Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Adv Immunol ; 163: 51-96, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39271259

RESUMEN

Interferon regulatory factor-8 (IRF8) is the lineage determining transcription factor for the type one classical dendritic cell (cDC1) subset, a terminal selector for plasmacytoid dendritic cells and important for the function of monocytes. Studies of Irf8 gene regulation have identified several enhancers controlling its activity during development of progenitors in the bone marrow that precisely regulate expression at distinct developmental stages. Each enhancer responds to distinct transcription factors that are expressed at each stage. IRF8 is first expressed in early progenitors that form the monocyte dendritic cell progenitor (MDP) in response to induction of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) acting at the Irf8 +56 kb enhancer. IRF8 levels increase further as the MDP transits into the common dendritic cell progenitor (CDP) in response to E protein activity at the Irf8 +41 kb enhancer. Upon Nfil3-induction in CDPs leading to specification of the cDC1 progenitor, abrupt induction of BATF3 forms the JUN/BATF3/IRF8 heterotrimer that activates the Irf8 +32 kb enhancer that sustains Irf8 autoactivation throughout the cDC1 lifetime. Deletions of each of these enhancers has revealed their stage dependent activation. Surprisingly, studies of compound heterozygotes for each combination of enhancer deletions revealed that activation of each subsequent enhancer requires the successful activation of the previous enhancer in strictly cis-dependent mechanism. Successful progression of enhancer activation is finely tuned to alter the functional accessibility of subsequent enhancers to factors active in the next stage of development. The molecular basis for these phenomenon is still obscure but could have implications for genomic regulation in a broader developmental context.


Asunto(s)
Células Dendríticas , Elementos de Facilitación Genéticos , Factores Reguladores del Interferón , Humanos , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Elementos de Facilitación Genéticos/genética , Diferenciación Celular , Regulación de la Expresión Génica , Súper Potenciadores
2.
Nat Commun ; 15(1): 6810, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122682

RESUMEN

Multiple myeloma is a hematological malignancy arising from immunoglobulin-secreting plasma cells. It remains poorly understood how chromatin rewiring of regulatory elements contributes to tumorigenesis and therapy resistance in myeloma. Here we generate a high-resolution contact map of myeloma-associated super-enhancers by integrating H3K27ac ChIP-seq and HiChIP from myeloma cell lines, patient-derived myeloma cells and normal plasma cells. Our comprehensive transcriptomic and phenomic analyses prioritize candidate genes with biological and clinical implications in myeloma. We show that myeloma cells frequently acquire SE that transcriptionally activate an oncogene PPP1R15B, which encodes a regulatory subunit of the holophosphatase complex that dephosphorylates translation initiation factor eIF2α. Epigenetic silencing or knockdown of PPP1R15B activates pro-apoptotic eIF2α-ATF4-CHOP pathway, while inhibiting protein synthesis and immunoglobulin production. Pharmacological inhibition of PPP1R15B using Raphin1 potentiates the anti-myeloma effect of bortezomib. Our study reveals that myeloma cells are vulnerable to perturbation of PPP1R15B-dependent protein homeostasis, highlighting a promising therapeutic strategy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple , Proteína Fosfatasa 1 , Proteostasis , Súper Potenciadores , Factor de Transcripción CHOP , Animales , Humanos , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Bortezomib/farmacología , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Súper Potenciadores/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética
3.
Int J Biol Macromol ; 268(Pt 2): 130853, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570000

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a complex vascular disorder, characterized by pulmonary vessel remodeling and perivascular inflammation. Pulmonary arterial smooth muscle cells (PASMCs) pyroptosis is a novel pathological mechanism implicated of pulmonary vessel remodeling. However, the involvement of circRNAs in the process of pyroptosis and the underlying regulatory mechanisms remain inadequately understood. METHODS: Western blotting, PI staining and LDH release were used to explore the role of circLrch3 in PASMCs pyroptosis. Moreover, S9.6 dot blot and DRIP-PCR were used to assess the formation of R-loop between circLrch3 and its host gene Lrch3. Chip-qPCR were used to evaluate the mechanism of super enhancer-associated circLrh3, which is transcriptionally activated by the transcription factor Tbx2. RESULTS: CircLrch3 was markedly upregulated in hypoxic PASMCs. CircLrch3 knockdown inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circLrch3 can form R-loop with host gene to upregulate the protein and mRNA expression of Lrch3. Furthermore, super enhancer interacted with the Tbx2 at the Lrch3 promoter locus, mediating the augmented transcription of circLrch3. CONCLUSION: Our findings clarify the role of a super enhancer-associated circLrch3 in the formation of R-loop with the host gene Lrch3 to modulate pyroptosis in PASMCs, ultimately promoting the development of PH.


Asunto(s)
Miocitos del Músculo Liso , Arteria Pulmonar , Piroptosis , ARN Circular , Piroptosis/genética , ARN Circular/genética , ARN Circular/metabolismo , Animales , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Miocitos del Músculo Liso/metabolismo , Ratas , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Hipoxia de la Célula/genética , Músculo Liso Vascular/metabolismo , Masculino , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Regulación de la Expresión Génica , Elementos de Facilitación Genéticos/genética , Hipoxia/genética , Hipoxia/metabolismo , Súper Potenciadores
4.
Cell Commun Signal ; 22(1): 207, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566153

RESUMEN

Super enhancers (SEs) consist of clusters of enhancers, harboring an unusually high density of transcription factors, mediator coactivators and epigenetic modifications. SEs play a crucial role in the maintenance of cancer cell identity and promoting oncogenic transcription. Super enhancer lncRNAs (SE-lncRNAs) refer to either transcript from SEs locus or interact with SEs, whose transcriptional activity is highly dependent on SEs. Moreover, these SE-lncRNAs can interact with their associated enhancer regions in cis and modulate the expression of oncogenes or key signal pathways in cancers. Inhibition of SEs would be a promising therapy for cancer. In this review, we summarize the research of SE-lncRNAs in different kinds of cancers so far and decode the mechanism of SE-lncRNAs in carcinogenesis to provide novel ideas for the cancer therapy.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Súper Potenciadores , Elementos de Facilitación Genéticos/genética , Neoplasias/genética , Factores de Transcripción/genética
5.
BMC Gastroenterol ; 24(1): 97, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438958

RESUMEN

BACKGROUND: Cellular response to oxidative stress plays significant roles in hepatocellular carcinoma (HCC) development, yet the exact mechanism by which HCC cells respond to oxidative stress remains poorly understood. This study aimed to investigate the role and mechanism of super enhancer (SE)-controlled genes in oxidative stress response of HCC cells. METHODS: The GSE112221 dataset was used to identify SEs by HOMER. Functional enrichment of SE-controlled genes was performed by Metascape. Transcription factors were predicted using HOMER. Prognosis analysis was conducted using the Kaplan-Meier Plotter website. Expression correlation analysis was performed using the Tumor Immune Estimation Resource web server. NRF1 and SPIDR expression in HCC and normal liver tissues was analyzed based on the TCGA-LIHC dataset. ChIP-qPCR was used to detect acetylation of lysine 27 on histone 3 (H3K27ac) levels of SE regions of genes, and the binding of NRF1 to the SE of SPIDR. To mimic oxidative stress, HepG2 and Hep3B cells were stimulated with H2O2. The effects of NRF1 and SPIDR on the oxidative stress response of HCC cells were determined by the functional assays. RESULTS: A total of 318 HCC-specific SE-controlled genes were identified. The functions of these genes was significant association with oxidative stress response. SPIDR and RHOB were enriched in the "response to oxidative stress" term and were chosen for validation. SE regions of SPIDR and RHOB exhibited strong H3K27ac modification, which was significantly inhibited by JQ1. JQ1 treatment suppressed the expression of SPIDR and RHOB, and increased reactive oxygen species (ROS) levels in HCC cells. TEAD2, TEAD3, NRF1, HINFP and TCFL5 were identified as potential transcription factors for HCC-specific SE-controlled genes related to oxidative stress response. The five transcription factors were positively correlated with SPIDR expression, with the highest correlation coefficient for NRF1. NRF1 and SPIDR expression was up-regulated in HCC tissues and cells. NRF1 activated SPIDR transcription by binding to its SE. Silencing SPIDR or NRF1 significantly promoted ROS accumulation in HCC cells. Under oxidative stress, silencing SPIDR or NRF1 increased ROS, malondialdehyde (MDA) and γH2AX levels, and decreased superoxide dismutase (SOD) levels and cell proliferation of HCC cells. Furthermore, overexpression of SPIDR partially offset the effects of NRF1 silencing on ROS, MDA, SOD, γH2AX levels and cell proliferation of HCC cells. CONCLUSION: NRF1 driven SPIDR transcription by occupying its SE, protecting HCC cells from oxidative stress-induced damage. NRF1 and SPIDR are promising biomarkers for targeting oxidative stress in the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Factor Nuclear 1 de Respiración/genética , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Súper Potenciadores , Neoplasias Hepáticas/genética , Factores de Transcripción , Estrés Oxidativo , Superóxido Dismutasa , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
6.
BMC Cancer ; 24(1): 377, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528486

RESUMEN

The primary aim of this study is to critically evaluate and comment on the research presented in the article titled "A Novel Super-Enhancer-Related Gene Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer" by Wu et al. Our specific objectives include assessing the methodology employed by the authors, particularly in regard to the utilization of a super-enhancer-related gene signature for breast cancer prognosis prediction. We propose the necessity of subgroup analysis to effectively address the heterogeneity in breast cancer subtypes, which is crucial for the applicability of the SERGs across diverse breast cancer cases. Additionally, we suggest conducting a more comprehensive immune panel study to deepen the understanding of how the immune microenvironment impacts breast cancer prognosis. Our commentary seeks to provide valuable insights into the strengths and weaknesses of the study, contributing to a more comprehensive understanding of its findings and potential clinical implications.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Mama , Pronóstico , Súper Potenciadores , Microambiente Tumoral/genética
7.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542080

RESUMEN

Super-enhancers (SEs) are regions of the genome that play a crucial regulatory role in gene expression by promoting large-scale transcriptional responses in various cell types and tissues. Recent research suggests that alterations in super-enhancer activity can contribute to the development and progression of various disorders. The aim of this research is to explore the multifaceted roles of super-enhancers in gene regulation and their significant implications for understanding and treating complex diseases. Here, we study and summarise the classification of super-enhancer constituents, their possible modes of interaction, and cross-regulation, including super-enhancer RNAs (seRNAs). We try to investigate the opportunity of SE dynamics prediction based on the hierarchy of enhancer single elements (enhancers) and their aggregated action. To further our understanding, we conducted an in silico experiment to compare and differentiate between super-enhancers and locus-control regions (LCRs), shedding light on the enigmatic relationship between LCRs and SEs within the human genome. Particular attention is paid to the classification of specific mechanisms and their diversity, exemplified by various oncological, cardiovascular, and immunological diseases, as well as an overview of several anti-SE therapies. Overall, the work presents a comprehensive analysis of super-enhancers across different diseases, aiming to provide insights into their regulatory roles and may act as a rationale for future clinical interventions targeting these regulatory elements.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Humanos , Súper Potenciadores , ARN
8.
Sci Rep ; 14(1): 7370, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548819

RESUMEN

Class switch recombination (CSR) plays an important role in adaptive immune response by enabling mature B cells to replace the initial IgM by another antibody class (IgG, IgE or IgA). CSR is preceded by transcription of the IgH constant genes and is controlled by the super-enhancer 3' regulatory region (3'RR) in an activation-specific manner. The 3'RR is composed of four enhancers (hs3a, hs1-2, hs3b and hs4). In mature B cells, 3'RR activity correlates with transcription of its enhancers. CSR can also occur in primary developing B cells though at low frequency, but in contrast to mature B cells, the transcriptional elements that regulate the process in developing B cells are ill-known. In particular, the role of the 3'RR in the control of constant genes' transcription and CSR has not been addressed. Here, by using a mouse line devoid of the 3'RR and a culture system that highly enriches in pro-B cells, we show that the 3'RR activity is indeed required for switch transcription and CSR, though its effect varies in an isotype-specific manner and correlates with transcription of hs4 enhancer only.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Súper Potenciadores , Cadenas Pesadas de Inmunoglobulina/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cambio de Clase de Inmunoglobulina/genética , Linfocitos B , Isotipos de Inmunoglobulinas/genética , Elementos de Facilitación Genéticos
9.
PLoS Comput Biol ; 20(2): e1011873, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38335222

RESUMEN

Super enhancers (SE), large genomic elements that activate transcription and drive cell identity, have been found with cancer-specific gene regulation in human cancers. Recent studies reported the importance of understanding the cooperation and function of SE internal components, i.e., the constituent enhancers (CE). However, there are no pan-cancer studies to identify cancer-specific SE signatures at the constituent level. Here, by revisiting pan-cancer SE activities with H3K27Ac ChIP-seq datasets, we report fingerprint SE signatures for 28 cancer types in the NCI-60 cell panel. We implement a mixture model to discriminate active CEs from inactive CEs by taking into consideration ChIP-seq variabilities between cancer samples and across CEs. We demonstrate that the model-based estimation of CE states provides improved functional interpretation of SE-associated regulation. We identify cancer-specific CEs by balancing their active prevalence with their capability of encoding cancer type identities. We further demonstrate that cancer-specific CEs have the strongest per-base enhancer activities in independent enhancer sequencing assays, suggesting their importance in understanding critical SE signatures. We summarize fingerprint SEs based on the cancer-specific statuses of their component CEs and build an easy-to-use R package to facilitate the query, exploration, and visualization of fingerprint SEs across cancers.


Asunto(s)
Neoplasias , Súper Potenciadores , Humanos , Epigenómica , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Neoplasias/genética
10.
Mol Ther ; 32(3): 572-579, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38327048

RESUMEN

Metabolic reprogramming is an essential hallmark of tumors, and metabolic abnormalities are strongly associated with the malignant phenotype of tumor cells. This is closely related to transcriptional dysregulation. Super-enhancers are extremely active cis-regulatory regions in the genome, and can amalgamate a complex set of transcriptional regulatory components that are crucial for establishing tumor cell identity, promoting tumorigenesis, and enhancing aggressiveness. In addition, alterations in metabolic signaling pathways are often accompanied by changes in super-enhancers. Presently, there is a surge in interest in the potential pathogenesis of various tumors through the transcriptional regulation of super-enhancers and oncogenic mutations in super-enhancers. In this review, we summarize the functions of super-enhancers, oncogenic signaling pathways, and tumor metabolic reprogramming. In particular, we focus on the role of the super-enhancer in tumor metabolism and its impact on metabolic reprogramming. This review also discusses the prospects and directions in the field of super-enhancer and metabolic reprogramming.


Asunto(s)
Reprogramación Metabólica , Neoplasias , Humanos , Elementos de Facilitación Genéticos , Neoplasias/genética , Neoplasias/terapia , Regulación de la Expresión Génica , Súper Potenciadores
11.
Cell ; 187(2): 331-344.e17, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38194964

RESUMEN

Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 µm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 µm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción SOXB1 , Súper Potenciadores , Transcripción Genética , ADN/genética , Elementos de Facilitación Genéticos , Factores de Transcripción SOXB1/genética , Animales , Ratones , Células Madre Embrionarias/metabolismo , Microscopía/métodos
12.
Mol Genet Genomics ; 299(1): 3, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236481

RESUMEN

Epidermal growth factor receptor (EGFR) has been shown to be overexpressed in human cancers due to mutation, amplification, and epigenetic hyperactivity, which leads to deregulated transcriptional mechanism. Among the eight different EGFR isoforms, the mechanism of regulation of full-length variant 1 is well-known, no studies have examined the function & factors regulating the expression of variant 8. This study aimed to understand the function of EGFR super-enhancer loci and its associated transcription factors regulating the expression of EGFR variant 8. Our study shows that overexpression of variant 8 and its transcription was more prevalent than variant 1 in many cancers and positively correlated with the EGFR-AS1 expression in oral cancer and HNSCC. Notably, individuals overexpressing variant 8 showed shorter overall survival and had a greater connection with other clinical traits than patients with overexpression of variant 1. In this study, TCGA enhancer RNA profiling on the constituent enhancer (CE1 and CE2) region revealed that the multiple enhancer RNAs formed from CE2 by employing CE1 as a promoter. Our bioinformatic analysis further supports the enrichment of enhancer RNA specific chromatin marks H3K27ac, H3K4me1, POL2 and H2AZ on CE2. GeneHancer and 3D chromatin capture analysis showed clustered interactions between CE1, CE2 loci and this interaction may regulates expression of both EGFR-eRNA and variant 8. Moreover, increased expression of SNAI2 and its close relationship to EGFR-AS1 and variant 8 suggest that SNAI2 could regulates variant 8 overexpression by building a MegaTrans complex with both EGFR-eRNA and EGFR-AS1. Our findings show that EGFR variant 8 and its transcriptional regulation & chromatin modification by eRNAs may provide a rationale for targeting RNA splicing in combination with targeted EGFR therapies in cancer.


Asunto(s)
ARN Potenciadores , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Súper Potenciadores , Receptores ErbB/genética , Cromatina/genética , Neoplasias de Cabeza y Cuello/genética
13.
Adv Sci (Weinh) ; 11(4): e2305002, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032139

RESUMEN

Tumor budding (TB) is a small tumor cell cluster with highly aggressive behavior located ahead of the invasive tumor front. However, the molecular and biological characteristics of TB and the regulatory mechanisms governing TB phenotypes remain unclear. This study reveals that TB exhibits a particular dynamic gene signature with stemness and partial epithelial-mesenchymal transition (p-EMT). Importantly, nuclear expression of CYTOR is identified to be the key regulator governing stemness and the p-EMT phenotype of TB cells, and targeting CYTOR significantly inhibits TB formation, tumor growth and lymph node metastasis in head and neck squamous cell carcinoma (HNSCC). Mechanistically, CYTOR promotes tumorigenicity and metastasis of TB cells by facilitating the formation of FOSL1 phase-separated condensates to establish FOSL1-dependent super enhancers (SEs). Depletion of CYTOR leads to the disruption of FOSL1-dependent SEs, which results in the inactivation of cancer stemness and pro-metastatic genes. In turn, activation of FOSL1 promotes the transcription of CYTOR. These findings indicate that CYTOR is a super-lncRNA that controls the stemness and metastasis of TB cells through facilitating the formation of FOSL1 phase separation and SEs, which may be an attractive target for therapeutic interventions in HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/genética , Separación de Fases , Súper Potenciadores , Transición Epitelial-Mesenquimal/genética
14.
Cell ; 186(26): 5826-5839.e18, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38101409

RESUMEN

Super-enhancers are compound regulatory elements that control expression of key cell identity genes. They recruit high levels of tissue-specific transcription factors and co-activators such as the Mediator complex and contact target gene promoters with high frequency. Most super-enhancers contain multiple constituent regulatory elements, but it is unclear whether these elements have distinct roles in activating target gene expression. Here, by rebuilding the endogenous multipartite α-globin super-enhancer, we show that it contains bioinformatically equivalent but functionally distinct element types: classical enhancers and facilitator elements. Facilitators have no intrinsic enhancer activity, yet in their absence, classical enhancers are unable to fully upregulate their target genes. Without facilitators, classical enhancers exhibit reduced Mediator recruitment, enhancer RNA transcription, and enhancer-promoter interactions. Facilitators are interchangeable but display functional hierarchy based on their position within a multipartite enhancer. Facilitators thus play an important role in potentiating the activity of classical enhancers and ensuring robust activation of target genes.


Asunto(s)
Regulación de la Expresión Génica , Súper Potenciadores , Transcripción Genética , Globinas alfa , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Globinas alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA