Asunto(s)
Leucemia Mieloide Aguda , Trombocitopenia , Humanos , Trombocitopenia/genética , Femenino , Masculino , Leucemia Mieloide Aguda/genética , Deformidades Congénitas de las Extremidades Superiores/genética , Persona de Mediana Edad , Radio (Anatomía)/anomalías , Cromosoma Filadelfia , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , AdultoRESUMEN
Safety considerations for gene therapies of inherited preleukemia syndromes, including severe congenital neutropenia (CN), are paramount. We compared several strategies for CRISPR/Cas9 gene editing of autosomal-dominant ELANE mutations in CD34+ cells from two CN patients head-to-head. We tested universal and allele-specific ELANE knockout, ELANE mutation correction by homology-directed repair (HDR) with AAV6, and allele-specific HDR with ssODN. All strategies were not toxic, had at least 30% editing, and rescued granulopoiesis in vitro. In contrast to published data, allele-specific indels in the last exon of ELANE also restored granulopoiesis. Moreover, by implementing patient-derived induced pluripotent stem cells for GUIDE-Seq off-target analysis, we established a clinically relevant "personalized" assessment of off-target activity of gene editing on the background of the patient's genome. We found that allele-specific approaches had the most favorable off-target profiles. Taken together, a well-defined head-to-head comparison pipeline for selecting the appropriate gene therapy is essential for diseases, with several gene editing strategies available.
Asunto(s)
Sistemas CRISPR-Cas , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Edición Génica , Terapia Genética , Mutación , Neutropenia , Edición Génica/métodos , Humanos , Neutropenia/genética , Neutropenia/terapia , Neutropenia/congénito , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/terapia , Terapia Genética/métodos , Alelos , Células Madre Pluripotentes Inducidas/metabolismo , Reparación del ADN por Recombinación/genética , Elastasa de LeucocitoRESUMEN
Background: Homozygous or compound heterozygous mutations in JAGN1 cause severe congenital neutropenia. JAGN1-mutant patients present with severe early-onset bacterial infections and most have been described as low-responders to recombinant granulocyte colony-stimulating factor (G-CSF) therapy. In a murine, hematopoietic JAGN1 knockout model, which displays susceptibility to Candida albicans infection in the absence of neutropenia, treatment with granulocyte-macrophage-CSF (GM-CSF) was able to restore the functional defect of neutrophils. Patients: We present two unrelated patients with biallelic JAGN1 mutations, who were both treated with subcutaneous GM-CSF (sargramostim) after treatment failure to G-CSF. The first patient was an 18-year-old pregnant woman who received GM-CSF at 12 weeks of gestation up to a dose of 10 µg/kg/d for 7 days. The second patient was a 5-month-old girl who received GM-CSF for a total of 9 days at a dose of up to 20 µg/kg/d. GM-CSF did not increase neutrophil counts in our patients. Treatment was stopped when neutrophil numbers declined further, no beneficial effect was noticed, and patients presented with infections. No adverse effects were observed in either patient and the fetus. Both patients ultimately underwent successful hematopoietic stem cell transplantation. Discussion: Both patients showed a high recurrence rate of severe infections on G-CSF treatment. GM-CSF therapy did not ameliorate the clinical phenotype, in contrast to the improvement of neutrophil function observed in the JAGN1 mouse model. No major additional extra-hematopoietic manifestations were evident in our patients. Conclusion: In two unrelated patients, GM-CSF did not have any beneficial effect on neutrophil counts. Patients with JAGN1-mutant SCN with reduced G-CSF responsiveness and elevated infection rate should be evaluated early for stem cell transplantation.
Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Mutación , Neutropenia , Neutrófilos , Proteínas Recombinantes , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Humanos , Femenino , Neutropenia/congénito , Neutropenia/tratamiento farmacológico , Neutropenia/genética , Neutrófilos/inmunología , Adolescente , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Lactante , Proteínas Recombinantes/uso terapéutico , Fenotipo , Embarazo , Proteínas de la MembranaRESUMEN
Severe congenital neutropenia (SCN) comprises a diverse range of rare hematological disorders characterized by recurrent, often life-threatening infections that manifest within the first months of life. Mutations in the ELANE gene are the most prevalent cause of SCN. While over 230 mutations in ELANE have been documented, including substitutions, frameshifts, nonsense mutations, and splice site alterations, the occurrence of deep intronic mutations has not been previously reported. Herein, we present the case of a young girl who exhibited recurrent fever, respiratory infections, skin abscesses, and gingivitis shortly after birth. Laboratory analysis revealed markedly diminished neutrophil levels alongside elevated monocyte and eosinophil counts. Bone marrow examination disclosed a halt in myelopoiesis maturation. ELANE gene full-length sequencing identified a novel de novo deep intron mutation in ELANE (c.598 + 79G > T), subsequently confirmed by Sanger sequencing. cDNA sequencing of the patient demonstrated aberrant gene splicing. Utilizing a mini-gene splicing assay for ELANE intronic variants, we identified a mutant ELANE allele (c.597 + 1_597 + 83ins) leading to the creation of a premature termination codon (p.Gly200ValfsTer40). Confocal microscopy revealed heightened expression of myeloperoxidase and neutrophil elastase in the patient, suggesting a potential role for the unfolded protein response in the pathogenesis of the deep intron ELANE mutation. In summary, our findings illustrate the first reported instance of de novo deep intron ELANE mutations associated with SCN, underscoring the importance of exploring deep intronic regions in SCN patients lacking identifiable disease-causing gene mutations.
Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Intrones , Elastasa de Leucocito , Mutación , Neutropenia , Humanos , Femenino , Neutropenia/genética , Neutropenia/congénito , Neutropenia/diagnóstico , Elastasa de Leucocito/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Intrones/genética , Mutación/genética , Predisposición Genética a la Enfermedad , AlelosRESUMEN
Introduction: According to the PRISMA criteria, a systematic review has been conducted to investigate the clinical relevance between patients with severe congenital neutropenia (SCN) and cyclic congenital neutropenia (CyN) induced by ELANE mutations. Methods: We have searched PubMed, EMBASE, Web of Science, Scopus, Cochrane, CNKI, Wanfang Medicine, and VIP for ELANE mutation related literature published from 1997 to 2022. Using Microsoft Excel collect and organize data, SPSS 25, GraphPad Prism 8.0.1, and Omap analyze and plot statistical. Compare the gender, age, geography, mutation sites, infection characteristics, treatment, and other factors of SCN and CyN patients induced by ELANE mutations, with a focus on exploring the relationship between genotype and clinical characteristics, genotype and prognosis. Results: This study has included a total of 467 patients with SCN and 90 patients with CyN. The onset age of SCN and CyN are both less than 1 year old, and the onset and diagnosis age of SCN are both younger than CyN. The mutation of ELANE gene is mainly missense mutation, and hot spot mutations include S126L, P139L, G214R, c.597+1G>A. The high-frequency mutations with severe outcomes are A57V, L121H, L121P, c.597+1G>A, c.597+1G>T, S126L, C151Y, C151S, G214R, C223X. Respiratory tract, skin and mucosa are the most common infection sites, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli are the most common. Discussion: Patients with refractory G-CSF are more likely to develop severe outcomes. The commonly used pre-treatment schemes for transplantation are Bu-Cy-ATG and Flu-Bu-ATG. The prognosis of transplantation is mostly good, but the risk of GVHD is high. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/. PROSPERO, identifier CRD42023434656.
Asunto(s)
Mutación , Neutropenia , Humanos , Neutropenia/genética , Neutropenia/congénito , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Pronóstico , Masculino , Femenino , Relevancia ClínicaRESUMEN
Severe congenital neutropenia is an inherited bone marrow failure disorder characterized by profoundly low neutrophil counts and promyelocytic maturation arrest in bone marrow. Severe congenital neutropenia is most often caused by heterozygous ELANE mutations. In vitro and mouse xenograft studies using CRISPR/Cas9 have shown that introduction of frameshift/nonsense mutations in mutant ELANE may restore neutrophil counts, providing a model for gene therapy. Here, we present 2 children with inherited nonsense mutations in ELANE analogous to those proposed for gene therapy. Their normal peripheral blood neutrophil counts provide support for this approach through human "experiments of nature."
Asunto(s)
Codón sin Sentido , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Terapia Genética , Elastasa de Leucocito , Neutropenia , Humanos , Neutropenia/congénito , Neutropenia/genética , Neutropenia/terapia , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/terapia , Terapia Genética/métodos , Elastasa de Leucocito/genética , Masculino , Femenino , Exones/genética , Lactante , Niño , PreescolarAsunto(s)
Caja Torácica , Humanos , Recién Nacido , Caja Torácica/diagnóstico por imagen , Caja Torácica/anomalías , Masculino , Siringomielia/diagnóstico por imagen , Siringomielia/complicaciones , Disostosis/diagnóstico por imagen , Disostosis/genética , Disostosis/complicaciones , Síndromes Congénitos de Insuficiencia de la Médula Ósea/complicaciones , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Hernia Diafragmática/diagnóstico por imagen , Hernia Diafragmática/complicaciones , Femenino , Anomalías MúltiplesRESUMEN
ABSTRACT: A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly because of the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found 2 paralogs of the human JAGN1 gene, namely jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in the unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism that leads to neutropenia in zebrafish. Instead, Jagn1b has a critical role in granulocyte colony-stimulating factor receptor signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathologic pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.
Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Neutropenia , Transducción de Señal , Respuesta de Proteína Desplegada , Pez Cebra , Animales , Humanos , Apoptosis , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Modelos Animales de Enfermedad , Hematopoyesis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Neutropenia/congénito , Neutropenia/genética , Receptores de Factor Estimulante de Colonias de Granulocito/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocito/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.
Asunto(s)
Sistemas CRISPR-Cas , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Edición Génica , Terapia Genética , Elastasa de Leucocito , Neutropenia , Regiones Promotoras Genéticas , Edición Génica/métodos , Humanos , Neutropenia/congénito , Neutropenia/terapia , Neutropenia/genética , Terapia Genética/métodos , Síndromes Congénitos de Insuficiencia de la Médula Ósea/terapia , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Animales , Ratones , Neutrófilos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Mutación , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/terapia , Enfermedades Genéticas Ligadas al Cromosoma X/genéticaRESUMEN
BACKGROUND: Congenital neutropenias are characterized by severe infections and a high risk of myeloid transformation; the causative genes vary across ethnicities. The Israeli population is characterized by an ethnically diverse population with a high rate of consanguinity. OBJECTIVE: To evaluate the clinical and genetic spectrum of congenital neutropenias in Israel. METHODS: We included individuals with congenital neutropenias listed in the Israeli Inherited Bone Marrow Failure Registry. Sanger sequencing was performed for ELANE or G6PC3, and patients with wild-type ELANE/G6PC3 were referred for next-generation sequencing. RESULTS: Sixty-five patients with neutropenia were included. Of 51 patients with severe congenital neutropenia, 34 were genetically diagnosed, most commonly with variants in ELANE (15 patients). Nine patients had biallelic variants in G6PC3, all of consanguineous Muslim Arab origin. Other genes involved were SRP54, JAGN1, TAZ, and SLC37A4. Seven patients had cyclic neutropenia, all with pathogenic variants in ELANE, and seven had Shwachman-Diamond syndrome caused by biallelic SBDS variants. Eight patients (12%) developed myeloid transformation, including six patients with an unknown underlying genetic cause. Nineteen (29%) patients underwent hematopoietic stem cell transplantation, mostly due to insufficient response to treatment with granulocyte-colony stimulating factor or due to myeloid transformation. CONCLUSIONS: The genetic spectrum of congenital neutropenias in Israel is characterized by a high prevalence of G6PC3 variants and an absence of HAX1 mutations. Similar to other registries, for 26% of the patients, a molecular diagnosis was not achieved. However, myeloid transformation was common in this group, emphasizing the need for close follow-up.
Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Mutación , Neutropenia , Humanos , Neutropenia/genética , Neutropenia/congénito , Neutropenia/epidemiología , Neutropenia/diagnóstico , Masculino , Israel/epidemiología , Femenino , Niño , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Preescolar , Adolescente , Predisposición Genética a la Enfermedad , Adulto , Trasplante de Células Madre Hematopoyéticas , Lactante , Consanguinidad , Glucosa-6-Fosfatasa/genética , Alelos , Sistema de Registros , Secuenciación de Nucleótidos de Alto Rendimiento , Adulto Joven , Fenotipo , Estudios de Asociación GenéticaRESUMEN
BACKGROUND: Multisystemic findings of inherited bone marrow failure syndromes may cause difficulty in diagnosis. Exome sequencing (ES) helps to define the etiology of rare diseases and reanalysis offers a valuable new diagnostic approach. Herein, we present the clinical and molecular characteristics of a girl who was referred for cytopenia and frequent infections. CASE REPORT: A 5-year-old girl with cytopenia, dysmorphism, short stature, developmental delay, and myopia was referred for genetic counseling. Reanalysis of the ES data revealed a homozygous splice-site variant in the DNAJC21 (NM_001012339.3:c.983+1G>A), causing Shwachman-Diamond Syndrome (SDS). It was shown by the RNA sequencing that exon 7 was skipped, causing an 88-nucleotide deletion. CONCLUSIONS: Precise genetic diagnosis enables genetic counseling and improves patient management by avoiding inappropriate treatment and unnecessary testing. This report would contribute to the clinical and molecular understanding of this rare type of SDS caused by DNAJC21 variants and expand the phenotypic features of this condition.
Asunto(s)
Enfermedades de la Médula Ósea , Citopenia , Femenino , Humanos , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Exoma/genética , Síndrome de Shwachman-Diamond , Homocigoto , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/genéticaRESUMEN
The most common causes of congenital neutropenia are mutations in the ELANE (Elastase, Neutrophil Expressed) gene (19p13.3), mostly in exon 5 and the distal portion of exon 4, which result in different clinical phenotypes of neutropenia. Here, we report two pathogenic mutations in ELANE, namely, c.607G>C (p.Gly203Arg) and a novel variant c.416C>G (p.Pro139Arg), found in two Mexican families ascertained via patients with congenital neutropenia who responded positively to the granulocyte colony-stimulating factor (G-CSF) treatment. These findings highlight the usefulness of identifying variants in patients with inborn errors of immunity for early clinical management and the need to rule out mosaicism in noncarrier parents with more than one case in the family.
Asunto(s)
Neutropenia , Humanos , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Elastasa de Leucocito/genética , Mutación , Neutropenia/congénitoRESUMEN
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.
Asunto(s)
Errores Innatos del Metabolismo Lipídico , Enfermedades Mitocondriales , Enfermedades Musculares , Humanos , Recién Nacido , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Pruebas Genéticas , Variación Genética , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Enfermedades Mitocondriales/genética , Enfermedades Musculares/genéticaRESUMEN
Thrombocytopenia absent radius (TAR) syndrome is a rare form of hereditary thrombocytopenia associated with a bilateral radial aplasia. TAR syndrome is genetically defined by the combination of a microdeletion on chromosome 1 which includes the gene RBM8A, and a single nucleotide polymorphism (SNP) in the second RBM8A allele. While most patients with TAR syndrome harbor a SNP in either the 5' UTR region or in intron 1 of RBM8A, further SNPs associated with TAR syndrome are still being identified. Here, we report on the current understanding of the genetic basis, diagnosis, and therapy of TAR syndrome and discuss patient self-empowerment by enabling networking and exchange between affected individuals and families.
Asunto(s)
Radio (Anatomía) , Trombocitopenia , Humanos , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , IntronesRESUMEN
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-ß, IL-1ß, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Asunto(s)
Citocinas , Disqueratosis Congénita , Humanos , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Citocinas/genética , Síndrome de Shwachman-Diamond/genética , Interferón-alfa , Péptidos y Proteínas de Señalización IntracelularRESUMEN
Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare, genetic, autosomal recessive disorder characterized by severe thrombocytopenia, due to inefficient bone marrow megakaryopoiesis eventually leading to aplasia. Majority of the cases are due to homozygous or compound heterozygous mutations in MPL gene encoding for thrombopoietin (THPO) receptor protein. CAMT can be diagnosed at early phase of life, with major complication of transfusion dependency and hematopoietic transplantation as only curative treatment. We have investigated the sequence variations in MPL gene of 7 bone marrow failure (BMF) subjects, who presented with clinically diverse phenotypes, through next generation sequencing (NGS). Plasma THPO levels were estimated using ELISA. Insilico sequence and structure-based analyses were performed to understand the structural and functional implications of mutations, identified through NGS. We studied 7 CAMT subjects suspected of BMF, who presented with severe thrombocytopenia followed by pancytopenia, bleeding manifestation and physical anomalies. The plasma THPO levels were significantly elevated (p<0.05) in all the cases. Molecular analysis by NGS identified 9 genomic mutations in MPL gene. These included 7 non-synonymous substitution, 1 nonsense substitution and 1 in-del mutations, of which 4 are novel mutations. Insilico analysis predicted damaging effects on THPO-R and its reduced affinity for THPO for all the identified mutations. CAMT is a rare disorder with diverse clinical phenotypes and diagnosis is challenging. The elevated plasma THPO levels should be considered for the primary diagnosis and prognosis of the disease. However, molecular analysis of MPL gene is important for the diagnosis and management of the disease through genetic counselling. Though the cytokines, THPO-R agonist are used for the treatment of CAMT, HSCT is the only curative therapy.
Asunto(s)
Pancitopenia , Trombocitopenia , Humanos , Trombocitopenia/diagnóstico , Pancitopenia/etiología , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Genómica , Trombopoyetina/genética , Receptores de Trombopoyetina/genéticaRESUMEN
Severe congenital neutropenia (SCN) is a rare disorder, often due to pathogenic variants in genes such as ELANE, HAX1, and SBDS. SRP54 pathogenic variants are associated with SCN and Shwachman-Diamond-like syndrome. Thirty-eight patients with SRP54-related SCN are reported in the literature. We present an infant with SCN, without classic Shwachman-Diamond syndrome features, who presented with recurrent bacterial infections and an SRP54 (c.349_351del) pathogenic variant. Despite ongoing granulocyte colony-stimulating factor therapy, this patient has no evidence of malignant transformation. Here we establish a framework for the future development of universal guidelines to care for this patient population.