Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Int J Nanomedicine ; 19: 4465-4493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779103

RESUMEN

Background: Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods: CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results: Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 µg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion: The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.


Asunto(s)
Autofagia , Carcinoma Hepatocelular , Quitosano , Neoplasias Hepáticas , FN-kappa B , Nanopartículas , Rutina , Transducción de Señal , Rutina/farmacología , Rutina/química , Rutina/administración & dosificación , Rutina/farmacocinética , Quitosano/química , Quitosano/farmacología , Humanos , FN-kappa B/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Nanopartículas/química , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones , Animales , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Supervivencia Celular/efectos de los fármacos
2.
J Cosmet Dermatol ; 23(5): 1734-1744, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38332551

RESUMEN

BACKGROUND: The COVID-19 pandemic brought about a new normal, necessitating the use of personal protective equipment (PPE) like face shields, surgical masks, gloves, and goggles. However, prolonged mask-wearing introduced skin-related issues due to changes in the skin's microenvironment, including increased humidity and temperature, as well as pressure on the skin. These factors led to skin deformation, vascular issues, edema, and inflammation, resulting in discomfort and cosmetic concerns. Clinical reports quickly highlighted the consequences of long-term mask use, including increased cases of "maskne" (mask-related acne) or mask-wearing related disorders such as rosacea flare-ups, skin-barrier defects, itching, erythema, redness, hyperpigmentation, and lichenification. Some of these issues, like inflammation, oxidative stress, and poor wound healing, could be directly linked to acne-related disorders or skin hypoxia. AIM: To address these problems, researchers turned to rutin, a well-known flavonoid with antioxidant, vasoactive, and anti-inflammatory properties. However, rutin's poor water solubility presented a challenge for cosmetic formulations. To overcome this limitation, a highly water-soluble form of rutin was developed, making it suitable for use at higher concentrations. METHODS: In vitro and ex vivo tests were conducted, as well as an innovative clinical trial including volunteers wearing surgical masks for at least 2 h, to evaluate the biological activity of this soluble rutin on the main skin concerns associated with mask-wearing (inflammation, oxidative stress, skin repair, hyperpigmentation, and skin redness). RESULTS: The in vitro results showed that the active ingredient significantly reduced oxidative stress, improved wound healing, and reduced inflammation. In dark skin explants, the active ingredient significantly reduced melanin content, indicating its lightening activity. This effect was confirmed in the clinical study, where brown spots decreased significantly after 4 days of application. Moreover, measurements on volunteers demonstrated a decrease in skin redness and vascularization after the active ingredient application, indicating inflammation and erythema reduction. Volunteers reported improved skin comfort. CONCLUSION: In summary, the COVID-19 pandemic led to various skin issues associated with mask-wearing. A highly soluble form of rutin was developed, which effectively addressed these concerns by reducing inflammation, oxidative stress, and hyperpigmentation while promoting wound healing. This soluble rutin offers a promising solution for the rapid treatment of maskne-related disorders and other skin problems caused by prolonged mask use.


Asunto(s)
COVID-19 , Máscaras , Rutina , Humanos , Rutina/administración & dosificación , Máscaras/efectos adversos , Solubilidad , Piel/efectos de los fármacos , Acné Vulgar/tratamiento farmacológico , SARS-CoV-2 , Antioxidantes/administración & dosificación , Antioxidantes/farmacología
3.
Biol Trace Elem Res ; 202(10): 4715-4734, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38153670

RESUMEN

Rutin, a natural bioflavonoid compound, is one of the best-known antioxidants. This study aimed to investigate the protective effect of rutin-loaded chitosan alginate nanoparticles (RCA NPs) against lead (Pb)-induced oxidative stress in two different broiler breeds. A total number of 240 chicks from Cobb (CB) and Arbor Acres (AR) breeds were randomly allocated into 4 groups/breed. The 1st group received standard basal diet (SD) and drinking water (DW) while the 2nd group received SD and Pb-incorporated DW (350 mg/L). The 3rd group treated with both rutin-supplemented SD (50 mg/kg feed), and DW contain Pb (350 mg/L). Finally, the 4th group administered RCA NPs-supplemented SD (50 mg/kg feed) and Pb-incorporated DW (350 mg/L). On the 40th day of experiment, broilers weighed, and blood samples collected for biochemical and hematological analysis then slaughtered. Economic efficiency, growth performance, and oxidative stress biomarkers were evaluated. Gene expression level of growth-associated genes as insulin-like growth factor-I (IGF-1) and histopathological changes were assessed in liver and intestinal tissue of both breeds. Our results revealed that Pb-treated birds exhibited the lowest average body weight gain (BWG) and economic efficiency measures in both breeds while RCA NPs-treated groups revealed enhanced growth and economic performance. Furthermore, diet supplementation with RCA NPs considerably enhanced the antioxidant enzymes activity and expression of growth-associated genes than groups treated with rutin alone specifically in AR breed. In conclusion, RCA NPs supplementation could be a promising nanoformulation in poultry production through enhancing the antioxidant capacity and bioavailability of rutin.


Asunto(s)
Alginatos , Pollos , Quitosano , Plomo , Nanopartículas , Estrés Oxidativo , Rutina , Animales , Rutina/farmacología , Rutina/química , Rutina/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/química , Quitosano/química , Quitosano/farmacología , Alginatos/química , Alginatos/farmacología , Plomo/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Antioxidantes/química , Suplementos Dietéticos
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4771-4790, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38150015

RESUMEN

Rheumatoid arthritis (RA) is the most common chronic inflammatory disease, primarily affecting the joints and with stromal tissue dysregulation causing chronic inflammation and joint destruction. Rutin is a natural flavonoid with potential therapeutic properties in chronic destructive conditions including rheumatoid diseases. In this study, the protective effects of rutin nanoformulation in an animal model of rheumatoid arthritis caused by Freund's complete adjuvant (FCA) were investigated. Sixty male rats were randomly divided into ten groups including normal, negative control, prednisolone 10 mg/kg (positive control), 3 doses of rutin (15, 30, 45mg/kg), rutin nanoparticles (15, 30, 45 mg/kg), and nanoparticle without rutin, for 28 days. Different behavioral parameters including the open field test, acetone drop test, hot plate test, Von Frey test, and inclined plane test were evaluated. Serum levels of glutathione (GSH), catalase, and nitric oxide as well as histopathological analyses were measured in different groups. Also, matrix metalloproteinase (MMP)-2 and MMP-9 activity were appraised by gelatin zymography. The injection of FCA prolonged the rats' immobility duration in comparison to the control group. Rheumatoid arthritis induction also increased nitric oxide and decreased GSH and catalase levels, while these effects were reversed in the groups that received nanoparticles containing rutin and prednisolone. Rutin nanoparticles suppressed MMP-9 and activated MMP-2. Also, this rutin drug delivery system plays a significant role in the improvement of histopathological symptoms. Considering the improvement of behavioral and tissue symptoms and the modulation of the level of inflammatory cytokines, nanoparticles containing rutin can be proposed as a suitable approach in the management of patients with rheumatoid arthritis.


Asunto(s)
Antiinflamatorios , Artritis Experimental , Artritis Reumatoide , Quitosano , Adyuvante de Freund , Nanopartículas , Estrés Oxidativo , Ratas Wistar , Rutina , Animales , Rutina/farmacología , Rutina/administración & dosificación , Rutina/uso terapéutico , Masculino , Estrés Oxidativo/efectos de los fármacos , Quitosano/química , Quitosano/farmacología , Quitosano/administración & dosificación , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Artritis Reumatoide/inducido químicamente , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Ratas , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Portadores de Fármacos/química , Conducta Animal/efectos de los fármacos , Glutatión/metabolismo , Óxido Nítrico/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología
5.
Asian Pac J Cancer Prev ; 23(6): 1951-1957, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35763636

RESUMEN

BACKGROUND AND PURPOSE: Rutin (RUT) is one of the phenolic compounds found in the invasive plant species, Carpobrotus edulis. Several studies have confirmed numerous pharmacological properties of RUT, including antioxidant, antidiabetic, anti-inflammatory, antimicrobial and anticancer activities. As a result, the goal of this work was to make RUT-loaded PCL-PEG and test its anti-cancer effects against the Skov3 human ovarian cancer cell line. MATERIALS AND METHODS: The NPs were made using the W1/O/W2 process, and their physicochemical properties were assessed by FE-SEM, FTIR, and DLS. MTT assay were used to investigate the anti-proliferative characteristics of drug-loaded NPs. Real-time PCR was also utilized to  examine the expression levels of apoptotic genes including caspase-8, -9, -3, and Bax, as well as anti-apoptotic genes like Bcl-2. RESULTS: Cytotoxicity testing revealed that RUT-loaded PCL-PEG improved cytotoxicity in a dose- and time-dependent manner. In treated MDA-MB-231 cells with RUT-loaded PCL-PEG, there was a significant up-regulation of caspase-8, -9, -3, and Bax genes compared to treated cells with free RUT. CONCLUSION: Finally, RUT-loaded PCL-PEG NPs are recommended as ideal delivery nanocarriers for enhancing RUT's anticancer characteristics for ovarian cancer treatment.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias Ováricas , Rutina , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Caspasa 8/metabolismo , Portadores de Fármacos/química , Femenino , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias Ováricas/tratamiento farmacológico , Poliésteres/administración & dosificación , Poliésteres/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Rutina/administración & dosificación , Rutina/química , Rutina/farmacología , Proteína X Asociada a bcl-2/metabolismo
6.
Drug Deliv ; 28(1): 1951-1961, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34623206

RESUMEN

Corneal wound healing is a highly regulated biological process that is of importance for reducing the risk of blinding corneal infections and inflammations. Traditional eye drop was the main approach for promoting corneal wound healing. However, its low bioavailability required a high therapeutic concentration, which can lead to ocular or even systemic side effects. To develop a safe and effective method for treating corneal injury, we fabricated rutin-encapsulated gelatin hydrogel/contact lens composites by dual crosslinking reactions including in situ free radical polymerization and carboxymethyl cellulose/N-hydroxysulfosuccinimide crosslinking. In vitro drug release results evidenced that rutin in the composites could be sustainedly released for up to 14 days. In addition, biocompatibility assay indicated nontoxicity of the composites. Finally, the effect of rutin-encapsulated composites on the healing of the corneal injury in rabbits was investigated. The injury was basically cured in corneas using rutin-encapsulated composites (healing rate, 98.3% ± 0.7%) at 48 h post-operation, while the damage was still present in corneas using the composite (healing rate, 87.0% ± 4.5%). Further proteomics analysis revealed that corneal wound healing may be promoted by the ERK/MAPK and PI3K/AKT signal pathways. These results inform a potential intervention strategy to facilitate corneal wound healing in humans.


Asunto(s)
Lentes de Contacto Hidrofílicos , Lesiones de la Cornea/tratamiento farmacológico , Hidrogeles/química , Rutina/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Animales , Carboximetilcelulosa de Sodio/química , Línea Celular , Supervivencia Celular , Córnea/efectos de los fármacos , Preparaciones de Acción Retardada , Liberación de Fármacos , Gelatina , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Proteómica , Conejos , Rutina/farmacología , Transducción de Señal/efectos de los fármacos
7.
Aging (Albany NY) ; 13(18): 22134-22147, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550907

RESUMEN

BACKGROUND: Osteoarthritis (OA) is degenerative joint disorder mainly characterized by long-term pain with limited activity of joints, the disease has no effective preventative therapy. Rutin (RUT) is a flavonoid compound, present naturally. The flavonoid shows range of biological activities such as anti-inflammatory and anti-cancer effect. We screened RUT for its activity against osteoarthritis with in vivo and in vitro models of osteoarthritis. METHODS: Animal model of OA was developed using C57BL/6 mice by surgical destabilization of medial meniscus. For in vitro studies the human articular cartilage tissues were used which were collected from osteoarthritis patients and were processed to isolate chondrocytes. The chondrocytes were submitted to advanced glycation end products (AGEs) for inducing osteoarthritis in vitro. Cell viability was done by CCK-8 assay, ELISA analysis for MMP13, collage II, PGE2, IL-6, TNF-α, ADAMTS-5 and MMP-13. Western blot analysis was done for expression of proteins and in silico analysis was done by docking studies. RESULTS: Pretreatment of RT showed no cytotoxic effect and also ameliorated the AGE mediated inflammatory reaction on human chondrocytes in vitro. Treatment of RT inhibited the levels of COX-2 and iNOS in AGE exposed chondrocytes. RT decreased the AGE mediated up-regulation of IL-6, NO, TNF-α and PGE-2 in a dose dependent manner. Pretreatment of RT decreased the extracellular matrix degradation, inhibited expression of TRAF-6 and BCL-2 the NF-κB/MAPK pathway proteins. The treatment of RT in mice prevented the calcification of cartilage tissues, loss of proteoglycans and also halted the narrowing of joint space is mice subjected to osteoarthritis. The in-silico analysis suggested potential binding affinity of RT with TRAF-6 and BCL-2. CONCLUSION: In brief RT inhibited AGE-induced inflammatory reaction and also degradation of ECM via targeting the NF-κB/MAPK pathway proteins BCL-2 and TRAF-6. RT can be a potential molecule in treating OA.


Asunto(s)
Antiinflamatorios/administración & dosificación , Matriz Extracelular/inmunología , Productos Finales de Glicación Avanzada/inmunología , Osteoartritis/tratamiento farmacológico , Osteoartritis/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Rutina/administración & dosificación , Factor 6 Asociado a Receptor de TNF/inmunología , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/inmunología , Condrocitos/efectos de los fármacos , Condrocitos/inmunología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Dinoprostona/inmunología , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Humanos , Masculino , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/inmunología , Osteoartritis/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor 6 Asociado a Receptor de TNF/genética
8.
Drug Deliv ; 28(1): 1478-1495, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34254539

RESUMEN

Plant-derived natural medicines have been extensively studied for anti-inflammatory or antioxidant properties, but challenges to their clinical use include low bioavailability, poor solubility in water, and difficult-to-control release kinetics. Nanomedicine may offer innovative solutions that can enhance the therapeutic activity and control release kinetics of these agents, opening the way to translating them into the clinic. Two agents of particular interest are rutin (Ru), a flavonoid, and piperine (Pip), an alkaloid, which exhibit a range of pharmacological activities that include antioxidant and anti-inflammatory effects. In this work, nanoformulations were developed consisting of two metal-organic frameworks (MOFs) with surface modifications, Ti-MOF and Zr-MOF, each of them loaded with Ru and/or Pip. Both MOFs and nanoformulations were characterized and evaluated in vivo for anti-inflammatory and antioxidant effects. Loadings of ∼17 wt.% for a single pro-drug and ∼27 wt.% for dual loading were achieved. The release patterns for Ru and or Pip followed two stages: a zero-order for the first 12-hour stage, and a second stage of stable sustained release. At pH 7.4, the release patterns best fit to zero-order and Korsmeyer-Peppas kinetic models. The nanoformulations had enhanced anti-inflammatory and antioxidant effects than any of their elements singly, and those with Ru or Pip alone showed stronger effects than those with both agents. Results of assays using a paw edema model, leukocyte migration, and plasma antioxidant capacity were in agreement. Our preliminary findings indicate that nanoformulations with these agents exert better anti-inflammatory and antioxidant effects than the agents in their free form.


Asunto(s)
Alcaloides/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Benzodioxoles/farmacología , Estructuras Metalorgánicas/química , Nanopartículas/química , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Rutina/farmacología , Alcaloides/administración & dosificación , Alcaloides/farmacocinética , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Benzodioxoles/administración & dosificación , Benzodioxoles/farmacocinética , Química Farmacéutica , Preparaciones de Acción Retardada , Portadores de Fármacos , Combinación de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Masculino , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Alcamidas Poliinsaturadas/administración & dosificación , Alcamidas Poliinsaturadas/farmacocinética , Ratas , Ratas Wistar , Rutina/administración & dosificación , Rutina/farmacocinética
9.
J Neuroinflammation ; 18(1): 131, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116706

RESUMEN

BACKGROUND: Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies. During disease progression, abnormally phosphorylated forms of tau aggregate and accumulate into neurofibrillary tangles, leading to synapse loss, neuroinflammation, and neurodegeneration. Thus, targeting of tau pathology is expected to be a promising strategy for AD treatment. METHODS: The effect of rutin on tau aggregation was detected by thioflavin T fluorescence and transmission electron microscope imaging. The effect of rutin on tau oligomer-induced cytotoxicity was assessed by MTT assay. The effect of rutin on tau oligomer-mediated the production of IL-1ß and TNF-α in vitro was measured by ELISA. The uptake of extracellular tau by microglia was determined by immunocytochemistry. Six-month-old male Tau-P301S mice were treated with rutin or vehicle by oral administration daily for 30 days. The cognitive performance was determined using the Morris water maze test, Y-maze test, and novel object recognition test. The levels of pathological tau, gliosis, NF-kB activation, proinflammatory cytokines such as IL-1ß and TNF-α, and synaptic proteins including synaptophysin and PSD95 in the brains of the mice were evaluated by immunolabeling, immunoblotting, or ELISA. RESULTS: We showed that rutin, a natural flavonoid glycoside, inhibited tau aggregation and tau oligomer-induced cytotoxicity, lowered the production of proinflammatory cytokines, protected neuronal morphology from toxic tau oligomers, and promoted microglial uptake of extracellular tau oligomers in vitro. When applied to Tau-P301S mouse model of tauopathy, rutin reduced pathological tau levels, regulated tau hyperphosphorylation by increasing PP2A level, suppressed gliosis and neuroinflammation by downregulating NF-kB pathway, prevented microglial synapse engulfment, and rescued synapse loss in mouse brains, resulting in a significant improvement of cognition. CONCLUSION: In combination with the previously reported therapeutic effects of rutin on Aß pathology, rutin is a promising drug candidate for AD treatment based its combinatorial targeting of tau and Aß.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/prevención & control , Rutina/farmacología , Rutina/uso terapéutico , Proteínas tau/antagonistas & inhibidores , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Microscopía Electrónica de Transmisión , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Rutina/administración & dosificación , Transducción de Señal , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Sci Rep ; 11(1): 7180, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785814

RESUMEN

Apoptosis and antioxidant mechanisms are pathways for the treatment of endometriosis (Endo). Rutin (Rtn) is an antioxidant flavonol that induces apoptosis. This study, for first time, was conducted to evaluate the effects of rutin on Endo through apoptosis and antioxidant mechanisms. The experimental Endo was induced in 24 rats and then the animals were subdivided into Endo-sole, 3000 and 6000 µg/kg rutin (Rtn-3000 and Rtn-6000) and vitamin C groups. After 4 weeks, the expression of Bcl2, Bax, anti Pro Caspase-9, cleaved Caspase-9, pro PARP, pro Cleaved PARP, Pro PARP, pro mTOR and mTOR were assessed by western blotting technique. The protein concentrations of malondialdehyde (MDA), total antioxidant capacity, and super oxide dismutase and gutathione peroxidase were also evaluated. TUNEL staining was also used for the detection of apoptosis. Caspase-9 and concentration of antioxidants were higher in the treated groups compared to Endo-sole group (P < 0.05). The results also showed that rutin decreased the expression of Bcl2 and MDA concentration (P < 0.05). The results for TUNEL staining showed that the animals treated with Rtn-6000 and vitamin C showed higher apoptosis. Rutin induces apoptosis by the expression of Bcl-2, Bax and caspase and also antioxidant activity by increasing antioxidants concentrations.


Asunto(s)
Antioxidantes/administración & dosificación , Endometriosis/prevención & control , Rutina/administración & dosificación , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Ácido Ascórbico/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Endometriosis/etiología , Femenino , Humanos , Estrés Oxidativo/efectos de los fármacos , Ratas
11.
Life Sci ; 276: 119436, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33789146

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the major causes of cancer-related mortality globally. Despite the availability of therapeutic options, the improvement in patient survival is yet to be achieved. Recent advances in natural product (e.g., Rutin) research, therapeutic nanotechnology and especially the combination of both could aid in achieving significant improvements in the treatment or management of NSCLC. In this study, we explore the anti-cancer activity of Rutin-loaded liquid crystalline nanoparticles (LCNs) in an in vitro model where we have employed the A549 human lung epithelial carcinoma cell line. The anti-proliferative activity was determined by MTT and Trypan blue assays, whereas, the anti-migratory activity was evaluated by the scratch wound healing assay and a modified Boyden chamber assay. We also evaluated the anti-apoptotic activity by Annexin V-FITC staining, and the colony formation activity was studied using crystal violet staining. Here, we report that Rutin-LCNs showed promising anti-proliferative and anti-migratory activities. Furthermore, Rutin-LCNs also induced apoptosis in the A549 cells and inhibited colony formation. The findings warrant further detailed and in-depth anti-cancer mechanistic studies of Rutin-LCNs with a focus towards a potential therapeutic option for NSCLC. LCNs may help to enhance the solubility of Rutin used in the treatment of lung cancer and hence enhance the anticancer effect of Rutin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Movimiento Celular , Proliferación Celular , Cristales Líquidos/química , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/administración & dosificación , Rutina/farmacología , Células A549 , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/patología , Nanopartículas/química , Rutina/administración & dosificación , Rutina/química
12.
Biochem Biophys Res Commun ; 549: 214-220, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33706191

RESUMEN

Hematopoietic syndrome contributes to mortality after exposure to high doses of low LET radiation. In this context, we have earlier demonstrated the potential of G-003 M (a combination of podophyllotoxin and rutin) in alleviating radiation-induced bone marrow suppression. Similarly, we here demonstrate that G-003 M protected mice from death (>83% protection) and increased the populations of CD 34 (Cluster of differentiation 34) as well as CD 117 (Cluster of differentiation 117) positive cell population and their colony forming capacity. This was accompanied with increase in the serum titre of granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF). Interestingly, G-003 M lowered down the titre of fms-like tyrosine kinase (Flt-3) ligands. Our results furthermore demonstrates that G-003 M facilitated the nuclear translocation of ß-catenin and upregulated the expression of Wnt 10b. Conditioning of animal with G-003 M activated the expression of survivin, inhibited the activation of Caspase-3 in CD 34/117+ progenitor stem cells and protected the bone marrow vascularity and splenic colonies in lethally irradiated animals, which collectively promoted hemopoietic recovery in lethally irradiated mice.


Asunto(s)
Rayos gamma , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Podofilotoxina/farmacología , Rutina/farmacología , Animales , Apoptosis/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Quimioterapia Combinada , Femenino , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Podofilotoxina/administración & dosificación , Rutina/administración & dosificación , Regulación hacia Arriba/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-32777463

RESUMEN

It is unknown whether the flavonoid rutin can protect the silver catfish liver in response to exposure to a known stressor, such as the prophylactic usage of the antimicrobial agent oxytetracycline. Thus, the current study aimed to assess the effect of rutin incorporation into the silver catfish diet formulation on oxytetracycline-induced liver oxidative stress and apoptosis. Fish were split into four groups as follows: control, rutin (1.5 g kg diet-1), oxytetracycline (0.1 g kg diet-1) and rutin+oxytetracycline (1.5 g kg diet-1 and 0.1 g kg diet-1, respectively). After two weeks of feeding with the different diets (standard, rutin-, oxytetracycline and rutin+oxytetracycline-added diets), fish were euthanized to collect the liver. Although the rutin-added diet was unable to recover glutathione peroxidase activity, ascorbic acid and reduced glutathione (GSH) levels, which were depleted due to oxytetracycline consumption, it markedly diminished the oxidized glutathione (GSSG) content, thus decreasing the GSSG to GSH ratio, an important index of oxidative stress. It also increased glutathione reductase and markedly augmented glucose-6-phosphate dehydrogenase activities, which were declined after oxytetracycline ingestion. Furthermore, the rutin-added diet reestablished superoxide dismutase and catalase activities and reduced lipid peroxidation, nitric oxide and superoxide anion levels as well, all changes resulting from oxytetracycline consumption. Finally, it also prevented oxytetracycline-induced apoptosis through increasing heat shock protein 70 and markedly decreasing high mobility group box 1 and, consequently, reducing cleaved caspase-3 protein levels. Therefore, in conclusion, the incorporation of this flavonoid to the silver catfish diet protected the liver against oxytetracycline-induced liver oxidative stress and apoptosis.


Asunto(s)
Apoptosis , Bagres/metabolismo , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxitetraciclina/toxicidad , Rutina , Alimentación Animal , Animales , Antibacterianos/toxicidad , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Biomarcadores/metabolismo , Hígado/patología , Rutina/administración & dosificación , Rutina/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-32814146

RESUMEN

Trichlorfon is an organophosphate pesticide used extensively for controlling ectoparasites in aquaculture. Studies have found that trichlorfon caused environmental pollution and severe neurotoxic effects in several freshwater species. Feed additives such as flavonoids may reduce or prevent pesticide-induced toxicity in fish. The aim of the present study was to determine whether acute exposure to trichlorfon impairs behavior and causes oxidative damage in brains of silver catfish (Rhamdia quelen). We also sought to determine whether rutin would be capable of preventing or reducing these effects. Silver catfish were divided into four groups: groups A and C received basal feed, while groups B and D received feed containing 3 mg rutin/kg diet for 21 days. After 21 days, groups C and D were exposed for 48 h to a nominal concentration of 11 mg trichlorfon/L water. Fish exposed to trichlorfon showed significantly longer distances travelled and swimming performances than did unexposed fish. Cerebral levels of reactive oxygen species and lipid peroxidation were significantly higher in fish exposed to trichlorfon than in unexposed fish, while cerebral superoxide dismutase, catalase, glutathione peroxidase, and acetylcholinesterase (AChE) activities were significantly lower. Taken together, our findings suggest that dietary supplementation rutin completely prevented all alterations elicited by trichlorfon, except for cerebral AChE activity; the latter remained significantly lower compared to the unexposed group. In summary, rutin prevents trichlorfon-induced neurotoxicity in silver catfish.


Asunto(s)
Antioxidantes , Bagres/metabolismo , Plaguicidas/toxicidad , Rutina , Triclorfón/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Acuicultura , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Rutina/administración & dosificación , Rutina/farmacología
15.
J Nutr Biochem ; 88: 108520, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33017607

RESUMEN

Nowadays, synthetic chemical antidiabetic drugs, besides their therapeutic effects, present adverse effects that could be hard to handle over time. In the last decade, studies reported new alternative molecules with more health benefits and less adverse effects. The goal of this study is to optimize a new antidiabetic formulation using plant flavonoids: Catechin, Epicatechin, and Rutin. They are also a powerful antioxidant and anti-inflammatory molecules. A mixture design experiment will optimize their combination to obtain a new, safe multi-targets antidiabetic formulation making it a powerful combination for the management of diabetes and its complications. To study the variation of blood glucose level in response to the treatment over the time we performed an Oral Glucose Tolerance Test. The blood glucose level variations recorded as responses for the mixture design experiment. We used the molecules at a dose of 10 mg/kg. According to the software analysis, the prediction profiler showed us the optimum combination, and the result was a binary combination between Rutin and Epicatechin (25% and 75%, respectively). This combination prevented hyperglycemia and hypoglycemia, along with the best area under the curve, and after that, we validated it through a repeated oral administration on alloxan-induced diabetic mice for 28 d. Rutin, Catechin, and Epicatechin exhibit a potent antihyperglycemic activity, their synergistic combination validates a new formulation that could be a real candidate to conventional drugs.


Asunto(s)
Catequina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Rutina/farmacología , Administración Oral , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Glucemia/análisis , Catequina/administración & dosificación , Diabetes Mellitus Experimental/metabolismo , Combinación de Medicamentos , Femenino , Flavonoides/farmacología , Prueba de Tolerancia a la Glucosa/métodos , Hiperglucemia/prevención & control , Hipoglucemiantes/administración & dosificación , Masculino , Ratones , Rutina/administración & dosificación
16.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 735-749, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33156389

RESUMEN

The primary requirement for curing cancer is the delivery of essential drug load at the cancer microenvironment with therapeutic efficacy. Considering this, the present study aims to formulate "Rutin"-encapsulated solid lipid nanoparticles (SLNs) for effective brain delivery across the blood-brain barrier (BBB). Rutin-loaded SLNs were fabricated by oil-in-water microemulsion technique and were characterized for their physicochemical properties. The in vivo biodistribution study of rutin-loaded SLNs was studied using Rattus norvegicus rats. Subsequently, in silico molecular docking and dynamic calculations were performed to examine the binding affinity as well as stability of rutin at the active site of target protein "epidermal growth factor receptor (EGFR)." Formulated rutin-loaded SLNs were predominantly spherical in shape with an average particle diameter of 100 nm. Additionally, the biocompatibility and stability have been proved in vitro. The presence and biodistribution of rutin in vivo after 54 h of injection were observed as 15.23 ± 0.32% in the brain, 8.68 ± 0.63% in the heart, 4.78 ± 0.28% in the kidney, 5.04 ± 0.37% in the liver, 0.92 ± 0.04% in the lung, and 11.52 ± 0.65% in the spleen, respectively. Molecular docking results revealed the higher binding energy of - 150.973 kJ/mol of rutin with EGFR. Molecular dynamic simulation studies demonstrated that rutin with EGFR receptor complex was highly stable at 30 ns. The observed results exemplified that the formulated rutin-loaded SLNs were stable in circulation for a period up to 5 days. Thus, rutin-encapsulated SLN formulations can be used as a promising vector to target tumors across BBB. Graphical abstract.


Asunto(s)
Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , Rutina/administración & dosificación , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Liberación de Fármacos , Receptores ErbB/metabolismo , Lípidos/química , Lípidos/farmacocinética , Masculino , Simulación del Acoplamiento Molecular , Nanopartículas/química , Neurofibromina 1/metabolismo , Ratas , Rutina/química , Rutina/farmacocinética , Distribución Tisular , Proteínas ras/metabolismo
17.
J Food Sci ; 85(10): 3577-3589, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32935866

RESUMEN

Water soluble α-glycosylated rutin (4G-α-D-glucopyranosyl rutin, monoglucosyl rutin, MR) was used in this study to evaluate its ability to reduce abdominal visceral fat (AVF). We conducted a study examining 66 healthy Japanese men and women with a body mass index of ≥23 and <30 kg/m2  for 8 weeks. The subjects were randomly assigned to groups via computer random numbers as follows: MR200 group (MR 200 mg/day), MR400 group (MR 400mg/day), or placebo group. The primary outcome was change in the AVF area after 8 weeks of intervention. The secondary outcomes were effects of MR on total fat and subcutaneous fat of umbilical area, lipid-related markers, and subjective symptoms. The per-protocol set analysis involved 18 subjects in the placebo group (7 males and 11 females), 20 subjects in the MR200 group (8 males and 12 females), and 20 subjects in the MR400 group (8 males and 12 females). AVF area in both the MR200 and MR400 groups was reduced at week 8, with changes from the baseline (week 0) significantly higher than the placebo group. Additionally, the MR400 group reported improved subjective symptoms concerning being "worried about abdominal fat" at week 4 compared with the placebo group. These results indicate that the consumption of MR (200 and 400 mg/day) for 8 weeks reduced AVF. PRACTICAL APPLICATION: Monoglucosyl rutin, an enzymatically modified form of rutin, is a highly stable and water-soluble flavonoid widely used in food and beverages to prevent oxidation. The present clinical study demonstrated that it may improve overall health by reducing abdominal visceral fat.


Asunto(s)
Grasa Abdominal/metabolismo , Grasa Intraabdominal/metabolismo , Rutina/análogos & derivados , Adulto , Anciano , Índice de Masa Corporal , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rutina/administración & dosificación , Rutina/química , Pérdida de Peso/efectos de los fármacos
18.
J Tradit Chin Med ; 40(4): 640-645, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32744031

RESUMEN

OBJECTIVE: To study the effects of rutin on serum glucose and lipid levels in hyperglycemic rats. METHODS: Male Wistar rats were subjected to intraperitoneal streptozotocin injections and a high-sugar, high-fat diet to establish a hyperglycemic and hyperlipidemic model. The model was considered to be successfully established in rats with fasting blood sugar (FBS) ≥ 11.1 mmol/L. The study included 6 groups with 10 rats each: a blank control group, a model group, a metformin group, and groups on large, medium and small doses of rutin. The groups received intraperitoneal streptozotocin or normal saline for 21 d. FBS, serum lipids, serum insulin, insulin sensitivity index (ISI), and levels of catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were evaluated in all rats. Pancreatic tissue samples were harvested to observe structural changes in islet cells. RESULTS: Large, medium, and small doses of rutin were associated with significantly reduced FBS (P < 0.05), and increased levels of ISI, CAT, GSH-Px and SOD, as well as decreased MDA (P < 0.05). Rutin administration was also related with reduced total cholesterol, triglycerides and low density lipoprotein chesterol, as well as increased high density lipoprotein chesterol (P < 0.05). Histologic evaluation revealed rutin induced repair of damaged islet cells. CONCLUSION: In diabetic rat models, rutin can significantly reduce FBS and blood lipids, improve anti-oxidant activity, increase insulin sensitivity, and induce repair of damaged islet cells.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hiperlipoproteinemias/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Hipolipemiantes/administración & dosificación , Rutina/administración & dosificación , Animales , Glucemia/metabolismo , LDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Glutatión Peroxidasa/metabolismo , Humanos , Hiperlipoproteinemias/genética , Hiperlipoproteinemias/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Triglicéridos/sangre
19.
Toxicol In Vitro ; 68: 104961, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32771431

RESUMEN

Airway inflammation and infections are the primary causes of damage in the airway epithelium, that lead to hypersecretion of mucus and airway hyper-responsiveness. The role of reactive oxygen species (ROS) and their components in the pathophysiological mechanisms of airway inflammation have been well-studied and emphasized for the past several decades. Rutin, a potent bioflavonoid, is well-known for its antioxidant, anti-inflammatory, especially in bronchial inflammation. However, poor solubility and rapid metabolism have led to its low bioavailability in biological systems, and hence limit its application. The present study aims to investigate the beneficial effects of rutin-loaded liquid crystalline nanoparticles (LCNs) against lipopolysaccharide (LPS) induced oxidative damage in human bronchial epithelial cell line (BEAS-2-B) cells in vitro. LPS was used to stimulate BEAS-2-B cells, causing the generation of nitric oxide (NO) and other reactive oxygen species (ROS) that had led to cellular apoptosis. The levels of NO and ROS were detected by, Griess reagent kit and dichlorodihydrofluorescein diacetate (DCFH-DA) respectively, whereas, cell apoptosis was studied by Annexin V-FITC and PI staining. The findings revealed that rutin-loaded LCNs significantly reduced NO, ROS levels and prevented apoptosis in BEAS-2B cells. The observations and findings provide a mechanistic understanding of the effectiveness of rutin-loaded LCNs in protecting the bronchial cells against airway inflammation, thus possessing a promising therapeutic option for the management of airway diseases.


Asunto(s)
Bronquios/citología , Células Epiteliales/efectos de los fármacos , Nanopartículas/administración & dosificación , Sustancias Protectoras/administración & dosificación , Rutina/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Lipopolisacáridos , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
20.
Nutrients ; 12(6)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585837

RESUMEN

Age-related sarcopenia is a progressive and generalized skeletal muscle disorder associated with adverse outcomes. Herein, we evaluate the effects of a combination of electrical muscle stimulation (EMS) and a whey-based nutritional supplement (with or without polyphenols and fish oil-derived omega-3 fatty acids) on muscle function and size. Free-living elderly participants with mobility limitations were included in this study. They received 2 sessions of EMS per week and were randomly assigned to ingest an isocaloric beverage and capsules for 12 weeks: (1) carbohydrate + placebo capsules (CHO, n = 12), (2) whey protein isolate + placebo capsules (WPI, n = 15) and (3) whey protein isolate + bioactives (BIO) capsules containing omega-3 fatty acids, rutin, and curcumin (WPI + BIO, n = 10). The change in knee extension strength was significantly improved by 13% in the WPI + BIO group versus CHO on top of EMS, while WPI alone did not provide a significant benefit over CHO. On top of this, there was the largest improvement in gait speed (8%). The combination of EMS and this specific nutritional intervention could be considered as a new approach for the prevention of sarcopenia but more work is needed before this approach should be recommended. This trial was registered at the Japanese University Hospital Medical Information Network (UMIN) clinical trial registry (UMIN000008382).


Asunto(s)
Curcumina , Terapia por Estimulación Eléctrica , Ácidos Grasos Omega-3 , Fuerza Muscular , Proteína de Suero de Leche , Anciano , Anciano de 80 o más Años , Curcumina/administración & dosificación , Curcumina/efectos adversos , Curcumina/uso terapéutico , Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-3/uso terapéutico , Femenino , Anciano Frágil , Humanos , Masculino , Persona de Mediana Edad , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/fisiología , Rutina/administración & dosificación , Rutina/efectos adversos , Rutina/uso terapéutico , Sarcopenia/terapia , Proteína de Suero de Leche/administración & dosificación , Proteína de Suero de Leche/efectos adversos , Proteína de Suero de Leche/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA