RESUMEN
BACKGROUND: Nijmegen breakage syndrome (NBS) is an autosomal-recessive chromosome instability disorder characterized by, among others, hypersensitivity to X-irradiation and an exceptionally high risk for lymphoid malignancy. The vast majority of NBS patients is homozygous for a common Slavic founder mutation, c.657del5, of the NBN gene, which is involved in the repair of DNA double-strand breaks (DSBs). The founder mutation also predisposes heterozygous carriers to cancer, apparently however, with a higher risk in the Czech Republic/Slovakia (CS) than in Poland. AIM: To examine whether the age of cancer manifestation and cancer death of NBN homozygotes is different between probands from CS and Poland. METHODS: The study is restricted to probands born until 1989, before replacement of the communist regime by a democratic system in CS and Poland, and a substantial transition of the health care systems. Moreover, all patients were recruited without knowledge of their genetic status since the NBN gene was not identified until 1998. RESULTS: Here, we show that cancer manifestation of NBN homozygotes is at a significantly earlier age in probands from CS than from Poland. This is explained by the difference in natural and medical radiation exposure, though within the permissible dosage. CONCLUSION: It is reasonable to assume that this finding also sheds light on the higher cancer risk of NBN heterozygotes in CS than in Poland. This has implications for genetic counseling and individualized medicine also of probands with other DNA repair defects.
Asunto(s)
Neoplasias , Síndrome de Nijmegen , Humanos , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Heterocigoto , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patología , MutaciónRESUMEN
BACKGROUND: Nibrin, as part of the NBN/MRE11/RAD50 complex, is mutated in Nijmegen breakage syndrome (NBS), which leads to impaired DNA damage response and lymphoid malignancy. RESULTS: Telomere length (TL) was markedly reduced in homozygous patients (and comparably so in all chromosomes) by ~40% (qPCR) and was slightly reduced in NBS heterozygotes older than 30 years (~25% in qPCR), in accordance with the respective cancer rates. Humanized cancer-free NBS mice had normal TL. Telomere elongation was inducible by telomerase and/or alternative telomere lengthening but was associated with abnormal expression of telomeric genes involved in aging and/or cell growth. Lymphoblastoid cells from NBS patients with long survival times (>12 years) displayed the shortest telomeres and low caspase 7 activity. CONCLUSIONS: NBS is a secondary telomeropathy. The two-edged sword of telomere attrition enhances the cancer-prone situation in NBS but can also lead to a relatively stable cellular phenotype in tumor survivors. Results suggest a modular model for progeroid syndromes with abnormal expression of telomeric genes as a molecular basis. METHODS: We studied TL and function in 38 homozygous individuals, 27 heterozygotes, one homozygous fetus, six NBS lymphoblastoid cell lines, and humanized NBS mice, all with the same founder NBN mutation: c.657_661del5.
Asunto(s)
Proteínas de Ciclo Celular/genética , Síndrome de Nijmegen/complicaciones , Proteínas Nucleares/genética , Progeria/genética , Homeostasis del Telómero/genética , Telómero/patología , Adolescente , Animales , Línea Celular Tumoral , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Homocigoto , Humanos , Lactante , Cariotipificación , Masculino , Ratones , Ratones Transgénicos , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patología , Progeria/patología , Telomerasa/metabolismo , Adulto JovenRESUMEN
BACKGROUND/AIM: We aimed to examine the association of the genotypes of Nijmegen breakage syndrome 1 (NBS1), a critical gene in DNA double strand break repair machinery, with bladder cancer risk in Taiwan. MATERIALS AND METHODS: NBS1 rs1805794 genotypes among 375 bladder cancer patients and 375 non-cancer healthy controls were determined via the polymerase chain reaction-restriction fragment length polymorphism methodology and their association with bladder cancer risk were evaluated. RESULTS: The results showed that the percentages of GG, CG and CC of NBS1 rs1805794 genotypes were 45.4%, 43.7% and 10.9% in the bladder cancer patient group and 47.2%, 43.2% and 9.6% in the non-cancer control group, respectively (p for trend=0.7873). The analysis of allelic frequency distributions showed that the variant C allele of NBS1 rs1805794 does not contribute to an increased bladder cancer susceptibility (p=0.5066). CONCLUSION: The genotypes of NBS1 rs1805794 are not closely associated with personal susceptibility to bladder cancer.
Asunto(s)
Proteínas de Ciclo Celular/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Nucleares/genética , Neoplasias de la Vejiga Urinaria/genética , Alelos , Reparación del ADN/genética , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patología , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
DNA double-strand breaks (DSBs) are highly toxic DNA lesions that can lead to chromosomal instability, loss of genes and cancer. The MRE11/RAD50/NBN (MRN) complex is keystone involved in signaling processes inducing the repair of DSB by, for example, in activating pathways leading to homologous recombination repair and nonhomologous end joining. Additionally, the MRN complex also plays an important role in the maintenance of telomeres and can act as a stabilizer at replication forks. Mutations in NBN and MRE11 are associated with Nijmegen breakage syndrome (NBS) and ataxia telangiectasia (AT)-like disorder, respectively. So far, only one single patient with biallelic loss of function variants in RAD50 has been reported presenting with features classified as NBS-like disorder. Here, we report a long-term follow-up of an unrelated patient with facial dysmorphisms, microcephaly, skeletal features, and short stature who is homozygous for a novel variant in RAD50. We could show that this variant, c.2524G > A in exon 15 of the RAD50 gene, induces aberrant splicing of RAD50 mRNA mainly leading to premature protein truncation and thereby, most likely, to loss of RAD50 function. Using patient-derived primary fibroblasts, we could show abnormal radioresistant DNA synthesis confirming pathogenicity of the identified variant. Immunoblotting experiments showed strongly reduced protein levels of RAD50 in the patient-derived fibroblasts and provided evidence for a markedly reduced radiation-induced AT-mutated signaling. Comparison with the previously reported case and with patients presenting with NBS confirms that RAD50 mutations lead to a similar, but distinctive phenotype.
Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Ataxia Telangiectasia/genética , Trastornos por Deficiencias en la Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Trastornos del Crecimiento/genética , Microcefalia/genética , Síndrome de Nijmegen/genética , Alelos , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/patología , Proteínas de Ciclo Celular/genética , Niño , Preescolar , Roturas del ADN de Doble Cadena , Trastornos por Deficiencias en la Reparación del ADN/complicaciones , Trastornos por Deficiencias en la Reparación del ADN/patología , Femenino , Trastornos del Crecimiento/complicaciones , Trastornos del Crecimiento/patología , Humanos , Lactante , Recién Nacido , Proteína Homóloga de MRE11/genética , Microcefalia/complicaciones , Microcefalia/patología , Síndrome de Nijmegen/complicaciones , Síndrome de Nijmegen/patología , Proteínas Nucleares/genética , LinajeRESUMEN
Heterochromatin Protein 1 (HP1) and the Mre11-Rad50-Nbs1 (MRN) complex are conserved factors that play crucial role in genome stability and integrity. Despite their involvement in overlapping cellular functions, ranging from chromatin organization, telomere maintenance to DNA replication and repair, a tight functional relationship between HP1 and the MRN complex has never been elucidated. Here we show that the Drosophila HP1a protein binds to the MRN complex through its chromoshadow domain (CSD). In addition, loss of any of the MRN members reduces HP1a levels indicating that the MRN complex acts as regulator of HP1a stability. Moreover, overexpression of HP1a in nbs (but not in rad50 or mre11) mutant cells drastically reduces DNA damage associated with the loss of Nbs suggesting that HP1a and Nbs work in concert to maintain chromosome integrity in flies. We have also found that human HP1α and NBS1 interact with each other and that, similarly to Drosophila, siRNA-mediated inhibition of NBS1 reduces HP1α levels in human cultured cells. Surprisingly, fibroblasts from Nijmegen Breakage Syndrome (NBS) patients, carrying the 657del5 hypomorphic mutation in NBS1 and expressing the p26 and p70 NBS1 fragments, accumulate HP1α indicating that, differently from NBS1 knockout cells, the presence of truncated NBS1 extends HP1α turnover and/or promotes its stability. Remarkably, an siRNA-mediated reduction of HP1α in NBS fibroblasts decreases the hypersensitivity to irradiation, a characteristic of the NBS syndrome. Overall, our data provide an unanticipated evidence of a close interaction between HP1 and NBS1 that is essential for genome stability and point up HP1α as a potential target to counteract chromosome instability in NBS patient cells.
Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Inestabilidad Genómica/genética , Proteínas Nucleares/genética , Animales , Homólogo de la Proteína Chromobox 5 , Daño del ADN/genética , Drosophila melanogaster/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Genoma de los Insectos/genética , Humanos , Masculino , Mutación/genética , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patologíaRESUMEN
Human fibroblasts cells from a female diagnosed with Nijmegen Breakage Syndrome (NBS) carrying the homozygous NBN c.657_661del5 mutation were used to generate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4, SOX2, NANOG, KLF4, c-MYC and LIN28. The derived iPSC line - ISRM-NBS1 was defined as pluripotent based on (i) expression of pluripotency-associated markers (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptome of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.955.
Asunto(s)
Proteínas de Ciclo Celular/genética , Fibroblastos/patología , Células Madre Pluripotentes Inducidas/patología , Mutación/genética , Síndrome de Nijmegen/patología , Proteínas Nucleares/genética , Adolescente , Línea Celular , Femenino , Homocigoto , Humanos , Factor 4 Similar a KruppelRESUMEN
Nijmegen Breakage Syndrome (NBS) is associated with cancer predisposition, premature aging, immune deficiency, microcephaly and is caused by mutations in the gene coding for NIBRIN (NBN) which is involved in DNA damage repair. Dermal-derived fibroblasts from NBS patients were reprogrammed into induced pluripotent stem cells (iPSCs) in order to bypass premature senescence. The influence of antioxidants on intracellular levels of ROS and DNA damage were screened and it was found that EDHB-an activator of the hypoxia pathway, decreased DNA damage in the presence of high oxidative stress. Furthermore, NBS fibroblasts but not NBS-iPSCs were found to be more susceptible to the induction of DNA damage than their healthy counterparts. Global transcriptome analysis comparing NBS to healthy fibroblasts and NBS-iPSCs to embryonic stem cells revealed regulation of P53 in NBS fibroblasts and NBS-iPSCs. Cell cycle related genes were down-regulated in NBS fibroblasts. Furthermore, oxidative phosphorylation was down-regulated and glycolysis up-regulated specifically in NBS-iPSCs compared to embryonic stem cells. Our study demonstrates the utility of NBS-iPSCs as a screening platform for anti-oxidants capable of suppressing DNA damage and a cellular model for studying NBN de-regulation in cancer and microcephaly.
Asunto(s)
Antioxidantes/farmacología , Fibroblastos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de Nijmegen/genética , Transducción de Señal/genética , Transcriptoma , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reprogramación Celular , Daño del ADN , Dermis/efectos de los fármacos , Dermis/metabolismo , Dermis/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucólisis/genética , Ensayos Analíticos de Alto Rendimiento , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/patología , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Cultivo Primario de Células , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The molecular chaperone heat shock protein 90 (Hsp90α) regulates cell proteostasis and mitigates the harmful effects of endogenous and exogenous stressors on the proteome. Indeed, the inhibition of Hsp90α ATPase activity affects the cellular response to ionizing radiation (IR). Although the interplay between Hsp90α and several DNA damage response (DDR) proteins has been reported, its role in the DDR is still unclear. Here, we show that ataxia-telangiectasia-mutated kinase (ATM) and nibrin (NBN), but not 53BP1, RAD50, and MRE11, are Hsp90α clients as the Hsp90α inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) induces ATM and NBN polyubiquitination and proteosomal degradation in normal fibroblasts and lymphoblastoid cell lines. Hsp90α-ATM and Hsp90α-NBN complexes are present in unstressed and irradiated cells, allowing the maintenance of ATM and NBN stability that is required for the MRE11/RAD50/NBN complex-dependent ATM activation and the ATM-dependent phosphorylation of both NBN and Hsp90α in response to IR-induced DNA double-strand breaks (DSBs). Hsp90α forms a complex also with ph-Ser1981-ATM following IR. Upon phosphorylation, NBN dissociates from Hsp90α and translocates at the DSBs, while phThr5/7-Hsp90α is not recruited at the damaged sites. The inhibition of Hsp90α affects nuclear localization of MRE11 and RAD50, impairs DDR signaling (e.g., BRCA1 and CHK2 phosphorylation), and slows down DSBs repair. Hsp90α inhibition does not affect DNA-dependent protein kinase (DNA-PK) activity, which possibly phosphorylates Hsp90α and H2AX after IR. Notably, Hsp90α inhibition causes H2AX phosphorylation in proliferating cells, this possibly indicating replication stress events. Overall, present data shed light on the regulatory role of Hsp90α on the DDR, controlling ATM and NBN stability and influencing the DSBs signaling and repair.
Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas HSP90 de Choque Térmico/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Benzoquinonas/farmacología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular Transformada , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/química , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa de Punto de Control 2/química , Quinasa de Punto de Control 2/metabolismo , Reparación del ADN/efectos de los fármacos , Eliminación de Gen , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Humanos , Lactamas Macrocíclicas/farmacología , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/patología , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Mutación Puntual , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Interferencia de ARN , Ubiquitinación/efectos de los fármacosRESUMEN
Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T), Bloom syndrome (BS) and Nijmegen breakage syndrome (NBS) are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4), oxidised low-density lipoprotein (ox-LDL) or Poly (ADP-ribose) polymerases (PARP). Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS), and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.
Asunto(s)
Ataxia Telangiectasia/genética , Síndrome de Bloom/genética , Reparación del ADN , Mitocondrias/metabolismo , Síndrome de Nijmegen/genética , Estrés Oxidativo/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patología , Daño del ADN , Regulación de la Expresión Génica , Humanos , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Mitocondrias/patología , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/patología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de SeñalRESUMEN
Nijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.
Asunto(s)
Proteínas de Ciclo Celular/genética , Inestabilidad Cromosómica , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Síndrome de Nijmegen/genética , Proteínas Nucleares/genética , Ácido Anhídrido Hidrolasas , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Reprogramación Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/patología , Cariotipificación , Proteína Homóloga de MRE11 , Mitosis , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/patología , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/patología , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Because DNA double-strand breaks (DSBs) are one of the most cytotoxic DNA lesions and often cause genomic instability, precise repair of DSBs is vital for the maintenance of genomic stability. Xrs2/Nbs1 is a multi-functional regulatory subunit of the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex, and its function is critical for the primary step of DSB repair, whether by homologous recombination (HR) or non-homologous end joining. In human NBS1, mutations result truncation of the N-terminus region, which contains a forkhead-associated (FHA) domain, cause Nijmegen breakage syndrome. Here we show that the Xrs2 FHA domain of budding yeast is required both to suppress the imprecise repair of DSBs and to promote the robust activation of Tel1 in the DNA damage response pathway. The role of the Xrs2 FHA domain in Tel1 activation was independent of the Tel1-binding activity of the Xrs2 C terminus, which mediates Tel1 recruitment to DSB ends. Both the Xrs2 FHA domain and Tel1 were required for the timely removal of the Ku complex from DSB ends, which correlates with a reduced frequency of imprecise end-joining. Thus, the Xrs2 FHA domain and Tel1 kinase work in a coordinated manner to maintain DSB repair fidelity.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Recombinación Homóloga/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patología , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Fibroblasts from the progeroid Nijmegen breakage syndrome that express a truncated version of the nibrin protein (NBN(p70)) undergo premature senescence and have an enlarged morphology with high levels of senescence-associated ß-galactosidase, although they do not have F-actin stress fibres. Growth of these fibroblasts in the continuous presence of p38 inhibitors resulted in a large increase in replicative capacity and changed the cellular morphology so that the cells resembled young normal fibroblasts. A similar effect was seen using an inhibitor of the p38 downstream effector kinase MK2. These data suggest that NBN(p70) expressing cells undergo a degree of stress-induced replicative senescence via p38/MK2 activation, potentially due to increased telomere dysfunction, that may play a role in the progeroid features seen in this syndrome.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/fisiología , Fibroblastos/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Síndrome de Nijmegen/patología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Humanos , Imidazoles/farmacología , Síndrome de Nijmegen/metabolismo , Fenotipo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Telómero/fisiologíaRESUMEN
Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN complex, which is involved in early steps of DNA double strand breaks sensing and repair. Mutations within the NBN gene are responsible for the Nijmegen breakage syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express either the full-length NBN protein or the p26 or p70 fragments, followed by affinity chromatography enrichment of the eluates. The application of an unsupervised proteomics approach, based upon SDS-PAGE separation and shotgun digestion of protein bands followed by MS/MS protein identification, indicates the occurrence of previously unreported protein interacting partners of the full-length NBN protein and the p26 fragment containing the FHA/BRCT1 domains, especially after cell irradiation. In particular, results obtained shed light on new possible roles of NBN and of the p26 fragment in ROS scavenging, in the DNA damage response, and in protein folding and degradation. In particular, here we show that p26 interacts with PARP1 after irradiation, and this interaction exerts an inhibitory effect on PARP1 activity as measured by NAD+ levels. Furthermore, the p26-PARP1 interaction seems to be responsible for the persistence of ROS, and in turn of DSBs, at 24 h from IR. Since some of the newly identified interactors of the p26 and p70 fragments have not been found to interact with the full-length NBN, these interactions may somehow contribute to the key biological phenomena underpinning NBS.
Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Mutación/genética , Síndrome de Nijmegen/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia , Western Blotting , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Redes Reguladoras de Genes , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Rayos XRESUMEN
Nibrin plays an important role in the DNA damage response (DDR) and DNA repair. DDR is a crucial signaling pathway in apoptosis and senescence. To verify whether truncated nibrin (p70), causing Nijmegen Breakage Syndrome (NBS), is involved in DDR and cell fate upon DNA damage, we used two (S4 and S3R) spontaneously immortalized T cell lines from NBS patients, with the founding mutation and a control cell line (L5). S4 and S3R cells have the same level of p70 nibrin, however p70 from S4 cells was able to form more complexes with ATM and BRCA1. Doxorubicin-induced DDR followed by cell senescence could only be observed in L5 and S4 cells, but not in the S3R ones. Furthermore the S3R cells only underwent cell death, but not senescence after doxorubicin treatment. In contrary to doxorubicin treatment, cells from all three cell lines were able to activate the DDR pathway after being exposed to γ-radiation. Downregulation of nibrin in normal human vascular smooth muscle cells (VSMCs) did not prevent the activation of DDR and induction of senescence. Our results indicate that a substantially reduced level of nibrin or its truncated p70 form is sufficient to induce DNA-damage dependent senescence in VSMCs and S4 cells, respectively. In doxorubicin-treated S3R cells DDR activation was severely impaired, thus preventing the induction of senescence.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Síndrome de Nijmegen/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Linfocitos T/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Línea Celular , Reparación del ADN/efectos de los fármacos , Regulación hacia Abajo , Humanos , Mutación , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/patología , Proteínas Nucleares/genética , Linfocitos T/metabolismo , Linfocitos T/patologíaRESUMEN
Nijmegen breakage syndrome (NBS), caused by mutation of the Nbn gene, is a recessive genetic disorder characterized by immunodeficiency, elevated sensitivity to ionizing radiation, chromosomal instability, microcephaly, and high predisposition to malignancies. To explore the underlying molecular mechanisms of NBS microcephaly, Frappart et al. previously inactivated Nbn gene in the central nervous system (CNS) of mice by the nestin-Cre targeting gene system and generated Nbn(CNS-del) mice. Here we first report that Nbn gene inactivation induces the defective proliferation and enhanced apoptosis of the oligodendrocyte precursor cells (OPCs), contributing to the severe hypomyelination of the nerve fibers of the corpus callosum. Under conditions of DNA damage and oxidative stress, the distinct regulatory roles of ATM-Chk2 signaling and AKT/mTOR signaling are responsible for the defective proliferation and enhanced apoptosis of the Nbn-deficient OPCs. In addition, specific HDAC isoforms may play distinctive roles in regulating the myelination of the Nbn-deficient OPCs. However, brain-derived neurotrophic factor and nerve growth factor stimulation attenuates the oxidative stress and thereby increases the proliferation of the Nbn-deficient OPCs, which is accompanied by upregulation of the AKT/mTOR/P70S6K signaling pathway. Taken together, these findings demonstrate that DNA damage and oxidative stress resulting from Nbn gene inactivation are associated with hypomyelination of the nerve fibers of corpus callosum.
Asunto(s)
Cuerpo Calloso/patología , Daño del ADN/fisiología , Vaina de Mielina/patología , Síndrome de Nijmegen/patología , Estrés Oxidativo/fisiología , Animales , Animales Recién Nacidos , Western Blotting , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cuerpo Calloso/fisiopatología , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Ratones , Ratones Mutantes , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/fisiología , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/fisiopatología , Proteínas Nucleares/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
PURPOSE: The meiotic recombination protein 11 (MRE11), radiation sensitive 50 (RAD50) and nibrin (NBN) are members of the MRE11/RAD50/NBN (MRN) complex which plays a fundamental role in the double-strand break damage response, including DNA damage sensing, signalling and repair after exposure to ionizing radiations. In addition the MRN complex is involved in the mechanisms regulating telomere length maintenance. Based on our previous results indicating that, in contrast to X-rays, high linear energy transfer (LET) radiations were able to elongate telomeres, we investigated the behavior of cells mutated in components of the MRN complex after exposure either to 62 MeV carbon-ions (50 keV/µm, at cell surface) or X-rays. MATERIALS AND METHODS: Epstein Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCL) established from normal, heterozygous for the NBN gene, homozygous for either mutant/deleted NBN, RAD50 or ataxia telangiectasia mutated (ATM) genes were irradiated with 4 Gy, with telomere length being evaluated 24 h later or in time course-experiments up to 15 days later. The induction of telomeric sister chromatid exchanges (T-SCE) was measured as a hallmark of homologous directed recombinational repair. RESULTS: NBN and RAD50 mutated cells failed to elongate telomeres that instead occurred in the remaining cell lines as a response only to high-LET irradiation. Also, a kinetic study with 0.5-4 Gy up to 15 days from irradiation confirmed that NBN gene was indispensable for telomere elongation. Furthermore, such an elongation, was accompanied by an increased frequency of sister chromatid exchanges at telomeres (T-SCE). In contrast, the induction of genomic sister chromatid exchanges (G-SCE) occurred for carbon-ions irrespective of NBN gene status. CONCLUSIONS: We speculate that the MRN is necessary to process a subclass of high-LET radiation-induced complex DNA damage through a recombinational-repair mediated mechanism which in turn is responsible for telomere elongation.
Asunto(s)
Enzimas Reparadoras del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Linfocitos/efectos de la radiación , Síndrome de Nijmegen/patología , Síndrome de Nijmegen/fisiopatología , Homeostasis del Telómero/efectos de la radiación , Ácido Anhídrido Hidrolasas , Células Cultivadas , Daño del ADN , Reparación del ADN/efectos de la radiación , Humanos , Proteína Homóloga de MRE11RESUMEN
Ataxia-telangiectasia (A-T) has for a long time stood apart from most other human neurodegenerative syndromes by the characteristic failure of cells derived from these patients to properly repair DNA damage-induced by ionizing radiation. The discovery of mutations in the ATM gene as being the underlying cause for A-T and the demonstration that the ATM protein functions as a DNA damage-responsive kinase has defined current research focusing on decoding how the cell responds to genotoxic stress. Yet, despite significant advances in delineating the cellular DNA damage response pathways coordinated by ATM, very little headway has been made toward understanding how loss of ATM leads to progressive cerebellar ataxia and whether this can be attributed to an underlying defect in DNA double strand break repair (DSBR). Since its identification, A-T has been used as the archetypal model for how a deficiency in DNA repair affects both the development and maintenance of the nervous and immune systems in humans as well as contributing to the process of tumourigenesis. However, following the growing availability and cost effectiveness of next generation sequencing technologies, the increasing recognition of novel human disorders associated with abnormal DNA repair has demonstrated that the neuropathology typified by A-T is an 'exception' rather than the 'rule'. As a consequence, this throws into doubt the longstanding hypothesis that the neurodegeneration seen in A-T is due to the progressive loss of damaged neurons that have acquired toxic levels of unrepaired DNA lesions over time. Therefore, this review aims to address the question: Is defective DNA double strand break repair an underlying cause of neurodegeneration?
Asunto(s)
Roturas del ADN de Doble Cadena , Predisposición Genética a la Enfermedad , Sistema Nervioso/patología , Enfermedades Neurodegenerativas/genética , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Trastornos por Deficiencias en la Reparación del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/patología , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Humanos , Microcefalia/genética , Microcefalia/patología , Mutación , Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/patología , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patología , Radiación IonizanteRESUMEN
The autosomal recessive disorder Nijmegen breakage syndrome (NBS) is caused by mutations in the NBN gene which codes for the protein nibrin (NBS1; p95). In the majority of cases, a 5bp deletion, a founder mutation, leads to a hypomorphic 70kD protein, p70-nibrin, after alternative initiation of translation. Protein levels are of relevance for the clinical course of the disease, particularly with regard to malignancy. Here, mechanisms and efficiency of mutant protein clearance were examined in order to establish whether these have an impact on nibrin abundance. Cell lines from NBS patients and retroviral transductants were treated with proteasome and lysosome inhibitors and examined by semi-quantitative immunoblotting for p70-nibrin and p95-nibrin levels. The results show that p70-nibrin is degraded by the proteasome with varying efficiency in cell lines from different NBS patients leading to lower or higher steady state levels of this partially active protein fragment. In contrast, a previously described NBN missense mutation, which disturbs protein folding due to the substitution of a critical arginine by tryptophan, was found to be cleared by lysosomal microautophagy leading also to lower cellular levels. The data show that truncated nibrin and misfolded nibrin have different clearance pathways.
Asunto(s)
Alelos , Proteínas de Ciclo Celular/genética , Proteínas Mutantes/genética , Síndrome de Nijmegen/genética , Proteínas Nucleares/genética , Sustitución de Aminoácidos , Autofagia/genética , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Marcadores Genéticos , Vectores Genéticos , Humanos , Cinética , Mutación Missense , Síndrome de Nijmegen/patología , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Retroviridae/genética , Retroviridae/metabolismoRESUMEN
In mammalian cells more than 90% of double-strand breaks are repaired by NHEJ. Impairment of this pathway is associated with cell cycle arrest, cell death, genomic instability and cancer. Human diseases such as Nijmegen breakage syndrome, due to mutations in the NBS1 gene, produce defects in resection of double-strand breaks. NBS1 hypomorphic mutant mice are viable, and cells from these mice are defective in S phase and G2/M checkpoints. NBS1 polymorphisms have been associated with increased risk of breast cancer. We previously demonstrated that estradiol protected estrogen receptor (ER)-positive (+) breast cancer cell lines against double-strand breaks and cell death. We now demonstrate that protection from double-strand break damage in ER+ cells is mediated via regulation by c-myc, p53, CBP and SRC1 coactivators in intron 1 of the NBS1 gene. We concluded that NBS1 is responsible for estradiol-mediated protection from double-strand breaks in ER+ breast cancer cells.
Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Estradiol/farmacología , Estrógenos/genética , Estrógenos/metabolismo , Femenino , Humanos , Intrones/genética , Ratones , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/patología , Proteínas Nucleares/metabolismoRESUMEN
The Nijmegen breakage syndrome (NBS) is a genetic disorder caused by mutations in NBN gene and characterized by chromosomal instability and hypersensitivity to ionizing radiations (IR). The N-terminus of nibrin (NBN) contains a tandem breast cancer 1 (BRCA1) carboxy-terminal (BRCT) domain that represents one of the major mediators of phosphorylation-dependent protein-protein interactions in processes related to cell cycle checkpoint and DNA repair functions. Patients with NBS compound heterozygous for the 657del5 hypomorphic mutation and for the Arg215Trp missense mutation (corresponding to the 643C>T gene mutation) display a clinical phenotype more severe than that of patients homozygous for the 657del5 mutation. Here, we show that both the 657del5 and Arg215Trp mutations, occurring within the tandem BRCT domains of NBN, although not altering the assembly of the MRE11/RAD50/NBN (MRN) complex, affect the MRE11 IR-induced nuclear foci (IRIF) formation and the DNA double-strand break (DSB) signaling via the phosphorylation of both ataxia-telangiectasia-mutated (ATM) kinase and ATM downstream targets (e.g., SMC1 and p53). Remarkably, data obtained indicate that the cleavage of the BRCT tandem domains of NBN by the 657del5 mutation affects the DNA damage response less than the Arg215Trp mutation. Indeed, the 70-kDa NBN fragment, arising from the 657del5 mutation, maintains the capability to interact with MRE11 and γ-H2AX and to form IRIF. Altogether, the role of the tandem BRCT domains of NBN in the localization of the MRN complex at the DNA DSB and in the activation of the damage response is highlighted.