Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Virulence ; 15(1): 2399792, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39239914

RESUMEN

Human CD81 and CD9 are members of the tetraspanin family of proteins characterized by a canonical structure of four transmembrane domains and two extracellular loop domains. Tetraspanins are known as molecular facilitators, which assemble and organize cell surface receptors and partner molecules forming clusters known as tetraspanin-enriched microdomains. They have been implicated to play various biological roles including an involvement in infections with microbial pathogens. Here, we demonstrate an important role of CD81 for the invasion of epithelial cells by Salmonella enterica. We show that the overexpression of CD81 in HepG2 cells enhances invasion of various typhoidal and non-typhoidal Salmonella serovars. Deletion of CD81 by CRISPR/Cas9 in intestinal epithelial cells (C2BBe1 and HT29-MTX-E12) reduces S. Typhimurium invasion. In addition, the effect of human CD81 is species-specific as only human but not rat CD81 facilitates Salmonella invasion. Finally, immunofluorescence microscopy and proximity ligation assay revealed that both human tetraspanins CD81 and CD9 are recruited to the entry site of S. Typhimurium during invasion but not during adhesion to the host cell surface. Overall, we demonstrate that the human tetraspanin CD81 facilitates Salmonella invasion into epithelial host cells.


Asunto(s)
Células Epiteliales , Salmonella enterica , Tetraspanina 28 , Tetraspanina 29 , Humanos , Tetraspanina 28/metabolismo , Tetraspanina 28/genética , Células Epiteliales/microbiología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Animales , Salmonella enterica/genética , Salmonella enterica/fisiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiología , Células Hep G2 , Ratas , Infecciones por Salmonella/microbiología , Células HT29
2.
Appl Environ Microbiol ; 90(9): e0131124, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39207142

RESUMEN

The interplay between plant hosts, phytopathogenic bacteria, and enteric human pathogens in the phyllosphere has consequences for human health. Salmonella enterica has been known to take advantage of phytobacterial infection to increase its success on plants, but there is little knowledge of additional factors that may influence the relationship between enteric pathogens and plant disease. In this study, we investigated the role of humidity and the extent of plant disease progression on S. enterica colonization of plants. We found that high humidity was necessary for the replication of S. enterica on diseased lettuce, but not required for S. enterica ingress into the UV-protected apoplast. Additionally, the Xanthomonas hortorum pv. vitians (hereafter, X. vitians)-infected lettuce host was found to be a relatively hostile environment for S. enterica when it arrived prior to the development of watersoaking or following necrosis onset, supporting the existence of an ideal window during X. vitians infection progress that maximizes S. enterica survival. In vitro growth studies in sucrose media suggest that X. vitians may allow S. enterica to benefit from cross-feeding during plant infection. Overall, this study emphasizes the role of phytobacterial disease as a driver of S. enterica success in the phyllosphere, demonstrates how the time of arrival during disease progress can influence S. enterica's fate in the apoplast, and highlights the potential for humidity to transform an infected apoplast into a growth-promoting environment for bacterial colonizers. IMPORTANCE: Bacterial leaf spot of lettuce caused by Xanthomonas hortorum pv. vitians is a common threat to leafy green production. The global impact caused by phytopathogens, including X. vitians, is likely to increase with climate change. We found that even under a scenario where increased humidity did not enhance plant disease, high humidity had a substantial effect on facilitating Salmonella enterica growth on Xanthomonas-infected plants. High humidity climates may directly contribute to the survival of human enteric pathogens in crop fields or indirectly affect bacterial survival via changes to the phyllosphere brought on by phytopathogen disease.


Asunto(s)
Humedad , Lactuca , Enfermedades de las Plantas , Salmonella enterica , Lactuca/microbiología , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/fisiología , Enfermedades de las Plantas/microbiología , Xanthomonas/crecimiento & desarrollo , Xanthomonas/fisiología
3.
Bull Exp Biol Med ; 177(2): 281-286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39096449

RESUMEN

Different methods for fixing biofilms of Staphylococcus aureus and Salmonella enterica for light and electron microscopy were compared. Paraformaldehyde fixation did not preserve biofilm integrity during dehydration; Ito-Karnovsky fixation revealed cell morphology, but did not preserve the matrix. Ruthenium red combined with aldehydes allowed the matrix to be preserved and visualized. An analysis of the ultrastructure of S. aureus and S. enterica cells in biofilms and suspensions at various fixations is presented. The ultrastructure of the biofilm matrix has been described.


Asunto(s)
Biopelículas , Salmonella enterica , Staphylococcus aureus , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Salmonella enterica/fisiología , Salmonella enterica/ultraestructura , Salmonella enterica/crecimiento & desarrollo , Formaldehído , Fijadores/farmacología , Fijadores/química , Microscopía Electrónica , Polímeros
4.
Br Poult Sci ; 65(4): 415-423, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38717314

RESUMEN

1. Epidemiological surveillance of Salmonella spp. serves as a primary tool for maintaining the health of poultry flocks. Characterising circulating serotypes is crucial for implementing control and prevention measures. This study conducted phenotypic and molecular characterisation of S. enterica Pullorum, S. enterica Heidelberg, and S. enterica Corvalis isolated from broiler chickens during slaughtering.2. All strains were susceptible to gentamicin, neomycin and norfloxacin. However, resistance rates exceeded 50% for ciprofloxacin and tiamulin, irrespective of the serotype. Approximately 64% of strains were classified as multidrug-resistant, with S. enterica Heidelberg strains exhibiting significantly higher overall resistance. The isolates demonstrated the ability to adhere and produce biofilm at a minimum of three temperatures, with S. enterica Pullorum capable of biofilm production at all temperatures encountered during poultry rearing.3. Each strain possessed between two and seven different virulence-associated genes. Genetic similarity, as indicated by pulsed field gel electrophoresis, exceeded 90% for all three serotypes and strains were classified in the R5 ribotype by PCR, regardless of serotype. Sequencing revealed high similarity among all strains, with homology ranging from 99.61 to 100% and all were classified to a single cluster.4. The results suggested a clonal relationship among the strains, indicating the possible circulation of a unique clonal group of S. enterica Pullorum in the southern region of Brazil.


Asunto(s)
Antibacterianos , Pollos , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella enterica , Animales , Salmonelosis Animal/microbiología , Salmonelosis Animal/epidemiología , Pollos/microbiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/epidemiología , Salmonella enterica/genética , Salmonella enterica/fisiología , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Biopelículas , Fenotipo , Virulencia , Salmonella/genética , Salmonella/fisiología , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Pruebas de Sensibilidad Microbiana/veterinaria , Electroforesis en Gel de Campo Pulsado/veterinaria , Serogrupo
5.
Poult Sci ; 103(7): 103806, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749104

RESUMEN

Transfer of Salmonella to internal organs of broilers over a 35 d grow-out period was evaluated. A total of 360 one-day old chicks were placed in 18 floor pens of 3 groups with 6 replicate pens each. On d 0, broilers were orally challenged with a cocktail of Salmonella (equal population of marked serovars; nalidixic acid-resistant S. Typhimurium, rifampicin-resistant S. Infantis, and kanamycin-resistant S. Reading) to have 3 groups: L (low; ∼2 log CFU/bird); M (medium; ∼5 log CFU/bird); and H (High; ∼8 log CFU/bird). On d 2, 7 and 35, 4 birds/pen were euthanized and ceca, liver, and spleen samples were collected aseptically. Gizzard samples (4/pen) were collected on d 35. The concentration of Salmonella in liver and spleen were transformed to binary outcomes (positive and negative) and fitted in glm function of R using cecal Salmonella concentrations (log CFU/g) and inoculation doses (L, M, and H) as inputs. On d 2, H group showed greater (P ≤ 0.05) cecal colonization of all 3 serovars compared to L and M groups. However, M group showed greater (P ≤ 0.05) colonization of all 3 serovars in the liver and spleen compared to L group. Salmonella colonization increased linearly in the ceca and quadratically in the liver and spleen with increasing challenge dose (P ≤ 0.05). On d 35, L group had greater (P ≤ 0.05) S. Infantis colonization in the ceca and liver compared to M and H groups (P ≤ 0.05). Moreover, within each group on d 35, the concentration of S. Reading was greater than those of S. Typhimurium and S. Infantis for all 3 doses in the ceca and high dose in the liver and gizzard (P ≤ 0.05). Salmonella colonization diminished in the ceca, liver, and spleen during grow-out from d 0 to d 35 (P ≤ 0.05). On d 35, birds challenged with different doses of Salmonella cocktail showed a similar total Salmonella spp. population in the ceca (ca. 3.14 log CFU/g), liver (ca. 0.54 log CFU/g), spleen (ca. 0.31 log CFU/g), and gizzard (ca. 0.42 log CFU/g). Estimates from the fitted logistic model showed that one log CFU/g increase in cecal Salmonella concentration will result in an increase in relative risk of liver and spleen being Salmonella-positive by 4.02 and 3.40 times (P ≤ 0.01), respectively. Broilers from H or M group had a lower risk (28 and 23%) of being Salmonella-positive in the liver compared to the L group when the cecal Salmonella concentration is the same (P ≤ 0.05). Oral challenge of broilers with Salmonella spp. with various doses resulted in linear or quadratic increases in Salmonella colonization in the internal organs during early age and these populations decreased during grow-out (d 35). This research can provide guidance on practices to effectively mitigate the risk of Salmonella from chicken parts and enhance public health.


Asunto(s)
Pollos , Hígado , Enfermedades de las Aves de Corral , Salmonelosis Animal , Bazo , Animales , Pollos/microbiología , Pollos/crecimiento & desarrollo , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología , Bazo/microbiología , Hígado/microbiología , Salmonella typhimurium/fisiología , Ciego/microbiología , Salmonella/fisiología , Salmonella/aislamiento & purificación , Molleja de las Aves/microbiología , Salmonella enterica/fisiología , Salmonella enterica/aislamiento & purificación
6.
Sci Rep ; 14(1): 11479, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769412

RESUMEN

Salmonella enterica serovar Dublin (S. Dublin) is an important enteric pathogen affecting cattle and poses increasing public health risks. Understanding the pathophysiology and host-pathogen interactions of S. Dublin infection are critical for developing effective control strategies, yet studies are hindered by the lack of physiologically relevant in vitro models. This study aimed to generate a robust ileal monolayer derived from adult bovine organoids, validate its feasibility as an in vitro infection model with S. Dublin, and evaluate the epithelial response to infection. A stable, confluent monolayer with a functional epithelial barrier was established under optimized culture conditions. The model's applicability for studying S. Dublin infection was confirmed by documenting intracellular bacterial invasion and replication, impacts on epithelial integrity, and a specific inflammatory response, providing insights into the pathogen-epithelium interactions. The study underscores the utility of organoid-derived monolayers in advancing our understanding of enteric infections in livestock and highlights implications for therapeutic strategy development and preventive measures, with potential applications extending to both veterinary and human medicine. The established bovine ileal monolayer offers a novel and physiologically relevant in vitro platform for investigating enteric pathogen-host interactions, particularly for pathogens like S. Dublin.


Asunto(s)
Interacciones Huésped-Patógeno , Íleon , Organoides , Salmonelosis Animal , Animales , Bovinos , Organoides/microbiología , Íleon/microbiología , Íleon/patología , Salmonelosis Animal/microbiología , Salmonella enterica/patogenicidad , Salmonella enterica/fisiología , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/microbiología , Enfermedades de los Bovinos/microbiología
7.
Poult Sci ; 103(7): 103739, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678973

RESUMEN

The poultry industry faces significant challenges in controlling Salmonella contamination while reducing antibiotic use, particularly with the emergence of Salmonella Heidelberg (SH) strains posing risks to food safety and public health. Probiotics, notably lactic acid bacteria (LAB) and Saccharomyces boulardii (SB) offer promising alternatives for mitigating Salmonella colonization in broilers. Understanding the efficacy of probiotics in combating SH and their impact on gut health and metabolism is crucial for improving poultry production practices and ensuring food safety standards. This study aimed to assess the inhibitory effects of LAB and SB against SH both in vitro and in vivo broilers, while also investigating their impact on fecal metabolites and caecal microbiome composition. In vitro analysis demonstrated strong inhibition of SH by certain probiotic strains, such as Lactiplantibacillus plantarum (LP) and Lacticaseibacillus acidophilus (LA), while others like SB and Lactobacillus delbrueckii (LD) did not exhibit significant inhibition. In vivo testing revealed that broilers receiving probiotics had significantly lower SH concentrations in cecal content compared to the positive control (PC) at all ages, indicating a protective effect of probiotics against SH colonization. Metagenomic analysis of cecal-content microbiota identified predominant bacterial families and genera, highlighting changes in microbiota composition with age and probiotic supplementation. Additionally, fecal metabolomics profiling showed alterations in metabolite concentrations, suggesting reduced oxidative stress, intestinal inflammation, and improved gut health in probiotic-supplemented birds. These findings underscore the potential of probiotics to mitigate SH colonization and improve broiler health while reducing reliance on antibiotics.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Probióticos , Saccharomyces boulardii , Salmonelosis Animal , Animales , Pollos/fisiología , Probióticos/farmacología , Probióticos/administración & dosificación , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Saccharomyces boulardii/fisiología , Salmonella enterica/fisiología , Alimentación Animal/análisis , Lactobacillales/fisiología , Heces/microbiología , Heces/química , Dieta/veterinaria , Masculino
8.
Am J Hum Biol ; 35(8): e23897, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951242

RESUMEN

INTRODUCTION: Multiple studies have reported that milk immune content increases for infants experiencing infectious disease (ID) episodes, suggesting that the immune system of milk (ISOM) offers enhanced protection when needed to combat ID. METHODS: To test the hypothesis that ISOM content and/or activity increases during an infant's ID episode, we characterized milk secretory immunoglobulin A (sIgA; a major ISOM constituent) and in vitro interleukin-6 (IL-6) responses to Salmonella enterica and Escherichia coli, as system-level biomarkers of ISOM activity, in a prospective study among 96 mother-infant dyads in Kilimanjaro, Tanzania. RESULTS: After control for covariates, no milk immune variables (sIgA, Coef: 0.03; 95% CI -0.25, 0.32; in vitro IL-6 response to S. enterica, Coef: 0.23; 95% CI: -0.67, 1.13; IL-6 response to E. coli, Coef: -0.11; 95% CI: -0.98, 0.77) were associated with prevalent ID (diagnosed at the initial participation visit). Among infants experiencing an incident ID (diagnosed subsequent to the initial participation), milk immune content and responses were not substantially higher or lower than the initial visit (sIgA, N: 61; p: 0.788; IL-6 response to S. enterica, N: 56; p: 0.896; IL-6 response to E. coli, N: 36; p: 0.683); this was unchanged by exclusion of infants with ID at the time of initial participation. CONCLUSION: These findings are not consistent with the hypothesis that milk delivers enhanced immune protection when infants experience ID. In environments with a high burden of ID, dynamism may be less valuable to maternal reproductive success than stability in the ISOM.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Inmunoglobulina A Secretora , Interleucina-6 , Leche Humana , Infecciones por Salmonella , Salmonella enterica , Humanos , Femenino , Leche Humana/química , Interleucina-6/análisis , Interleucina-6/inmunología , Salmonella enterica/fisiología , Infecciones por Salmonella/inmunología , Escherichia coli/fisiología , Infecciones por Escherichia coli/inmunología , Recién Nacido , Lactante , Tanzanía , Estudios Prospectivos , Adulto , Estudios Transversales , Técnicas para Inmunoenzimas , Inmunoglobulina A Secretora/análisis , Inmunoglobulina A Secretora/inmunología , Estudios Longitudinales
9.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688773

RESUMEN

The purpose of this study was to determine the effect of the culture method on the resistance of Salmonella Typhimurium in low water activity foods to storage, plasma, and dry heat. Whole black peppers were used as the model food. S. Typhimurium cultured in liquid broth (tryptic soy broth) or solid agar (tryptic soy agar) and inoculated on whole black pepper was stored or treated with cold plasma or dry heat. Inactivation of S. Typhimurium cultured in liquid medium was higher in all the treatments. Liquid-cultured S. Typhimurium showed higher DPPP = O (diphenyl-1-pyrenylphosphine oxide) values compared to the solid-cultured S. Typhimurium after plasma or dry heat treatment. Furthermore, the unsaturated fatty acid and saturated fatty acid ratio (USFA/SFA) was significantly (P < 0.05) reduced from 0.41 to 0.29 when S. Typhimurium was cultured on solid agar. These results suggested that the use of food-borne pathogens cultured on solid agar is more suitable for low water activity food pasteurization studies.


Asunto(s)
Piper nigrum , Salmonella enterica , Salmonella typhimurium/fisiología , Agar , Calor , Serogrupo , Microbiología de Alimentos , Agua , Recuento de Colonia Microbiana , Salmonella enterica/fisiología
10.
Int J Food Microbiol ; 381: 109905, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36095868

RESUMEN

Salmonella enterica is one of the leading causes of foodborne gastroenteritis worldwide. In the food production environment, many bacterial species co-exist on surfaces in biofilm structures, which can act as reservoirs of microbial contamination of food products. Polymicrobial biofilms have been shown to have greater tolerance to antimicrobials, such as disinfectants, however the mechanistic basis of this is poorly understood. In this study, S. enterica subsp. enterica serovar Liverpool was co-cultured in mixed-species biofilms with bacteria isolated from the food production environment and challenged with the cationic biocide disinfectant, benzalkonium chloride (BC). Co-culture with the common environmental bacterium Acinetobacter johnsonii resulted in >200-fold higher resistance of S. Liverpool to BC, compared to mono-culture biofilms. The transcriptional response of S. enterica to biofilm co-culture was determined using a dual RNA-seq strategy. Genes controlled by the PhoPQ and PmrAB two-component systems, involved in lipid A modification and associated with cationic antimicrobial peptide resistance (CAMP) of S. Liverpool, were significantly upregulated. Deletion of either the phoP or pmrA genes resulted in an increase in susceptibility to BC, suggesting that activation of their regulons during co-culture enhances BC resistance. S. Liverpool lipid A profiles changed significantly upon co-culturing, with greater incorporation of both phosphoethanolamine and palmitate, which was dependent upon activation of PhoPQ and PmrAB. We conclude that when grown in the presence of A. johnsonii, S. Liverpool increases its tolerance to cationic BC disinfection by remodelling its cell envelope including reducing the net negative charge of lipid A and increasing lipid A acyl density.


Asunto(s)
Desinfectantes , Salmonella enterica , Acinetobacter , Compuestos de Benzalconio/farmacología , Biopelículas , Técnicas de Cocultivo , Desinfectantes/farmacología , Lípido A , Palmitatos , Salmonella enterica/fisiología
11.
Front Immunol ; 12: 757909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804044

RESUMEN

Salmonella Infantis has emerged as a major clinical pathogen causing gastroenteritis worldwide in recent years. As an intracellular pathogen, Salmonella has evolved to manipulate and benefit from the cell death signaling pathway. In this study, we discovered that S. Infantis inhibited apoptosis of infected Caco-2 cells by phosphorylating Akt. Notably, Akt phosphorylation was observed in a discontinuous manner: immediately 0.5 h after the invasion, then before peak cytosolic replication. Single-cell analysis revealed that the second phase was only induced by cytosolic hyper-replicating bacteria at 3-4 hpi. Next, Akt-mediated apoptosis inhibition was found to be initiated by Salmonella SopB. Furthermore, Akt phosphorylation increased mitochondrial localization of Bcl-2 to prevent Bax oligomerization on the mitochondrial membrane, maintaining the mitochondrial network homeostasis to resist apoptosis. In addition, S. Infantis induced pyroptosis, as evidenced by increased caspase-1 (p10) and GSDMS-N levels. In contrast, cells infected with the ΔSopB strain displayed faster but less severe pyroptosis and had less bacterial load. The results indicated that S. Infantis SopB-mediated Akt phosphorylation delayed pyroptosis, but aggravated its severity. The wild-type strain also caused more severe diarrhea and intestinal inflammatory damage than the ΔSopB strain in mice. These findings revealed that S. Infantis delayed the cells' death by intermittent activation of Akt, allowing sufficient time for replication, thereby causing more severe inflammation.


Asunto(s)
Carga Bacteriana , Proteínas Bacterianas/fisiología , Células Epiteliales/microbiología , Mucosa Intestinal/microbiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Salmonella enterica/fisiología , Animales , Apoptosis , Proteínas Bacterianas/genética , Línea Celular Tumoral , Citosol/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Piroptosis , Salmonelosis Animal/microbiología , Salmonella enterica/enzimología , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/microbiología , Vacuolas/microbiología
12.
Appl Environ Microbiol ; 87(23): e0168321, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34586905

RESUMEN

Enteric pathogens, including Salmonella, are capable of long-term survival after desiccation and resist heat treatments that are lethal to hydrated cells. The mechanisms of dry-heat resistance differ from those of wet-heat resistance. To elucidate the mechanisms of dry-heat resistance in Salmonella, screening of the dry-heat resistance of 108 Salmonella strains, representing 39 serotypes, identified the 22 most resistant and the 8 most sensitive strains for comparative genome analysis. A total of 289 genes of the accessory genome were differently distributed between resistant and sensitive strains. Among these genes, 28 proteins with a putative relationship to stress resistance were selected for to quantify relative gene expression before and after desiccation and expression by solid-state cultures on agar plates relative to cultures growing in liquid culture media. Of these 28 genes, 15 genes were upregulated (P < 0.05) after desiccation or by solid-state cultures on agar plates. These 15 genes were cloned into the low-copy-number vector pRK767 under the control of the lacZ promoter. The expression of 6 of these 15 genes increased (P < 0.05) resistance to dry heat and to treatment with pressure of 500 MPa. Our finding extends the knowledge of mechanisms of stress resistance in desiccated Salmonella to improve control of this bacterium in dry food. IMPORTANCE This study directly targeted an increasing threat to food safety and developed knowledge and targeted strategies that can be used by the food industry to help reduce the risk of foodborne illness in their dry products and thereby reduce the overall burden of foodborne illness. Genomic and physiological analyses have elucidated mechanisms of bacterial resistance to many food preservation technologies, including heat, pressure, disinfection chemicals, and UV light; however, information on bacterial mechanisms of resistance to dry heat is scarce. Mechanisms of tolerance to desiccation likely also contribute to resistance to dry heat, but this assumption has not been verified experimentally. It remains unclear how mechanisms of resistance to wet heat relate to dry-heat resistance. Thus, this study will fill a knowledge gap to improve the safety of dry foods.


Asunto(s)
Desecación , Salmonella enterica , Agar , Regulación Bacteriana de la Expresión Génica , Salmonella enterica/genética , Salmonella enterica/fisiología , Estrés Fisiológico
13.
J Virol ; 95(22): e0142421, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34431699

RESUMEN

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here, we examined the interaction between bacteria and coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of coxsackievirus B3 (CVB3) in vitro. Notably, specific bacteria are required, as Gram-negative Salmonella enterica, but not Escherichia coli, enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the Gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that while E. coli did not enhance the infectivity of CVB3, E. coli enhanced poliovirus infectivity. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species. IMPORTANCE Previous data indicate that several enteric viruses utilize bacteria to promote intestinal infection and viral stability. Here, we show that specific bacteria and bacterial cell wall components are required to enhance infectivity and stability of coxsackievirus B3 in vitro. These requirements are likely enteric virus specific, as the bacteria for CVB3 differ from poliovirus, a closely related virus. Therefore, these data indicate that specific bacteria and their cell wall components dictate the interaction with various enteric viruses in distinct mechanisms.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B/fisiología , Infecciones por Escherichia coli , Escherichia coli/fisiología , Infecciones por Salmonella , Salmonella enterica/fisiología , Animales , Coinfección , Infecciones por Coxsackievirus/microbiología , Infecciones por Coxsackievirus/virología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/virología , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/virología , Replicación Viral
14.
PLoS Pathog ; 17(8): e1009902, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460869

RESUMEN

The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor ß-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.


Asunto(s)
Actinas/química , Citoesqueleto/química , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Quinasas p21 Activadas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Quinasas p21 Activadas/genética
15.
PLoS Pathog ; 17(8): e1009280, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460873

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Citosol/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Virulencia , Proteínas Bacterianas/genética , Citosol/microbiología , Islas Genómicas , Células HeLa , Humanos , RNA-Seq , Infecciones por Salmonella/metabolismo
16.
PLoS Comput Biol ; 17(7): e1009140, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292935

RESUMEN

The metabolic capabilities of the species and the local environment shape the microbial interactions in a community either through the exchange of metabolic products or the competition for the resources. Cells are often arranged in close proximity to each other, creating a crowded environment that unevenly reduce the diffusion of nutrients. Herein, we investigated how the crowding conditions and metabolic variability among cells shape the dynamics of microbial communities. For this, we developed CROMICS, a spatio-temporal framework that combines techniques such as individual-based modeling, scaled particle theory, and thermodynamic flux analysis to explicitly incorporate the cell metabolism and the impact of the presence of macromolecular components on the nutrients diffusion. This framework was used to study two archetypical microbial communities (i) Escherichia coli and Salmonella enterica that cooperate with each other by exchanging metabolites, and (ii) two E. coli with different production level of extracellular polymeric substances (EPS) that compete for the same nutrients. In the mutualistic community, our results demonstrate that crowding enhanced the fitness of cooperative mutants by reducing the leakage of metabolites from the region where they are produced, avoiding the resource competition with non-cooperative cells. Moreover, we also show that E. coli EPS-secreting mutants won the competition against the non-secreting cells by creating less dense structures (i.e. increasing the spacing among the cells) that allow mutants to expand and reach regions closer to the nutrient supply point. A modest enhancement of the relative fitness of EPS-secreting cells over the non-secreting ones were found when the crowding effect was taken into account in the simulations. The emergence of cell-cell interactions and the intracellular conflicts arising from the trade-off between growth and the secretion of metabolites or EPS could provide a local competitive advantage to one species, either by supplying more cross-feeding metabolites or by creating a less dense neighborhood.


Asunto(s)
Biología Computacional/métodos , Interacciones Microbianas/fisiología , Microbiota/fisiología , Modelos Biológicos , Escherichia coli/metabolismo , Escherichia coli/fisiología , Salmonella enterica/metabolismo , Salmonella enterica/fisiología , Análisis Espacio-Temporal
17.
Food Funct ; 12(17): 8100-8119, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34286788

RESUMEN

Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2'-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2'-FL or NDCs. Inhibition of pathogen adhesion was observed for 2'-FL, inulins, and pectins. Pre-incubation with 2'-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2'-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales/metabolismo , Intestinos/metabolismo , Inulina/metabolismo , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo , Células CACO-2 , Células Epiteliales/microbiología , Escherichia coli/fisiología , Regulación de la Expresión Génica , Glicosilación , Humanos , Intestinos/microbiología , Klebsiella pneumoniae/fisiología , Leche Humana/química , Salmonella enterica/fisiología
18.
Lett Appl Microbiol ; 73(1): 54-63, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33765334

RESUMEN

Lactic Acid Bacteria (LAB) regulate and maintain the stability of healthy microbial flora, inhibit the adhesion of pathogenic bacteria and promote the colonization of beneficial micro-organisms. The drug resistance and pathogenicity of Salmonella enteritis SE47 isolated from retail eggs were investigated. Meanwhile, Enterococcus faecalis L76 and Lactobacillus salivarius LAB35 were isolated from intestine of chicken. With SE47 as indicator bacteria, the diameters of L76 and LAB35 inhibition zones were 12 mm and 8·5 mm, respectively, by agar inhibition circle method, which indicated that both of them had inhibitory effect on Salmonella, and L76 had better antibacterial effect; two chicken-derived lactic acid bacteria isolates and Salmonella SE47 were incubated with Caco-2. The adhesion index of L76 was 17·5%, which was much higher than that of LAB35 (10·21%) and SE47 (4·89%), this experiment shows that the higher the bacteriostatic effect of potential probiotics, the stronger the adhesion ability; then Caco-2 cells were incubated with different bacteria, and the survival of Caco-2 cells was observed by flow cytometry. Compared with Salmonella SE47, the results showed that lactic acid bacteria isolates could effectively protect Caco-2 cells; finally, after different bacteria incubated Caco-2 cells, according to the cytokine detection kit, the RNA of Caco-2 cells was extracted and transcribed into cDNA, then detected by fluorescence quantitative PCR, the results showed that L76 could protect Caco-2 cells from the invasion of Salmonella SE47, with less cell membrane rupture and lower expression of MIF and TNF genes. Therefore, the lactic acid bacteria isolates can effectively inhibit the adhesion of Salmonella and protect the integrity of intestinal barrier.


Asunto(s)
Antibiosis/fisiología , Huevos/microbiología , Lactobacillales/fisiología , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Animales , Células CACO-2 , Pollos/microbiología , Farmacorresistencia Bacteriana/fisiología , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecalis/fisiología , Humanos , Ligilactobacillus salivarius/aislamiento & purificación , Ligilactobacillus salivarius/fisiología , Probióticos/aislamiento & purificación , Probióticos/farmacología , Salmonella enterica/patogenicidad
19.
PLoS One ; 16(2): e0247325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606799

RESUMEN

The human enteric bacterial pathogen Salmonella enterica causes approximately 1.35 million cases of food borne illnesses annually in the United States. Of these salmonellosis cases, almost half are derived from the consumption of fresh, raw produce. Although epiphytic S. enterica populations naturally decline in the phyllosphere, a subset of phytophagous insects have recently been identified as biological multipliers, consequently facilitating the growth of bacterial populations. We investigated whether tomato leaves with macroscopic feeding damage, caused by infestation of adult Western flower thrips (Frankliniella occidentalis), support higher S. enterica populations. To explore this hypothesis, we assessed S. enterica populations in response to thrips feeding by varying insect density, plant age, and the gender of the insect. As a reference control, direct leaf damage analogous to thrips feeding was also evaluated using directed, hydraulic pressure. In a supplementary set series of experiments, groups of F. occidentalis infested tomato plants were later inoculated with S. enterica to determine how prior insect infestation might influence bacterial survival and persistence. Following an infestation period, leaves visibly damaged by adult F. occidentalis supported significantly higher S. enterica populations and resulted in greater amounts of electrolyte leakage (measured as electrical conductivity) than leaves lacking visible feeding damage. Plant age did not significantly influence S. enterica populations or estimates of electrolyte leakage, independent of initial infestation. Additionally, the gender of the insect did not uniquely influence S. enterica population dynamics. Finally, applications of aggressive water bombardment resulted in more electrolyte leakage than leaves damaged by F. occidentalis, yet supported comparable S. enterica populations. Together, this study indicates that F. occidentalis feeding is one of the many potential biological mechanisms creating a more habitable environment for S. enterica.


Asunto(s)
Salmonella enterica/fisiología , Solanum lycopersicum/parasitología , Thysanoptera/fisiología , Alimentación Animal , Animales , Conducta Animal , Femenino , Microbiología de Alimentos , Solanum lycopersicum/microbiología , Masculino , Viabilidad Microbiana , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Thysanoptera/microbiología
20.
Int J Food Microbiol ; 339: 109034, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388710

RESUMEN

Increasing consumer demand for high-quality foods has driven adoption by the food industry of non-thermal technologies such as high pressure processing (HPP). The technology is employed as a post-packaging treatment step for inactivation of vegetative microorganisms. In order to evaluate HPP inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid and acidified juices and beverages, pressure tolerance parameters were determined using log-linear and Weibull models in pH-adjusted apple juice (pH 4.5) at 5 °C. A commercial processing HPP unit was used. The Weibull model better described the inactivation kinetics of the three tested pathogens. According to estimates from the Weibull model, 1.5, 0.9, and 1.5 min are required at 600 MPa to produce 5-log reductions of E. coli, Salmonella, and L. monocytogenes, respectively, whereas according to the log-linear model, 3.2, 1.8, and 2.1 min are required. The effects of process conditions were verified using commercial products (pH between 3.02 and 4.21). In all tested commercial juices or beverages, greater than 5-log reductions were achieved for all tested pathogens using HPP process conditions of 550 MPa for 1 min. These findings demonstrate that the HPP conditions of 600 MPa for 3 min, typically used by the food industry provide an adequate safety margin for control of relevant vegetative pathogens in acid and acidified juices and beverages (pH < 4.5). Results from this study can be used by food processors to support validation studies and may be useful for the future establishment of safe harbors for the HPP industry.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Manipulación de Alimentos/métodos , Microbiología de Alimentos/métodos , Jugos de Frutas y Vegetales , Viabilidad Microbiana , Presión , Ácidos , Bebidas/microbiología , Recuento de Colonia Microbiana , Escherichia coli O157/fisiología , Manipulación de Alimentos/normas , Jugos de Frutas y Vegetales/microbiología , Listeria monocytogenes/fisiología , Malus/microbiología , Salmonella enterica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA