Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Radiat Res ; 202(4): 706-718, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39187264

RESUMEN

Total-body irradiation (TBI) with gamma rays can damage organisms in various unexpected ways and trigger several organ dysfunction syndromes, such as acute radiation syndrome (ARS). Hematopoietic cells and enterocytes are particularly sensitive to radiation due to their self-renewal ability and rapid division, which leads to hematopoietic ARS (H-ARS) and gastrointestinal ARS (GI-ARS). We previously showed that a lipid-based small molecule, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), improved 30-day survival and alleviated H-ARS symptoms in BALB/c mice after a lethal dose (LD70/30) of gamma-ray TBI. In this study, we investigated the mitigating effects of PLAG on radiation-induced GI damage that occurs under the same conditions as H-ARS in BALB/c mice. Our study showed that PLAG facilitated the structural restoration of intestinal tissues by increasing villus height, crypt depth, crypt number, mucin-producing goblet cells, and proliferating cell nuclear antigen (PCNA)-positive crypt cells. PLAG significantly improved intestinal absorptive capacity and reduced intestinal injury-induced bacterial translocation. In addition, PLAG effectively inhibited radiation-induced necroptosis signaling activation in the intestinal crypt cells, which was responsible for sustained tissue damage and the release of high mobility group box 1 (HMGB1), a typical damage-associated molecular pattern. Overall, our findings support the radiation-mitigating potential of PLAG against GI-ARS after accidental radiation exposure.


Asunto(s)
Síndrome de Radiación Aguda , Ratones Endogámicos BALB C , Irradiación Corporal Total , Animales , Irradiación Corporal Total/efectos adversos , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Ratones , Diglicéridos/farmacología , Masculino , Tracto Gastrointestinal/efectos de la radiación , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Protectores contra Radiación/farmacología , Rayos gamma/efectos adversos , Glicéridos
2.
Radiat Res ; 202(3): 580-598, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099001

RESUMEN

Acute, high-dose radiation exposure results in life-threatening acute radiation syndrome (ARS) and debilitating delayed effects of acute radiation exposure (DEARE). The DEARE are a set of chronic multi-organ illnesses that can result in early death due to malignancy and other diseases. Animal models have proven essential in understanding the natural history of ARS and DEARE and licensure of medical countermeasures (MCM) according to the FDA Animal Rule. Our lab has developed models of hematopoietic (H)-ARS and DEARE in inbred C57BL/6J and Jackson Diversity Outbred (JDO) mice of both sexes and various ages and have used these models to identify mechanisms of radiation damage and effective MCMs. Herein, aggregate data from studies conducted over decades in our lab, consisting of 3,250 total-body lethally irradiated C57BL/6J young adult mice and 1,188 H-ARS survivors from these studies, along with smaller datasets in C57BL/6J pediatric and geriatric mice and JDO mice, were examined for lifespan and development of thymic lymphoma in survivors up to 3 years of age. Lifespan was found to be significantly shortened in H-ARS survivors compared to age-matched nonirradiated controls in all four models. Males and females exhibited similar lifespans except in the young adult C57BL/6J model where males survived longer than females after 16 months of age. The incidence of thymic lymphoma was increased in H-ARS survivors from the young adult and pediatric C57BL/6J models. Consistent with our findings in H-ARS, geriatric mice appeared more radioresistant than other models, with a lifespan and thymic lymphoma incidence more similar to nonirradiated controls than other models. Increased levels of multiple pro-inflammatory cytokines in DEARE bone marrow and serum correlated with shortened lifespan and malignancy, consistent with other animal models and human data. Of interest, G-CSF levels in bone marrow and serum 8-11 months after irradiation were significantly increased in females. Importantly, treatment with granulopoietic cytokine MCM for radiomitigation of H-ARS did not influence the long-term survival rate or incidence of thymic lymphoma in any model. Taken together, these findings indicate that the lifespan of H-ARS survivors was significantly decreased regardless of age at time of exposure or genetic diversity, and was unaffected by earlier treatment with granulopoietic cytokines for radiomitigation of H-ARS.


Asunto(s)
Síndrome de Radiación Aguda , Citocinas , Longevidad , Linfoma , Ratones Endogámicos C57BL , Animales , Femenino , Masculino , Ratones , Linfoma/genética , Longevidad/efectos de la radiación , Síndrome de Radiación Aguda/patología , Citocinas/sangre , Variación Genética , Sobrevivientes , Factores de Edad
3.
Radiat Res ; 202(4): 662-669, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142656

RESUMEN

The search for single or combined radiation countermeasures that mitigate the development of Acute Radiation Syndrome (ARS) after radiation exposure remains a prominent goal of the U.S. government. This study was undertaken to determine whether PrC-210 and G-CSF, when administered 24-48 h postirradiation, would confer an additive or synergistic survival benefit and mitigate ARS in mice that had received an otherwise 96% lethal radiation dose. Our results show that optimum systemic doses of PrC-210 and G-CSF, when administered 24 h or later after a 96% lethal dose of whole-body irradiation, conferred: 1. strong individual survival benefits (PrC-210 44%, P = 0.003), (G-CSF 48%, P = 0.0002), 2. a profound combined 85% survival benefit (P < 0.0001) when administered together, and on day 14 postirradiation, 3. peripheral white blood cell/lymphocyte counts equal to unirradiated controls, 4. dense bone marrow cell density (>65% of unirradiated controls), 5. jejunal villi density that equaled 90% of unirradiated controls, and 6. spleen weights that equaled 93% of unirradiated controls. Our results show that PrC-210 and G-CSF given together 24 h after irradiation confer strong additive efficacy by protecting the immune system, and enabling recovery of the bone marrow, and they work synergistically to enable recovery of peripheral white blood cells in circulating blood.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos/farmacología , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Masculino , Femenino , Irradiación Corporal Total/efectos adversos , Ratones Endogámicos C57BL , Diaminas , Compuestos de Sulfhidrilo
4.
Cell Physiol Biochem ; 58(4): 418-430, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39172137

RESUMEN

BACKGROUND/AIMS: After 9/11, multiple government agencies instituted programs aimed at developing medical radiation countermeasures (MRCs) for two syndromes lethal within weeks of a limited nuclear attack; the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS). While re-purposing drugs that enhance marrow repopulation treats H-ARS, no mitigator protects GI tract. METHODS: We recently reported anti-ceramide 6B5 single-chain variable fragment (scFv) pre-treatment abrogates ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells, preventing GI-ARS lethality in C57B/L6J mice. Here, with US Department of Defense support, we provide evidence that humanized anti-ceramide scFv (CX-01) is a promising prophylactic MRC for first responders, who risk exposure upon entering a radiation-contaminated site. RESULTS: CX-01, when delivered up to 90 min before irradiation, is highly-effective in preventing small intestinal endothelial apoptosis in mice and lethality in both sexes. Unexpectedly, females require an ~2-fold higher CX-01 dose than males for full protection. CX-01 is effective subcutaneously and intramuscularly, a property critical for battlefield use. Increasing the maximally-effective dose 5-fold does not extend duration of bioeffectiveness. CONCLUSION: While CX-01 prevents GI-ARS lethality, structural modification to extend half-life may be necessary to optimize first responder prophylaxis.


Asunto(s)
Apoptosis , Ceramidas , Ratones Endogámicos C57BL , Anticuerpos de Cadena Única , Animales , Anticuerpos de Cadena Única/inmunología , Femenino , Ratones , Masculino , Ceramidas/metabolismo , Apoptosis/efectos de los fármacos , Síndrome de Radiación Aguda/patología , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/prevención & control , Humanos , Armas Nucleares , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Intestino Delgado/patología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/efectos de la radiación
5.
Shock ; 62(4): 556-564, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39012765

RESUMEN

ABSTRACT: Both abdominal radiotherapy and a nuclear event can result in gastrointestinal symptoms, including acute radiation syndrome (GI-ARS). GI-ARS is characterized by compromised intestinal barrier integrity increasing the risk for infectious complications. Physiologically relevant animal models are crucial for elucidating host responses and therapeutic targets. We aimed to determine the radiation dose requirements for creating GI-ARS in the Sinclair minipig. Male, sexually mature swine were randomly divided into sham (n = 6) and three lower hemibody radiation dosage groups of 8, 10, and 12 Gy (n = 5/group) delivered using linear accelerator-derived x-rays (1.9 Gy/min). Animals were monitored for GI-ARS symptoms for 14 days with rectal swab and blood collection at days 0-3, 7, 10, and 14 followed by necropsy for western blotting and histology. Dose-dependent increases in weight loss, diarrhea severity, and mortality (log-rank test, P = 0.041) were seen. Villi length was significantly reduced in all irradiated animals compared to controls ( P < 0.001). Serum citrulline decreased and bacterial translocation increased after irradiation compared to controls. Increased NLRP3 levels in post-mortem jejunum were seen ( P = 0.0043) as well as increased IL-1ß levels in the 12 Gy group ( P = 0.041). Radiation dose and survival were associated with significant gut microbial community shifts in beta diversity. Moreover, decedents had increased Porphyromonas, Campylobacter, Bacteroides , Parvimonas , and decreased Fusobacterium and decreased Aerococcus, Lactobacillus, Prevotella, and Streptococcus . Our novel Sinclair minipig model showed dose-dependent clinical symptoms of GI-ARS. These findings provide invaluable insights into the intricate interplay between GI-ARS, intestinal inflammation, and gut microbiota alterations offering potential targets for therapeutic and diagnostic interventions after radiation exposure.


Asunto(s)
Síndrome de Radiación Aguda , Inflamasomas , Porcinos Enanos , Animales , Síndrome de Radiación Aguda/patología , Porcinos , Inflamasomas/metabolismo , Masculino , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de la radiación , Relación Dosis-Respuesta en la Radiación
6.
Sci Rep ; 14(1): 13315, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858439

RESUMEN

Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.


Asunto(s)
Suplementos Dietéticos , Protectores contra Radiación , Animales , Protectores contra Radiación/farmacología , Vitamina E/farmacología , Vitamina E/análogos & derivados , Síndrome de Radiación Aguda/prevención & control , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Cromanos/farmacología , Masculino , Traumatismos Experimentales por Radiación/prevención & control , Traumatismos Experimentales por Radiación/patología , Macaca mulatta , Hígado/efectos de los fármacos , Hígado/efectos de la radiación , Hígado/patología
7.
Stem Cell Res Ther ; 15(1): 123, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679747

RESUMEN

BACKGROUND: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Ratones Endogámicos C57BL , Trombopoyetina , Animales , Masculino , Ratones , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/efectos de la radiación , Trombopoyetina/farmacología , Irradiación Corporal Total , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/uso terapéutico
8.
Sci Rep ; 14(1): 5757, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459144

RESUMEN

Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.


Asunto(s)
Síndrome de Radiación Aguda , Cromanos , Contramedidas Médicas , Protectores contra Radiación , Vitamina E/análogos & derivados , Animales , Estados Unidos , Humanos , Vitamina E/farmacología , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Modelos Animales de Enfermedad , Protectores contra Radiación/farmacología , Macaca mulatta
9.
Front Public Health ; 12: 1349552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544733

RESUMEN

Introduction: Mouse models of radiation injury are critical to the development of medical countermeasures (MCMs) against radiation. Now that MCMs against hematopoietic acute radiation syndrome (H-ARS) have achieved regulatory approval, attention is shifting to develop MCMs against the adverse effects of gastrointestinal acute radiation syndrome (GI-ARS) and delayed effects of acute radiation exposure (DEARE). The C57L/J mouse model of partial body irradiation (PBI) with 2.5% bone marrow shielding (BM2.5) is being leveraged to examine both GI-ARS and DEARE effects. Within days of PBI, mice may develop H- and GI-ARS followed several months later by DEARE as a multi-organ injury, which typically involves the lung and kidney (L- and K-DEARE, respectively). The objective of this manuscript is to describe the dose response relationship and progression of radiation injury in the C57L/J mouse and to evaluate its suitability for use in DEARE MCM testing. Materials and methods: In two separate studies conducted over 2 years, male and female C57L/J mice were exposed to PBI BM2.5 with one hindlimb shielded from radiation, representing ~2.5% bone marrow shielding/sparing. Mice were X-ray irradiated at doses ranging from 9 to 13 Gy at 10 to 12 weeks of age for the purposes of assessing ARS survival at 30 days and DEARE survival at 182 days post-irradiation. Clinical indicators of ARS and DEARE were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging (MRI) of lung, and histopathology of selected tissues. Results: C57L/J mice developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in dose dependent mortality at doses ≥11 Gy between 1- and 15-days post-irradiation. In animals that survived ARS, DEARE associated mortality occurred in dose dependent fashion at ≥9 Gy for both sexes between 60- and 159-days post-irradiation with histopathology examinations indicating lung injury as the primary cause of death in moribund animals. Conclusion: The PBI BM2.5 C57L/J mouse model reliably produced known H- and GI-ARS effects at doses greater than those resulting in DEARE effects. Because of this, the C57L/J mouse can be used to test MCMs against L-DEARE injury, while avoiding ARS associated mortality.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Masculino , Femenino , Ratones , Animales , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/patología , Modelos Animales de Enfermedad , Pulmón/patología
10.
Radiat Res ; 201(5): 406-417, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319684

RESUMEN

The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.


Asunto(s)
Síndrome de Radiación Aguda , Animales , Ratones , Masculino , Síndrome de Radiación Aguda/patología , Síndrome de Radiación Aguda/etiología , Relación Dosis-Respuesta en la Radiación , Yeyuno/efectos de la radiación , Yeyuno/patología , Modelos Animales de Enfermedad , Índice de Severidad de la Enfermedad , Tracto Gastrointestinal/efectos de la radiación , Tracto Gastrointestinal/patología , Peso Corporal/efectos de la radiación , Traumatismos Experimentales por Radiación/patología
11.
Radiat Res ; 201(5): 449-459, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373011

RESUMEN

In the current geopolitical climate there is an unmet need to identify and develop prophylactic radiation countermeasures, particularly to ensure the well-being of warfighters and first responders that may be required to perform on radiation-contaminated fields for operational or rescue missions. Currently, no countermeasures have been approved by the U.S. FDA for prophylactic administration. Here we report on the efficacious nature of FSL-1 (toll-like receptor 2/6 agonist) and the protection from acute radiation syndrome (ARS) in a murine total-body irradiation (TBI) model. A single dose of FSL-1 was administered subcutaneously in mice. The safety of the compound was assessed in non-irradiated animals, the efficacy of the compound was assessed in animals exposed to TBI in the AFRRI Co-60 facility, the dose of FSL-1 was optimized, and common hematological parameters [complete blood cell (CBC), cytokines, and bone marrow progenitor cells] were assessed. Animals were monitored up to 60 days after exposure and radiation-induced damage was evaluated. FSL-1 was shown to be non-toxic when administered to non-irradiated mice at doses up to 3 mg/kg. The window of efficacy was determined to be 24 h prior to 24 h after TBI. FSL-1 administration resulted in significantly increased survival when administered either 24 h prior to or 24 h after exposure to supralethal doses of TBI. The optimal dose of FSL-1 administration was determined to be 1.5 mg/kg when administered prior to irradiation. Finally, FSL-1 protected the hematopoietic system (recovery of CBC and bone marrow CFU). Taken together, the effects of increased survival and accelerated recovery of hematological parameters suggests that FSL-1 should be developed as a novel radiation countermeasure for soldiers and civilians, which can be used either before or after irradiation in the aftermath of a radiological or nuclear event.


Asunto(s)
Síndrome de Radiación Aguda , Modelos Animales de Enfermedad , Oligopéptidos , Irradiación Corporal Total , Animales , Ratones , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Irradiación Corporal Total/efectos adversos
12.
Radiat Res ; 200(6): 593-600, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967581

RESUMEN

The risk of exposure to high levels of ionizing radiation from nuclear weapons or radiological accidents is an increasing world concern. Partial- or total-body exposure to high doses of radiation is potentially lethal through the induction of acute radiation syndrome (ARS). Hematopoietic cells are sensitive to radiation exposure; white blood cells primarily undergo apoptosis while red blood cells (RBCs) undergo hemolysis. Several laboratories demonstrated that the rapid hemolysis of RBCs results in the release of acellular iron into the blood. We recently demonstrated using a murine model of ARS after total-body irradiation (TBI) and the loss of RBCs, iron accumulated in the bone marrow and spleen, notably between 4-21 days postirradiation. Here, we investigated iron accumulation in the bone marrow and spleens from TBI nonhuman primates (NHPs) using histological stains. We observed trends in increased intracellular and extracellular brown pigmentation in the bone marrow after various doses of radiation, especially after 4-15 days postirradiation, but these differences did not reach significance. We observed a significant increase in Prussian blue-staining intracellular iron deposition in the spleen 13-15 days after 5.8-8.5 Gy of TBI. We observed trends of increased iron in the spleen after 30-60 days postirradiation, with varying doses of radiation, but these differences did not reach significance. The NHP model of ARS confirms our earlier findings in the murine model, showing iron deposition in the bone marrow and spleen after TBI.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Ratones , Animales , Médula Ósea/efectos de la radiación , Síndrome de Radiación Aguda/patología , Modelos Animales de Enfermedad , Bazo/patología , Hemólisis , Irradiación Corporal Total/efectos adversos , Hierro , Primates
13.
Mol Omics ; 19(6): 492-503, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098727

RESUMEN

Despite some advances in the study of radiation injuries, effective methods of prevention and treatment of severe acute radiation syndrome or illness (ARS) are still lacking. Therefore, an in-depth understanding of the biological characteristics associated with high dose radiation is essential to reveal the mechanisms underlying the varied biological processes following high dose radiation and the development of novel potent radioprotective agents. In the present study, plasma metabolic characteristics were investigated using hematopoietic stem cell transplantation patients (n = 36) undergoing total body ionizing irradiation (TBI) utilizing gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Plasma was collected pre-irradiation, 3 days after completion of fractionated radiation therapy with a total dose of 12 Gy delivered at a dose rate of 8 cGy min-1. These metabolic disorders involve the dysregulation of the gut microflora, a shift in energy supply from aerobic respiration toward ketogenesis, protein synthesis and metabolism in response to TBI. Furthermore, the panel of four metabolic markers with most potential consisting of PC (O-38:5), urate, ornithine, and GCDCS for radiation injury was chosen by combining multiple methods of data processing that included univariate analysis, partial least squares discriminant analysis (PLS-DA), and multivariable stepwise linear regression analysis. While similar patterns of metabolic alterations were observed in patients of different genders, disease types and ages, specific changes were also found in specific patients following high doses of exposure. These findings provide valuable information for selecting metabolic biomarker panels for radiation injury, clues for radiation pathology and therapeutic interventions involved in high-dose radiation exposure.


Asunto(s)
Síndrome de Radiación Aguda , Irradiación Corporal Total , Humanos , Masculino , Femenino , Irradiación Corporal Total/efectos adversos , Irradiación Corporal Total/métodos , Metabolómica , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/patología , Espectrometría de Masas , Cromatografía de Gases y Espectrometría de Masas
14.
Int J Radiat Biol ; 99(7): 1080-1095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36930794

RESUMEN

PURPOSE: To describe the dose response relationship and natural history of radiation injury in the Wistar rat and its suitability for use in medical countermeasures (MCM) testing. MATERIALS & METHODS: In two separate studies, male and female rats were exposed to partial body irradiation (PBI) with 5% bone marrow sparing. Animals were X-ray irradiated from 7 to 12 Gy at 7-10 weeks of age. Acute radiation syndrome (ARS) survival at 30 days and delayed effects of acute radiation exposure (DEARE) survival at 182 days were assessed. Radiation effects were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging of lung, whole-body plethysmography, and histopathology. RESULTS: Rats developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in mortality at doses ≥8Gy in males and ≥8.5 Gy in females. DEARE mortality occurred at doses ≥8Gy for both sexes. Findings indicate lung, kidney, and/or liver injury, and persistent hematological dysregulation, revealing multi-organ injury as a DEARE. CONCLUSION: The Wistar rat PBI model is suitable for testing MCMs against hematopoietic and gastrointestinal ARS. DEARE multi-organ injury occurred in both sexes irradiated with 8-9Gy, also suggesting suitability for polypharmacy studies addressing the combination of ARS and DEARE injury.


Asunto(s)
Síndrome de Radiación Aguda , Sistema Hematopoyético , Masculino , Femenino , Ratas , Animales , Médula Ósea/efectos de la radiación , Ratas Wistar , Síndrome de Radiación Aguda/etiología , Síndrome de Radiación Aguda/patología , Tracto Gastrointestinal/efectos de la radiación
15.
Radiat Res ; 199(3): 294-300, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689635

RESUMEN

Acute exposure to high dose radiation can cause acute radiation syndrome (ARS), a potentially life-threatening illness. Individuals that survive ARS are at risk of developing the delayed effects of acute radiation exposure, with the lungs being particularly susceptible (DEARE-lung). For individuals at risk of radiation exposure, there are no Food and Drug Administration-approved medical countermeasures (MCMs) for prophylactic or post-exposure use that can prevent or mitigate DEARE-lung. BIO 300 is a novel formulation of synthetic genistein that has been extensively studied as a prophylactic MCM for the hematopoietic subsyndrome of ARS (H-ARS). Here, we used a C57L/J mouse model of total-body irradiation (TBI) to investigate whether prophylactic administration of BIO 300 is able to prevent animals from developing DEARE-lung. Oral and parenteral formulations of BIO 300 administered prior to TBI were compared against standard of care, PEGfilgrastim, administered shortly after radiation exposure, and the combination of oral BIO 300 administered prior to TBI and with PEGfilgrastim administered post-exposure. All animals were exposed to 7.75 Gy cobalt-60 gamma-radiation and the primary endpoint was lung histopathology at 180 days post-TBI. Animals treated with BIO 300 had a significant reduction in the incidence of interstitial lung inflammation compared to vehicle groups for both the oral (0% vs. 47%) and parenteral (13% vs. 44%) routes of administration. Similar results were obtained for the incidence and severity of pulmonary fibrosis in animals treated with oral BIO 300 (incidence, 47% vs. 100% and mean severity score, 0.53 vs. 1.3) and parenteral BIO 300 (incidence, 63% vs. 100% and mean severity score, 0.69 vs. 1.7). PEGfilgrastim alone had no significant effect in reducing the incidence of inflammation or fibrosis compared to vehicle. The combination of oral BIO 300 and PEGfilgrastim significantly reduced the incidence of interstitial inflammation (13% vs. 46%) and the severity of pulmonary fibrosis (mean severity score, 0.93 vs. 1.6). Results in the C57L/J mice were compared to those in CD2F1 mice, which are less prone to lung injury following total-body irradiation. Taken together, these studies indicate that BIO 300 is a promising MCM that is able to prophylactically protect against DEARE-lung.


Asunto(s)
Síndrome de Radiación Aguda , Lesión Pulmonar , Fibrosis Pulmonar , Ratones , Animales , Pulmón/efectos de la radiación , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/tratamiento farmacológico , Ratones Endogámicos , Inflamación/patología , Irradiación Corporal Total/efectos adversos , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/prevención & control , Síndrome de Radiación Aguda/patología
16.
Sci Rep ; 12(1): 3485, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241733

RESUMEN

The threat of a nuclear attack has increased in recent years highlighting the benefit of developing additional therapies for the treatment of victims suffering from Acute Radiation Syndrome (ARS). In this work, we evaluated the impact of a PEGylated thrombopoietin mimetic peptide, JNJ-26366821, on the mortality and hematopoietic effects associated with ARS in mice exposed to lethal doses of total body irradiation (TBI). JNJ-26366821 was efficacious as a mitigator of mortality and thrombocytopenia associated with ARS in both CD2F1 and C57BL/6 mice exposed to TBI from a cobalt-60 gamma-ray source. Single administration of doses ranging from 0.3 to 1 mg/kg, given 4, 8, 12 or 24 h post-TBI (LD70 dose) increased survival by 30-90% as compared to saline control treatment. At the conclusion of the 30-day study, significant increases in bone marrow colony forming units and megakaryocytes were observed in animals administered JNJ-26366821 compared to those administered saline. In addition, enhanced recovery of FLT3-L levels was observed in JNJ-26366821-treated animals. Probit analysis of survival in the JNJ-26366821- and saline-treated cohorts revealed a dose reduction factor of 1.113 and significant increases in survival for up to 6 months following irradiation. These results support the potential use of JNJ-26366821 as a medical countermeasure for treatment of acute TBI exposure in case of a radiological/nuclear event when administered from 4 to 24 h post-TBI.


Asunto(s)
Síndrome de Radiación Aguda , Materiales Biomiméticos , Sistema Hematopoyético , Trombopoyetina , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Animales , Materiales Biomiméticos/farmacología , Sistema Hematopoyético/patología , Sistema Hematopoyético/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/patología , Trombopoyetina/farmacología , Irradiación Corporal Total
17.
Health Phys ; 121(4): 352-371, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546217

RESUMEN

ABSTRACT: High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Primates , Proteómica , Traumatismos por Radiación , Síndrome de Radiación Aguda/patología , Animales , Médula Ósea/efectos de la radiación , Dosis de Radiación , Traumatismos por Radiación/metabolismo
18.
PLoS One ; 16(8): e0256208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34449797

RESUMEN

Our laboratory has demonstrated that captopril, an angiotensin converting enzyme inhibitor, mitigates hematopoietic injury following total body irradiation in mice. Improved survival in mice is correlated with improved recovery of mature blood cells and bone marrow, reduction of radiation-induced inflammation, and suppression of radiation coagulopathy. Here we investigated the effects of captopril treatment against radiation injuries in the Göttingen mini pig model of Hematopoietic-Acute Radiation Syndrome (H-ARS). Minipigs were given captopril orally (0.96 mg/kg) twice daily for 12 days following total body irradiation (60Co 1.79 Gy, 0.42-0.48 Gy/min). Blood was drawn over a time course following irradiation, and tissue samples were collected at euthanasia (32-35 days post-irradiation). We observed improved survival with captopril treatment, with survival rates of 62.5% in vehicle treated and 87.5% in captopril treated group. Additionally, captopril significantly improved recovery of peripheral blood mononuclear cells, and a trend toward improvement in recovery of red blood cells and platelets. Captopril significantly reduced radiation-induced expression of cytokines erythropoietin and granulocyte-macrophage colony-stimulating factor and suppressed radiation-induced acute-phase inflammatory response cytokine serum amyloid protein A. Using quantitative-RT-PCR to monitor bone marrow recovery, we observed significant suppression of radiation-induced expression of redox stress genes and improved hematopoietic cytokine expression. Our findings suggest that captopril activities in the Göttingen minipig model of hematopoietic-acute radiation syndrome reflect findings in the murine model.


Asunto(s)
Síndrome de Radiación Aguda/tratamiento farmacológico , Captopril/farmacología , Sistema Hematopoyético/efectos de los fármacos , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Animales , Modelos Animales de Enfermedad , Eritropoyetina/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Sistema Hematopoyético/lesiones , Sistema Hematopoyético/patología , Sistema Hematopoyético/efectos de la radiación , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/efectos de la radiación , Ratones , Oxidación-Reducción/efectos de los fármacos , Traumatismos Experimentales por Radiación/patología , Porcinos , Porcinos Enanos , Irradiación Corporal Total/efectos adversos
19.
Radiat Res ; 196(2): 156-174, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34019667

RESUMEN

Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.


Asunto(s)
Síndrome de Radiación Aguda/patología , Hematopoyesis/genética , Hemorragia/patología , Inflamación/patología , Anomalías Inducidas por Radiación , Síndrome de Radiación Aguda/sangre , Síndrome de Radiación Aguda/etiología , Animales , Trastornos de las Proteínas de Coagulación/sangre , Trastornos de las Proteínas de Coagulación/etiología , Trastornos de las Proteínas de Coagulación/patología , Modelos Animales de Enfermedad , Hematopoyesis/efectos de la radiación , Hemorragia/sangre , Hemorragia/etiología , Humanos , Inflamación/sangre , Inflamación/etiología , Porcinos , Porcinos Enanos
20.
Radiat Res ; 196(2): 129-146, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979439

RESUMEN

Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.


Asunto(s)
Academias e Institutos , Síndrome de Radiación Aguda/epidemiología , Radiobiología/historia , Terrorismo , Síndrome de Radiación Aguda/patología , Animales , Rayos gamma , Historia del Siglo XXI , Humanos , Personal Militar , Neutrones/efectos adversos , Liberación de Radiactividad Peligrosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA