Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.201
Filtrar
1.
Front Immunol ; 15: 1383612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742107

RESUMEN

Introduction: SARS-CoV-2, the cause of the COVID pandemic, is an RNA virus with a high propensity to mutate. Successive virus variants, including variants of concern (VOC), have emerged with increased transmission or immune escape. The original pandemic virus and early variants replicated poorly, if at all, in mice at least partly due to a mismatch between the receptor binding domain on the viral spike protein and the murine angiotensin converting enzyme 2 (ACE2). Omicron VOC emerged in late 2021 harboring > 50 new mutations, 35 of them in the spike protein. This variant resulted in a very large wave of infections, even in the face of prior immunity, albeit being inherently less severe than earlier variants. Reflecting the lower severity reported in humans, Omicron displayed attenuated infection in hamsters and also in the K18-hACE2 mouse model. K18-hACE2 mice express both the human ACE2 as well as the endogenous mouse ACE2. Methods: Here we infected hACE2 knock-in mice that express only human ACE2 and no murine ACE2, or C57BL/6 wildtype mice with SARS-CoV-2 D614G (first-wave isolate), Delta or Omicron BA.1 variants and assessed infectivity and downstream innate immune responses. Results: While replication of SARS-CoV-2 Omicron was lower in the lungs of hACE2 knock-in mice compared with SARS-CoV-2 D614G and VOC Delta, it replicated more efficiently than the earlier variants in C57BL/6 wildtype mice. This opens the opportunity to test the effect of host genetics on SARS-CoV-2 infections in wildtype mice. As a proof of principle, we tested Omicron infection in mice lacking expression of the interferon-alpha receptor-1 (IFNAR1). In these mice we found that loss of type I IFN receptor signaling resulted in higher viral loads in the lungs were detected. Finally, using a chimeric virus of first wave SARS-CoV-2 harboring the Omicron spike protein, we show that Omicron spike increase infection of C57BL/6 wildtype mice, but non-spike genes of Omicron confer attenuation of viral replication. Discussion: Since this chimeric virus efficiently infected C57BL/6 wildtype mice, and replicated in their lungs, our findings illustrate a pathway for genetic mapping of virushost interactions during SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Ratones Endogámicos C57BL , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Replicación Viral , Animales , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Ratones , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Humanos , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones Transgénicos
2.
Biochem Biophys Res Commun ; 716: 149954, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704887

RESUMEN

Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.


Asunto(s)
Membrana Celular , Colesterol , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Células Vero , Chlorocebus aethiops , Colesterol/metabolismo , Animales , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Membrana Celular/metabolismo , Membrana Celular/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Proteínas Portadoras/metabolismo , COVID-19/virología , COVID-19/metabolismo , Unión Proteica
3.
Nat Commun ; 15(1): 4014, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740770

RESUMEN

SARS-CoV-2 can re-structure chromatin organization and alter the epigenomic landscape of the host genome, but the mechanisms that produce such changes remain unclear. Here, we use polymer physics to investigate how the chromatin of the host genome is re-organized upon infection with SARS-CoV-2. We show that re-structuring of A/B compartments can be explained by a re-modulation of intra-compartment homo-typic affinities, which leads to the weakening of A-A interactions and the enhancement of A-B mixing. At the TAD level, re-arrangements are physically described by a reduction in the loop extrusion activity coupled with an alteration of chromatin phase-separation properties, resulting in more intermingling between different TADs and a spread in space of the TADs themselves. In addition, the architecture of loci relevant to the antiviral interferon response, such as DDX58 or IFIT, becomes more variable within the 3D single-molecule population of the infected model, suggesting that viral infection leads to a loss of chromatin structural specificity. Analysing the time trajectories of pairwise gene-enhancer and higher-order contacts reveals that this variability derives from increased fluctuations in the chromatin dynamics of infected cells. This suggests that SARS-CoV-2 alters gene regulation by impacting the stability of the contact network in time.


Asunto(s)
COVID-19 , Cromatina , SARS-CoV-2 , Cromatina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Humanos , COVID-19/virología , COVID-19/genética , COVID-19/metabolismo
4.
Oncotarget ; 15: 275-284, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709242

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 infection has led to worsened outcomes for patients with cancer. SARS-CoV-2 spike protein mediates host cell infection and cell-cell fusion that causes stabilization of tumor suppressor p53 protein. In-silico analysis previously suggested that SARS-CoV-2 spike interacts with p53 directly but this putative interaction has not been demonstrated in cells. We examined the interaction between SARS-CoV-2 spike, p53 and MDM2 (E3 ligase, which mediates p53 degradation) in cancer cells using an immunoprecipitation assay. We observed that SARS-CoV-2 spike protein interrupts p53-MDM2 protein interaction but did not detect SARS-CoV-2 spike bound with p53 protein in the cancer cells. We further observed that SARS-CoV-2 spike suppresses p53 transcriptional activity in cancer cells including after nutlin exposure of wild-type p53-, spike-expressing tumor cells and inhibits chemotherapy-induced p53 gene activation of p21(WAF1), TRAIL Death Receptor DR5 and MDM2. The suppressive effect of SARS-CoV-2 spike on p53-dependent gene activation provides a potential molecular mechanism by which SARS-CoV-2 infection may impact tumorigenesis, tumor progression and chemotherapy sensitivity. In fact, cisplatin-treated tumor cells expressing spike were found to have increased cell viability as compared to control cells. Further observations on γ-H2AX expression in spike-expressing cells treated with cisplatin may indicate altered DNA damage sensing in the DNA damage response pathway. The preliminary observations reported here warrant further studies to unravel the impact of SARS-CoV-2 and its various encoded proteins including spike on pathways of tumorigenesis and response to cancer therapeutics. More efforts should be directed at studying the effects of the SARS-CoV-2 spike and other viral proteins on host DNA damage sensing, response and repair mechanisms. A goal would be to understand the structural basis for maximal anti-viral immunity while minimizing suppression of host defenses including the p53 DNA damage response and tumor suppression pathway. Such directions are relevant and important including not only in the context of viral infection and mRNA vaccines in general but also for patients with cancer who may be receiving cytotoxic or other cancer treatments.


Asunto(s)
Supervivencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteínas Proto-Oncogénicas c-mdm2 , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Proteína p53 Supresora de Tumor , Humanos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Supervivencia Celular/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , SARS-CoV-2/fisiología , Línea Celular Tumoral , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Transfección , COVID-19/virología , COVID-19/metabolismo
6.
Front Immunol ; 15: 1337215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715618

RESUMEN

Background: Mortalin/GRP75 is a ubiquitous mitochondrial chaperone related to the cytosolic heat shock protein 70. It protects cells from various types of damages and from senescence. Our goal was to determine whether COVID-19 patients have circulating mortalin in their blood and to assess its prognostic value in anticipating disease severity. Methods: Mortalin was determined by ELISA in the sera of 83 COVID-19 patients enrolled in the study. Patients were categorized into 4 groups: critical patients who died (FATAL) or required intensive care and survived (ICU), patients of mild severity (hospitalized but not critical) who required nasal oxygen support (HOSP+O2), and patients who did not need oxygen therapy (HOSP). Results: The mortalin concentration in the serum of all COVID-19 patients in the cohort was 194-2324 pg/mL. A comparison of the mortalin levels by peak severity among the various patient groups showed a highly significant difference between the HOSP and FATAL groups and a significant difference between the HOSP and the ICU groups. COVID-19 patients who eventually failed to survive had at hospitalization a markedly higher level of mortalin in their sera. Cox regression analysis revealed a high mortality hazard (HR=3.96, p<0.01) in patients with high mortalin circulating levels (above the median, ≥651 pg/mL). This was confirmed in survival curve analysis (Kaplan-Meier; p=0.0032, log-rank test). Mortalin remained an independent predictor of mortality even after adjusting for age and sex or various complement activation products. Complement activation data collected in an earlier study in the same cohort was compared regarding the mortalin levels. Patients with higher circulating mortalin levels also had higher levels of complement C3a but reduced levels of properdin. Discussion: This is the first report on circulating mortalin in COVID-19 patients. Higher mortalin levels were associated with more severe illnesses and a higher risk of death. We claim that quantifying the blood levels of mortalin and activated complement proteins will provide important information on the prognosis of COVID-19 patients and will serve as a useful tool for guiding their clinical management and treatment.


Asunto(s)
COVID-19 , Proteínas HSP70 de Choque Térmico , SARS-CoV-2 , Humanos , COVID-19/mortalidad , COVID-19/sangre , COVID-19/inmunología , Proteínas HSP70 de Choque Térmico/sangre , Masculino , Femenino , Persona de Mediana Edad , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , Anciano , Pronóstico , Índice de Severidad de la Enfermedad , Adulto , Biomarcadores/sangre , Activación de Complemento , Anciano de 80 o más Años
7.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727305

RESUMEN

BACKGROUND: SARS-Co-V2 infection can induce ER stress-associated activation of unfolded protein response (UPR) in host cells, which may contribute to the pathogenesis of COVID-19. To understand the complex interplay between SARS-Co-V2 infection and UPR signaling, we examined the effects of acute pre-existing ER stress on SARS-Co-V2 infectivity. METHODS: Huh-7 cells were treated with Tunicamycin (TUN) and Thapsigargin (THA) prior to SARS-CoV-2pp transduction (48 h p.i.) to induce ER stress. Pseudo-typed particles (SARS-CoV-2pp) entry into host cells was measured by Bright GloTM luciferase assay. Cell viability was assessed by cell titer Glo® luminescent assay. The mRNA and protein expression was evaluated by RT-qPCR and Western Blot. RESULTS: TUN (5 µg/mL) and THA (1 µM) efficiently inhibited the entry of SARS-CoV-2pp into host cells without any cytotoxic effect. TUN and THA's attenuation of virus entry was associated with differential modulation of ACE2 expression. Both TUN and THA significantly reduced the expression of stress-inducible ER chaperone GRP78/BiP in transduced cells. In contrast, the IRE1-XBP1s and PERK-eIF2α-ATF4-CHOP signaling pathways were downregulated with THA treatment, but not TUN in transduced cells. Insulin-mediated glucose uptake and phosphorylation of Ser307 IRS-1 and downstream p-AKT were enhanced with THA in transduced cells. Furthermore, TUN and THA differentially affected lipid metabolism and apoptotic signaling pathways. CONCLUSIONS: These findings suggest that short-term pre-existing ER stress prior to virus infection induces a specific UPR response in host cells capable of counteracting stress-inducible elements signaling, thereby depriving SARS-Co-V2 of essential components for entry and replication. Pharmacological manipulation of ER stress in host cells might provide new therapeutic strategies to alleviate SARS-CoV-2 infection.


Asunto(s)
Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Proteínas Proto-Oncogénicas c-akt , SARS-CoV-2 , Transducción de Señal , Tapsigargina , Tunicamicina , Respuesta de Proteína Desplegada , Humanos , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Tunicamicina/farmacología , Apoptosis/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , COVID-19/virología , COVID-19/metabolismo , Internalización del Virus/efectos de los fármacos
8.
Nat Commun ; 15(1): 3816, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769293

RESUMEN

SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Ferroptosis , Pulmón , Mesocricetus , SARS-CoV-2 , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Animales , Humanos , Masculino , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , SARS-CoV-2/fisiología , Femenino , Hierro/metabolismo , Persona de Mediana Edad , Modelos Animales de Enfermedad , Anciano , Lesión Pulmonar/virología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Sobrecarga de Hierro/metabolismo , Adulto , Cricetinae
9.
PLoS One ; 19(5): e0289854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771750

RESUMEN

INTRODUCTION: Recent research suggests that endothelial activation plays a role in coronavirus disease 2019 (COVID-19) pathogenesis by promoting a pro-inflammatory state. However, the mechanism by which the endothelium is activated in COVID-19 remains unclear. OBJECTIVE: To investigate the mechanism by which COVID-19 activates the pulmonary endothelium and drives pro-inflammatory phenotypes. HYPOTHESIS: The "inflammatory load or burden" (cytokine storm) of the systemic circulation activates endothelial NADPH oxidase 2 (NOX2) which leads to the production of reactive oxygen species (ROS) by the pulmonary endothelium. Endothelial ROS subsequently activates pro-inflammatory pathways. METHODS: The inflammatory burden of COVID-19 on the endothelial network, was recreated in vitro, by exposing human pulmonary microvascular endothelial cells (HPMVEC) to media supplemented with serum from COVID-19 affected individuals (sera were acquired from patients with COVID-19 infection that eventually died. Sera was isolated from blood collected at admission to the Intensive Care Unit of the Hospital of the University of Pennsylvania). Endothelial activation, inflammation and cell death were assessed in HPMVEC treated with serum either from patients with COVID-19 or from healthy individuals. Activation was monitored by measuring NOX2 activation (Rac1 translocation) and ROS production; inflammation (or appearance of a pro-inflammatory phenotype) was monitored by measuring the induction of moieties such as intercellular adhesion molecule (ICAM-1), P-selectin and the NLRP3 inflammasome; cell death was measured via SYTOX™ Green assays. RESULTS: Endothelial activation (i.e., NOX2 activation and subsequent ROS production) and cell death were significantly higher in the COVID-19 model than in healthy samples. When HPMVEC were pre-treated with the novel peptide PIP-2, which blocks NOX2 activation (via inhibition of Ca2+-independent phospholipase A2, aiPLA2), significant abrogation of ROS was observed. Endothelial inflammation and cell death were also significantly blunted. CONCLUSIONS: The endothelium is activated during COVID-19 via cytokine storm-driven NOX2-ROS activation, which causes a pro-inflammatory phenotype. The concept of endothelial NOX2-ROS production as a unifying pathophysiological axis in COVID-19 raises the possibility of using PIP-2 to maintain vascular health.


Asunto(s)
COVID-19 , Células Endoteliales , NADPH Oxidasa 2 , Especies Reactivas de Oxígeno , SARS-CoV-2 , Transducción de Señal , Humanos , COVID-19/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , SARS-CoV-2/fisiología , NADPH Oxidasa 2/metabolismo , Endotelio Vascular/metabolismo , Pulmón/patología , Pulmón/metabolismo , Pulmón/virología , Pulmón/irrigación sanguínea , Péptidos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
10.
PLoS One ; 19(5): e0303995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771836

RESUMEN

BACKGROUNDS: In critically ill patients with COVID-19, secondary infections are potentially life-threatening complications. This study aimed to determine the prevalence, clinical characteristics, and risk factors of CMV reactivation among critically ill immunocompetent patients with COVID-19 pneumonia. METHODS: A retrospective cohort study was conducted among adult patients who were admitted to ICU and screened for quantitative real-time PCR for CMV viral load in a tertiary-care hospital during the third wave of the COVID-19 outbreak in Thailand. Cox regression models were used to identify significant risk factors for developing CMV reactivation. RESULTS: A total of 185 patients were studied; 133 patients (71.9%) in the non-CMV group and 52 patients (28.1%) in the CMV group. Of all, the mean age was 64.7±13.3 years and 101 patients (54.6%) were males. The CMV group had received a significantly higher median cumulative dose of corticosteroids than the non-CMV group (301 vs 177 mg of dexamethasone, p<0.001). Other modalities of treatments for COVID-19 including anti-viral drugs, anti-cytokine drugs and hemoperfusion were not different between the two groups (p>0.05). The 90-day mortality rate for all patients was 29.1%, with a significant difference between the CMV group and the non-CMV group (42.3% vs. 24.1%, p = 0.014). Median length of stay was longer in the CMV group than non-CMV group (43 vs 24 days, p<0.001). The CMV group has detectable CMV DNA load with a median [IQR] of 4,977 [1,365-14,742] IU/mL and 24,570 [3,703-106,642] in plasma and bronchoalveolar fluid, respectively. In multivariate analysis, only a cumulative corticosteroids dose of dexamethasone ≥250 mg (HR = 2.042; 95%CI, 1.130-3.688; p = 0.018) was associated with developing CMV reactivation. CONCLUSION: In critically ill COVID-19 patients, CMV reactivation is frequent and a high cumulative corticosteroids dose is a significant risk factor for CMV reactivation, which is associated with poor outcomes. Further prospective studies are warranted to determine optimal management.


Asunto(s)
COVID-19 , Enfermedad Crítica , Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Masculino , Persona de Mediana Edad , COVID-19/epidemiología , COVID-19/virología , COVID-19/complicaciones , Femenino , Infecciones por Citomegalovirus/epidemiología , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/complicaciones , Factores de Riesgo , Anciano , Citomegalovirus/fisiología , Citomegalovirus/efectos de los fármacos , Citomegalovirus/aislamiento & purificación , Estudios Retrospectivos , Prevalencia , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Activación Viral/efectos de los fármacos , Tailandia/epidemiología , Carga Viral
11.
Cells ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786015

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.


Asunto(s)
Adenocarcinoma del Pulmón , COVID-19 , ARN Mensajero , Receptores Acoplados a Proteínas G , SARS-CoV-2 , Regulación hacia Arriba , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , COVID-19/genética , COVID-19/virología , COVID-19/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/virología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Regulación hacia Arriba/genética , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/virología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Células CACO-2
12.
Nat Commun ; 15(1): 4235, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762489

RESUMEN

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Asunto(s)
COVID-19 , Células Endoteliales , Pulmón , Activación de Macrófagos , SARS-CoV-2 , Animales , Humanos , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/virología , Células Endoteliales/inmunología , SARS-CoV-2/fisiología , Pulmón/virología , Pulmón/patología , Pulmón/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Ratones Endogámicos C57BL , Neumonía Viral/inmunología , Neumonía Viral/patología , Neumonía Viral/virología , Neumonía Viral/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Femenino , Ratones Noqueados , Proteínas de la Matriz Extracelular
13.
Sci Rep ; 14(1): 10696, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730068

RESUMEN

COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.


Asunto(s)
Antiinflamatorios , Antioxidantes , Antivirales , Tratamiento Farmacológico de COVID-19 , Curcumina , SARS-CoV-2 , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Antioxidantes/farmacología , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Antiinflamatorios/farmacología , Línea Celular Tumoral , Curcuma/química , Serina Endopeptidasas/metabolismo , COVID-19/virología , COVID-19/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Citocinas/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/virología
14.
Front Immunol ; 15: 1380697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715608

RESUMEN

The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.


Asunto(s)
COVID-19 , Miocarditis , SARS-CoV-2 , Miocarditis/virología , Miocarditis/inmunología , Miocarditis/terapia , Miocarditis/genética , Humanos , COVID-19/inmunología , COVID-19/genética , COVID-19/terapia , SARS-CoV-2/fisiología , Metilación , 5-Metilcitosina/metabolismo , Inmunidad Innata , Tratamiento Farmacológico de COVID-19 , Animales , ARN Viral/genética , ARN Viral/metabolismo , Procesamiento Postranscripcional del ARN
15.
Sci Total Environ ; 931: 172945, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703849

RESUMEN

The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly­aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.


Asunto(s)
SARS-CoV-2 , Purificación del Agua , Purificación del Agua/métodos , SARS-CoV-2/fisiología , COVID-19 , Agua Potable/virología , Agua Potable/química , Compuestos de Alumbre , Microbiología del Agua , Betacoronavirus/fisiología , Floculación , Compuestos de Aluminio , Compuestos Férricos/química
16.
Nat Commun ; 15(1): 4162, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755139

RESUMEN

The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.


Asunto(s)
COVID-19 , Furina , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicosilación , Furina/metabolismo , Furina/genética , COVID-19/virología , COVID-19/metabolismo , Células HEK293 , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Animales , Chlorocebus aethiops , Polipéptido N-Acetilgalactosaminiltransferasa
17.
Sci Rep ; 14(1): 11171, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750049

RESUMEN

White-tailed deer (Odocoileus virginianus) have emerged as a reservoir host for SARS-CoV-2 given their susceptibility to infection and demonstrated high rates of seroprevalence and infection across the United States. As SARS-CoV-2 circulates within free-ranging white-tailed deer populations, there is the risk of transmission to other wildlife species and even back to the human population. The goal of this study was to determine the susceptibility, shedding, and immune response of North American elk (Cervus elaphus canadensis) to experimental infection with SARS-CoV-2, to determine if another wide-ranging cervid species could potentially serve as a reservoir host for the virus. Here we demonstrate that while North American elk do not develop clinical signs of disease, they do develop a neutralizing antibody response to infection, suggesting the virus is capable of replicating in this mammalian host. Additionally, we demonstrate SARS-CoV-2 RNA presence in the medial retropharyngeal lymph nodes of infected elk three weeks after experimental infection. Consistent with previous observations in humans, these data may highlight a mechanism of viral persistence for SARS-CoV-2 in elk.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Ciervos , ARN Viral , SARS-CoV-2 , Animales , Ciervos/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , COVID-19/virología , ARN Viral/genética , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Esparcimiento de Virus , Reservorios de Enfermedades/virología , Femenino
18.
Commun Biol ; 7(1): 526, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702425

RESUMEN

COVID-19, caused by SARS-CoV-2, can lead to a severe inflammatory disease characterized by significant lymphopenia. However, the underlying cause for the depletion of T-cells in COVID-19 patients remains incompletely understood. In this study, we assessed the presence of different T-cell subsets in the progression of COVID-19 from mild to severe disease, with a focus on TCF1 expressing progenitor T-cells that are needed to replenish peripheral T-cells during infection. Our results showed a preferential decline in TCF1+ progenitor CD4 and CD8+ T-cells with disease severity. This decline was seen in various TCF1+ subsets including naive, memory and effector-memory cells, and surprisingly, was accompanied by a loss in cell division as seen by a marked decline in Ki67 expression. In addition, TCF1+ T-cells showed a reduction in pro-survival regulator, BcL2, and the appearance of a new population of TCF1 negative caspase-3 expressing cells in peripheral blood from patients with severe disease. The decline in TCF1+ T-cells was also seen in a subgroup of severe patients with vitamin D deficiency. Lastly, we found that sera from severe patients inhibited TCF1 transcription ex vivo which was attenuated by a blocking antibody against the cytokine, interleukin-12 (IL12). Collectively, our findings underscore the potential significance of TCF1+ progenitor T-cells in accounting for the loss of immunity in severe COVID-19 and outline an array of markers that could be used to identify disease progression.


Asunto(s)
COVID-19 , Factor Nuclear 1-alfa del Hepatocito , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/inmunología , COVID-19/patología , Masculino , Femenino , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Persona de Mediana Edad , Linfocitos T CD8-positivos/inmunología , Adulto , Linfocitos T CD4-Positivos/inmunología , Anciano , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
19.
Front Immunol ; 15: 1264702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765011

RESUMEN

Introduction: Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods: Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results: This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion: Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.


Asunto(s)
COVID-19 , Células Asesinas Naturales , Naltrexona , Canales Catiónicos TRPM , Humanos , Canales Catiónicos TRPM/metabolismo , COVID-19/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Adulto , Masculino , Persona de Mediana Edad , Femenino , Naltrexona/farmacología , Naltrexona/uso terapéutico , SARS-CoV-2/fisiología , Síndrome de Fatiga Crónica/tratamiento farmacológico , Síndrome de Fatiga Crónica/inmunología , Técnicas de Placa-Clamp , Tratamiento Farmacológico de COVID-19
20.
J Virol ; 98(5): e0190323, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38593045

RESUMEN

We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , Serina Endopeptidasas , Inhibidores de Serina Proteinasa , Replicación Viral , Animales , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Humanos , Ratones , Replicación Viral/efectos de los fármacos , COVID-19/virología , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Antivirales/farmacología , Serina Endopeptidasas/metabolismo , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Chlorocebus aethiops , Células Vero , Femenino , Peptidomiméticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA