmonothioarsenate (DMMTAs(V)). It also reduced the nitro groups of Nit(V), forming p-aminophenyl arsenate (p-arsanilic acid or p-AsA(V)), and Rox(III), forming 3-amino-4-hydroxybenzylarsonate (3A4HBzAs(V)). Elucidation of organoarsenical biotransformations by S. putrefaciens provides a holistic appreciation of how these environmental pollutants are degraded.


Asunto(s)
Arsenicales/química , Shewanella putrefaciens/metabolismo , Animales , Arsénico/metabolismo , Biotransformación , Ácido Cacodílico , Roxarsona/química , Porcinos
19.
Chemosphere ; 159: 103-112, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27281543

RESUMEN

Elevated roxarsone (ROX) concentrations in soils, caused by land application of ROX-bearing poultry litter, mandate investigation of ROX sorption onto soils. Equilibrium and kinetic studies of ROX sorption onto five soils were carried out to explore the relationship between sorption parameters and soil properties, and to reveal the effects of coexisting humic acid (HA), P(V), As(V), and As(III) on ROX transport. Experimental results indicated that ROX sorption reached equilibrium within 24 h, with pseudo-second order rate constants of 5.74-5.26 × 10(2) g/(mg h); film and intra-particle diffusion were the rate-limiting processes. ROX sorption to soils involved partitioning and adsorption phenomena; however, their relative contributions varied for different soils. The maximum ROX sorption varied with soil type, ranging from 0.59 to 4.12 mg/g. Results from correlation analysis and multiple linear regressions revealed that the maximum sorption capacities, partition coefficients, and desorption percentages were correlated with soil properties, especially iron content, total organic carbon, and dissolved organic carbon. ROX sorption to soils was affected more by soil pH than the initial pH of ROX-containing solutions. Carboxylic and amide functional groups were determined to be responsible for ROX sorption to soils. ROX sorption capacities decreased in the presence of HA, P(V), As(V), and As(III), indicating that ROX mobility in soils was facilitated by dissolved organic matter (DOM) and competing anions.


Asunto(s)
Antibacterianos/química , Roxarsona/química , Contaminantes del Suelo/química , Suelo/química , Adsorción , Animales , Arsénico/química , Sustancias Húmicas , Cinética , Estiércol , Fósforo/química , Aves de Corral
20.
Ecotoxicol Environ Saf ; 130: 4-10, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27060198

RESUMEN

Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains.


Asunto(s)
Arsénico/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Roxarsona/química , Arseniatos/química , Arsenitos/química , Grano Comestible/metabolismo , Peróxido de Hidrógeno , Hierro , Metilación , Suelo , Contaminantes del Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA