Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
World J Microbiol Biotechnol ; 32(6): 102, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27116968

RESUMEN

Pinosylvin as a bioactive stilbene is of great interest for food supplements and pharmaceuticals development. In comparison to conventional extraction of pinosylvin from plant sources, biosynthesis engineering of microbial cell factories is a sustainable and flexible alternative method. Current synthetic strategies often require expensive phenylpropanoic precursor and inducer, which are not available for large-scale fermentation process. In this study, three bioengineering strategies were described to the development of a simple and economical process for pinosylvin biosynthesis in Escherichia coli. Firstly, we evaluated different construct environments to give a highly efficient constitutive system for enzymes of pinosylvin pathway expression: 4-coumarate: coenzyme A ligase (4CL) and stilbene synthase (STS). Secondly, malonyl coenzyme A (malonyl-CoA) is a key precursor of pinosylvin bioproduction and at low level in E. coli cell. Thus clustered regularly interspaced short palindromic repeats interference (CRISPRi) was explored to inactivate malonyl-CoA consumption pathway to increase its availability. The resulting pinosylvin content in engineered E. coli was obtained a 1.9-fold increase depending on the repression of fabD (encoding malonyl-CoA-ACP transacylase) gene. Eventually, a phenylalanine over-producing E. coli consisting phenylalanine ammonia lyase was introduced to produce the precursor of pinosylvin, trans-cinnamic acid, the crude extraction of cultural medium was used as supplementation for pinosylvin bioproduction. Using these combinatorial processes, 47.49 mg/L pinosylvin was produced from glycerol.


Asunto(s)
Bioingeniería/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Estilbenos/metabolismo , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/biosíntesis , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/genética , Aciltransferasas/metabolismo , Cinamatos/química , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Acido Graso Sintasa Tipo II/biosíntesis , Acido Graso Sintasa Tipo II/genética , Ácidos Grasos/biosíntesis , Glicerol/metabolismo , Malonil Coenzima A/metabolismo , Fenilalanina/metabolismo , Estilbenos/química , Estilbenos/economía
2.
Metab Eng ; 29: 217-226, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25863265

RESUMEN

Malonyl-CoA is the building block for fatty acid biosynthesis and also a precursor to various pharmaceutically and industrially valuable molecules, such as polyketides and biopolymers. However, intracellular malonyl-CoA is usually maintained at low levels, which poses great challenges to efficient microbial production of malonyl-CoA derived molecules. Inactivation of the malonyl-CoA consumption pathway to increase its intracellular availability is not applicable, since it is usually lethal to microorganisms. In this work, we employ synthetic antisense RNAs (asRNAs) to conditionally down-regulate fatty acid biosynthesis and achieve malonyl-CoA enrichment in Escherichia coli. The optimized asRNA constructs with a loop-stem structure exhibit high interference efficiency up to 80%, leading to a 4.5-fold increase in intracellular malonyl-CoA concentration when fabD gene expression is inhibited. Strikingly, this strategy allows the improved production of natural products 4-hydroxycoumarin, resveratrol, and naringenin by 2.53-, 1.70-, and 1.53-fold in E. coli, respectively. In addition, down-regulation of other fab genes including fabH, fabB, and fabF also leads to remarkable increases in 4-hydroxycoumarin production. This study demonstrates a novel strategy to enhance intracellular malonyl-CoA and indicates the effectiveness of asRNA as a powerful tool for use in metabolic engineering.


Asunto(s)
S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/biosíntesis , Proteínas de Escherichia coli/biosíntesis , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Malonil Coenzima A , ARN sin Sentido , Acido Graso Sintasa Tipo II/biosíntesis , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , ARN sin Sentido/biosíntesis , ARN sin Sentido/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-20057061

RESUMEN

Malonyl-CoA:acyl-carrier protein transacylase (MCAT), encoded by the fabd gene, is a key enzyme in type II fatty-acid biosynthesis. It is responsible for transferring the malonyl group from malonyl-CoA to the holo acyl-carrier protein (ACP). Since the type II system differs from the type I system that mammals use, it has received enormous attention as a possible antibiotic target. In particular, only a single isoform of MCAT has been reported and a continuous coupled enzyme assay has been developed. MCAT from Staphylococcus aureus was overexpressed in Escherichia coli and the protein was purified and crystallized. Diffraction data were collected to 1.2 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 41.608, b = 86.717, c = 43.163 A, alpha = gamma = 90, beta = 106.330 degrees . The asymmetric unit contains one SaMCAT molecule.


Asunto(s)
S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/química , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/biosíntesis , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/metabolismo , Staphylococcus aureus/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA