Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.660
Filtrar
1.
Georgian Med News ; (349): 98-102, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38963211

RESUMEN

We report a severe case of a 25-year-old girl presented with complaints of weakness, diarrhoea, vomiting, pain in abdomen and hypotension at Infectious Diseases and Clinical Immunology Research Center. From history on 25 February till 29 February she was in India and on 1 march this problem started with watery diarrhoea followed by vomiting. She ate pizza with mushroom following which her condition worsened. Stool culture revealed salmonella nontyphi (nonthyphodal Salmonella)and this is leading cause for gastroenteritis, bacteremia and affects several other bodily system. Her condition deteriorated due to the development of ARDS (acute respiratory distress syndrome) and for this she was on mechanical ventilation. Vitec machine was performed, which identified Salmonella typhi murium. Our goal is to manage and treat this patient well by early diagnosis. She was given ceftriaxone, iv fluids and symptomatic treatment but due to resistance meropenem was started and the patient's condition improved. From serology there was no evidence of immunocompromised state so being a severe case of immunocompetent patient this case reflects the importance of timely diagnosis and management together with food safety practices in population. On follow up she was stable and discharged after 3 weeks. Future research studies need to be continued regarding newer strains, effective treatment strategies and diagnostics to prevent morbidity and mortality.


Asunto(s)
Infecciones por Salmonella , Adulto , Femenino , Humanos , Antibacterianos/uso terapéutico , Ceftriaxona/uso terapéutico , Diarrea/microbiología , Meropenem/uso terapéutico , Insuficiencia Multiorgánica/microbiología , Insuficiencia Multiorgánica/etiología , Síndrome de Dificultad Respiratoria/microbiología , Síndrome de Dificultad Respiratoria/etiología , Infecciones por Salmonella/diagnóstico , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/complicaciones , Salmonella typhimurium/aislamiento & purificación
2.
Sci Rep ; 14(1): 15160, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956132

RESUMEN

In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice. Among gut segments, the caecum was preferentially targeted by Salmonella. Analysis of infected crypts and organoids demonstrated increased length and size, respectively. mRNA transcription profiles of infected crypts and organoids pointed to upregulated EGFR-dependent signals, associated with a decrease in secretory cell lineage differentiation. To conclude, we show that organoids are suited to mimic the impact of Salmonella on stem cells and progenitors cells, carrying a great potential to drastically reduce the use of animals for scientific studies on that topic. In both models, the EGFR pathway, crucial to stem cells and progenitors proliferation and differentiation, is dysregulated by Salmonella, suggesting that repeated infections might have consequences on crypt integrity and further oncogenesis.


Asunto(s)
Diferenciación Celular , Receptores ErbB , Organoides , Infecciones por Salmonella , Salmonella typhimurium , Células Madre , Animales , Organoides/microbiología , Células Madre/metabolismo , Ratones , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/fisiología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Receptores ErbB/metabolismo , Receptores ErbB/genética , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Proliferación Celular , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
3.
Sci Rep ; 14(1): 15347, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961138

RESUMEN

The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.


Asunto(s)
Pollos , Genoma Viral , Fagos de Salmonella , Animales , Fagos de Salmonella/genética , Fagos de Salmonella/aislamiento & purificación , Fagos de Salmonella/fisiología , Pollos/microbiología , Genómica/métodos , Salmonella/virología , Salmonella/genética , Aves de Corral/microbiología , Salmonella typhimurium/virología , Salmonella typhimurium/genética , Especificidad del Huésped , Microbiología de Alimentos , Fenotipo , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología
4.
Sci Rep ; 14(1): 15466, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965336

RESUMEN

This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.


Asunto(s)
Heces , Microbioma Gastrointestinal , Probióticos , Destete , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Porcinos , Proyectos Piloto , Probióticos/administración & dosificación , Heces/microbiología , Salmonelosis Animal/microbiología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/prevención & control , Lactobacillaceae , Salmonella typhimurium/efectos de los fármacos
5.
Exp Biol Med (Maywood) ; 249: 10081, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974834

RESUMEN

The lack of effective treatment options for an increasing number of cancer cases highlights the need for new anticancer therapeutic strategies. Immunotherapy mediated by Salmonella enterica Typhimurium is a promising anticancer treatment. Candidate strains for anticancer therapy must be attenuated while retaining their antitumor activity. Here, we investigated the attenuation and antitumor efficacy of two S. enterica Typhimurium mutants, ΔtolRA and ΔihfABpmi, in a murine melanoma model. Results showed high attenuation of ΔtolRA in the Galleria mellonella model, and invasion and survival in tumor cells. However, it showed weak antitumor effects in vitro and in vivo. Contrastingly, lower attenuation of the attenuated ΔihfABpmi strain resulted in regression of tumor mass in all mice, approximately 6 days after the first treatment. The therapeutic response induced by ΔihfABpmi was accompanied with macrophage accumulation of antitumor phenotype (M1) and significant increase in the mRNAs of proinflammatory mediators (TNF-α, IL-6, and iNOS) and an apoptosis inducer (Bax). Our findings indicate that the attenuated ΔihfABpmi exerts its antitumor activity by inducing macrophage infiltration or reprogramming the immunosuppressed tumor microenvironment to an activated state, suggesting that attenuated S. enterica Typhimurium strains based on nucleoid-associated protein genes deletion could be immunotherapeutic against cancer.


Asunto(s)
Salmonella typhimurium , Animales , Salmonella typhimurium/inmunología , Salmonella typhimurium/genética , Ratones , Ratones Endogámicos C57BL , Melanoma/inmunología , Melanoma/genética , Melanoma/patología , Inmunoterapia/métodos , Macrófagos/inmunología , Macrófagos/metabolismo , Línea Celular Tumoral , Mutación , Femenino , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/terapia , Modelos Animales de Enfermedad
6.
Sci Rep ; 14(1): 14586, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918457

RESUMEN

Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.


Asunto(s)
Ascariasis , Coinfección , Células Asesinas Naturales , Enfermedades de los Porcinos , Animales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ascariasis/inmunología , Ascariasis/veterinaria , Ascariasis/parasitología , Coinfección/inmunología , Coinfección/microbiología , Coinfección/parasitología , Porcinos , Enfermedades de los Porcinos/parasitología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Ascaris suum/inmunología , Interferón gamma/metabolismo , Perforina/metabolismo , Interleucina-12/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Interleucina-18/metabolismo
7.
Front Immunol ; 15: 1376734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911854

RESUMEN

Introduction: Non-typhoidal Salmonella (NTS) generally causes self-limiting gastroenteritis. However, older adults (≥65 years) can experience more severe outcomes from NTS infection. We have previously shown that a live attenuated S. Typhimurium vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), was immunogenic in adult but not aged mice. Here we describe modification of CVD 1926 through deletion of steD, a Salmonella effector responsible for host immune escape, which we hypothesized would increase immunogenicity in aged mice. Methods: Mel Juso and/or mutuDC cells were infected with S. Typhimurium I77, CVD 1926, and their respective steD mutants, and the MHC-II levels were evaluated. Aged (18-month-old) C57BL/6 mice received two doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and the number of FliC-specific CD4+ T cells were determined. Lastly, aged C57BL/6 mice received three doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and then were challenged perorally with wild-type S. Typhimurium SL1344 (108 CFU). These animals were also evaluated for antibody responses. Results: MHC-II induction was higher in cells treated with steD mutants, compared to their respective parental strains. Compared to PBS-vaccinated mice, CVD 1926 ΔsteD elicited significantly more FliC-specific CD4+ T cells in the Peyer's Patches. There were no significant differences in FliC-specific CD4+ T cells in the Peyer's patches or spleen of CVD 1926- versus PBS-immunized mice. CVD 1926 and CVD 1926 ΔsteD induced similar serum and fecal anti-core and O polysaccharide antibody titers after three doses. After two immunizations, the proportion of seroconverters for CVD 1926 ΔsteD was 83% (10/12) compared to 42% (5/12) for CVD 1926. Compared to PBS-immunized mice, mice immunized with CVD 1926 ΔsteD had significantly lower S. Typhimurium counts in the spleen, cecum, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of PBS-vaccinated and CVD 1926-immunized animals. Conclusion: These data suggest that the steD deletion enhanced the immunogenicity of our live attenuated S. Typhimurium vaccine. Deletion of immune evasion genes could be a potential strategy to improve the immunogenicity of live attenuated vaccines in older adults.


Asunto(s)
Anticuerpos Antibacterianos , Ratones Endogámicos C57BL , Vacunas contra la Salmonella , Salmonella typhimurium , Vacunas Atenuadas , Animales , Vacunas contra la Salmonella/inmunología , Vacunas contra la Salmonella/administración & dosificación , Vacunas contra la Salmonella/genética , Salmonella typhimurium/inmunología , Salmonella typhimurium/genética , Ratones , Vacunas Atenuadas/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Evasión Inmune , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Femenino , Eliminación de Gen , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/prevención & control , Infecciones por Salmonella/microbiología , Envejecimiento/inmunología , Linfocitos T CD4-Positivos/inmunología , Inmunogenicidad Vacunal
8.
Nat Microbiol ; 9(7): 1792-1811, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38862602

RESUMEN

The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR). The relationship between these seemingly contradictory roles is not well understood. Here, by coupling ex vivo assays with CRISPR-mutagenesis and various mouse models, we show that K. oxytoca provides CR against Salmonella Typhimurium. In vitro, the antimicrobial activity against various Salmonella strains depended on tilimycin production and was induced by various simple carbohydrates. In vivo, CR against Salmonella depended on toxin production in germ-free mice, while it was largely toxin-independent in mice with residual microbiota. This was linked to the relative levels of toxin-inducing carbohydrates in vivo. Finally, dulcitol utilization was essential for toxin-independent CR in gnotobiotic mice. Together, this demonstrates that nutrient availability is key to both toxin-dependent and substrate-driven competition between K. oxytoca and Salmonella.


Asunto(s)
Klebsiella oxytoca , Infecciones por Salmonella , Salmonella typhimurium , Klebsiella oxytoca/genética , Klebsiella oxytoca/metabolismo , Animales , Ratones , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Enterotoxinas/metabolismo , Enterotoxinas/genética , Femenino , Ratones Endogámicos C57BL , Infecciones por Klebsiella/microbiología , Microbiota , Microbioma Gastrointestinal , Antibiosis , Benzodiazepinonas
9.
Int J Biol Macromol ; 273(Pt 2): 133215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897515

RESUMEN

Lactic acid bacteria (LAB) produce a broad spectrum of exopolysaccharides (EPSs), commonly used as texturizers in food products. Due to their potential contribution to LAB probiotic properties, like adhesion to human epithelial cells and competitive exclusion of pathogens from human intestinal epithelial cells, this study was focussed on the structural and functional characterization of the EPSs produced by two Limosilactobacillus fermentum strains - MC1, originating from mother's milk, and D12, autochthonous from Croatian smoked fresh cheese. Whole-genome sequencing and functional annotation of both L. fermentum strains by RAST server revealed the genes involved in EPS production and transport, with some differences in functionally related genes. EPSs were extracted from the cell surface of both bacterial strains and purified by size-exclusion chromatography. Structural characterization of the EPSs, achieved by chemical analyses and 1D and 2D NMR spectroscopy, showed that both strains produce an identical mixture of three different EPSs containing galactofuranose and glucopyranose residues. However, a comparison of the functional properties showed that the MC1 strain adhered better to the Caco-2 cell line and exhibited stronger antimicrobial effect against Salmonella enterica serovar Typhimurium FP1 than the D12 strain, which may be attributed to the potential bacteriocin activity of the MC1 strain.


Asunto(s)
Limosilactobacillus fermentum , Polisacáridos Bacterianos , Humanos , Limosilactobacillus fermentum/metabolismo , Limosilactobacillus fermentum/química , Células CACO-2 , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Salmonella typhimurium/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos
10.
PLoS Pathog ; 20(6): e1012301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913753

RESUMEN

Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains-LT2 and 14028S-for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.


Asunto(s)
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Salmonella typhimurium/virología , Salmonella typhimurium/genética , Transducción Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Empaquetamiento del ADN
11.
Nat Commun ; 15(1): 5074, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871710

RESUMEN

Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Current susceptibility testing approaches limit our ability to rapidly distinguish between antimicrobial-susceptible and -resistant organisms. Salmonella Typhimurium (S. Typhimurium) is an enteric pathogen responsible for severe gastrointestinal illness and invasive disease. Despite widespread resistance, ciprofloxacin remains a common treatment for Salmonella infections, particularly in lower-resource settings, where the drug is given empirically. Here, we exploit high-content imaging to generate deep phenotyping of S. Typhimurium isolates longitudinally exposed to increasing concentrations of ciprofloxacin. We apply machine learning algorithms to the imaging data and demonstrate that individual isolates display distinct growth and morphological characteristics that cluster by time point and susceptibility to ciprofloxacin, which occur independently of ciprofloxacin exposure. Using a further set of S. Typhimurium clinical isolates, we find that machine learning classifiers can accurately predict ciprofloxacin susceptibility without exposure to it or any prior knowledge of resistance phenotype. These results demonstrate the principle of using high-content imaging with machine learning algorithms to predict drug susceptibility of clinical bacterial isolates. This technique may be an important tool in understanding the morphological impact of antimicrobials on the bacterial cell to identify drugs with new modes of action.


Asunto(s)
Antibacterianos , Ciprofloxacina , Farmacorresistencia Bacteriana , Aprendizaje Automático , Pruebas de Sensibilidad Microbiana , Salmonella typhimurium , Ciprofloxacina/farmacología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/aislamiento & purificación , Antibacterianos/farmacología , Humanos , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/tratamiento farmacológico , Algoritmos
12.
Methods Mol Biol ; 2813: 107-115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888773

RESUMEN

Mass spectrometry-based proteomics provides a wealth of information about changes in protein production and abundance under diverse conditions, as well as mechanisms of regulation, signaling cascades, interaction partners, and communication patterns across biological systems. For profiling of intracellular pathogens, proteomic profiling can be performed in the absence of a host to singularly define the pathogenic proteome or during an infection-like setting to identify dual perspectives of infection. In this chapter, we present techniques to extract proteins from the human bacterial intracellular pathogen, Salmonella enterica serovar Typhimurium, in the presence of macrophages, an important innate immune cell in host defense. We outline sample preparation, including protein extraction, digestion, and purification, as well as mass spectrometry measurements and bioinformatics analysis. The data generated from our dual perspective profiling approach provides new insight into pathogen and host protein modulation under infection-like conditions.


Asunto(s)
Proteínas Bacterianas , Macrófagos , Proteómica , Salmonella typhimurium , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Proteómica/métodos , Humanos , Proteínas Bacterianas/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Interacciones Huésped-Patógeno , Proteoma/metabolismo , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/inmunología , Biología Computacional/métodos , Espectrometría de Masas/métodos
13.
Food Microbiol ; 122: 104552, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839232

RESUMEN

In this study, we investigated the combined effect of 222 nm krypton-chlorine excilamp (EX) and 307 nm ultraviolet-B (UVB) light on the inactivation of Salmonella Typhimurium and Listeria monocytogenes on sliced cheese. The data confirmed that simultaneous exposure to EX and UVB irradiation for 80 s reduced S. Typhimurium and L. monocytogenes population by 3.50 and 3.20 log CFU/g, respectively, on sliced cheese. The synergistic cell count reductions in S. Typhimurium and L. monocytogenes in the combined treatment group were 0.88 and 0.59 log units, respectively. The inactivation mechanism underlying the EX and UVB combination treatment was evaluated using fluorescent staining. The combination of EX and UVB light induced the inactivation of reactive oxygen species (ROS) defense enzymes (superoxide dismutase) and synergistic ROS generation, resulting in synergistic lipid peroxidation and destruction of the cell membrane. There were no significant (P > 0.05) differences in the color, texture, or sensory attributes of sliced cheese between the combination treatment and control groups. These results demonstrate that combined treatment with EX and UVB light is a potential alternative strategy for inactivating foodborne pathogens in dairy products without affecting their quality.


Asunto(s)
Queso , Cloro , Listeria monocytogenes , Especies Reactivas de Oxígeno , Salmonella typhimurium , Rayos Ultravioleta , Queso/microbiología , Queso/análisis , Listeria monocytogenes/efectos de la radiación , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/efectos de los fármacos , Salmonella typhimurium/efectos de la radiación , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cloro/farmacología , Irradiación de Alimentos/métodos , Microbiología de Alimentos , Viabilidad Microbiana/efectos de la radiación , Recuento de Colonia Microbiana
14.
Front Immunol ; 15: 1396827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855102

RESUMEN

Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.


Asunto(s)
Macrófagos , Mitocondrias , Fagocitosis , Piroptosis , Factores de Transcripción , Animales , Mitocondrias/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunomodulación , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Salmonella typhimurium/inmunología , Escherichia coli/inmunología
15.
J Agric Food Chem ; 72(23): 13415-13430, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38824655

RESUMEN

This study aimed to investigate the hypothesis that dietary konjac glucomannan (KGM) could alleviate Salmonella typhimurium-induced colitis by modulating intestinal microbiota. Mice were fed an isocaloric and isofibrous diet supplemented with either 7% KGM or cellulose and were treated with 5 × 108 CFU of S. typhimurium. The results showed that KGM had an average molecular weight of 936 kDa and predominantly consisted of mannose and glucose at a molar ratio of 1:1.22. In vivo studies demonstrated that dietary KGM effectively mitigated colonic lesions, oxidative stress, disruption of tight junction protein 2 and occludin, and the inflammatory response induced by S. typhimurium. Moreover, KGM administration alleviated the dramatic upregulation of toll-like receptor 2 (TLR2) and phosphonuclear factor κB (NF-κB) protein abundance, induced by Salmonella treatment. Notably, dietary KGM restored the reduced Muribaculaceae and Lactobacillus abundance and increased the abundance of Blautia and Salmonella in S. typhimurium-infected mice. Spearman correlation analysis revealed that the gut microbiota improved by KGM contribute to inhibit inflammation and oxidative stress. These results demonstrated the protective effects of dietary KGM against colitis by modulating the gut microbiota and the TLR2-NF-κB signaling pathway in response to Salmonella infection.


Asunto(s)
Colitis , Colon , Microbioma Gastrointestinal , Mananos , FN-kappa B , Salmonella typhimurium , Transducción de Señal , Receptor Toll-Like 2 , Animales , Mananos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Colon/microbiología , Colon/metabolismo , Transducción de Señal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Colitis/dietoterapia , Masculino , Humanos , Ratones Endogámicos C57BL , Fibras de la Dieta/farmacología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Amorphophallus/química
16.
PLoS Negl Trop Dis ; 18(6): e0012249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848444

RESUMEN

INTRODUCTION: Salmonella is one of the most common causes of food-borne outbreaks and infection worldwide. Non-typhoidal Salmonella (NTS) infections are common and remain a significant public health problem among important bacterial foodborne diseases. The current study aimed to establish the Non typhoidal Salmonella infection and antimicrobial resistance status among selected patients at Morogoro Regional Referral Hospital (MRRH), Morogoro Region, Tanzania, to inform clinical care management and public health interventions. METHODOLOGY: A cross-sectional study was conducted using medical records and samples were collected from hospitalised and outpatients between October and December 2021. A total of 153 participants were enrolled in the study and 132 consented to being sampled. The collected samples were analysed using standard microbiological techniques. The isolates were subjected to molecular genotyping, where Polymerase Chain Reaction (PCR) was performed targeting the 16S rDNA gene. PCR products were then submitted for sequencing to establish phylogenetic relatedness. Antimicrobial susceptibility testing and resistance genes screening were also conducted. RESULTS: The phylogenetic analysis identified two Salmonella serovars; Salmonella Enteritidis and Salmonella Typhimurium. The isolates were from four adults and seven children patients. The isolates were tested against six antimicrobial agents: tetracycline, trimethoprim, gentamycin, ciprofloxacin, ampicillin and cefotaxime. Further antimicrobial assays were performed by screening 10 antimicrobial resistance genes using PCR. Overall, the highest resistance was observed in ampicillin (100%), whereas the lowest resistance was recorded for ciprofloxacin and gentamicin (9.1%). In addition, four (36.4%) of the isolates were resistant to cefotaxime and three (27.3%) to tetracycline and trimethoprim. The isolates also exhibit the presence of resistance genes for sulfamethoxazole 1&2, tetracycline (tet) A&B, Beta-lactamase CTXM, Beta-lactamase TEM, Beta-lactamase SHV, Gentamycine, Acra and acc3-1 in different occurrences. The overall prevalence of Salmonella species in Morogoro region was 8.3% (11/132) with Salmonella Enteritidis and Salmonella Typhimurium being the only serovars detected from adults and children stool samples. CONCLUSION: Our investigation showed that both children and adults had been exposed to Salmonella spp. However, the occurrence of NTS was higher in children (5.3% (7/132) compared to adults (3.0% (4/132). To stop zoonotic infections and the development of antimicrobial resistance in the community, this calls for Infection Prevention and Control (IPC) and stewardship programmes on rational use of antimicrobials in both health facilities and at the community level.


Asunto(s)
Antibacterianos , Infecciones por Salmonella , Humanos , Tanzanía/epidemiología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/epidemiología , Adulto , Niño , Femenino , Masculino , Estudios Transversales , Preescolar , Antibacterianos/farmacología , Adolescente , Adulto Joven , Persona de Mediana Edad , Pruebas de Sensibilidad Microbiana , Lactante , Filogenia , Salmonella/genética , Salmonella/efectos de los fármacos , Salmonella/clasificación , Salmonella/aislamiento & purificación , Salmonella enteritidis/genética , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/aislamiento & purificación , Salmonella enteritidis/clasificación , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/epidemiología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/aislamiento & purificación , Anciano , Farmacorresistencia Bacteriana
17.
PLoS Biol ; 22(6): e3002616, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38865418

RESUMEN

The gastrointestinal tract is densely colonized by a polymicrobial community known as the microbiota which serves as primary line of defence against pathogen invasion. The microbiota can limit gut-luminal pathogen growth at different stages of infection. This can be traced to specific commensal strains exhibiting direct or indirect protective functions. Although these mechanisms hold the potential to develop new approaches to combat enteric pathogens, they remain far from being completely described. In this study, we investigated how a mouse commensal Escherichia coli can outcompete Salmonella enterica serovar Typhimurium (S. Tm). Using a salmonellosis mouse model, we found that the commensal E. coli 8178 strain relies on a trojan horse trap strategy to limit S. Tm expansion in the inflamed gut. Combining mutants and reporter tools, we demonstrated that inflammation triggers the expression of the E. coli 8178 antimicrobial microcin H47 toxin which, when fused to salmochelin siderophores, can specifically alter S. Tm growth. This protective function was compromised upon disruption of the E. coli 8178 tonB-dependent catecholate siderophore uptake system, highlighting a previously unappreciated crosstalk between iron intake and microcin H47 activity. By identifying the genetic determinants mediating S. Tm competition, our work not only provides a better mechanistic understanding of the protective function displayed by members of the gut microbiota but also further expands the general contribution of microcins in bacterial antagonistic relationships. Ultimately, such insights can open new avenues for developing microbiota-based approaches to better control intestinal infections.


Asunto(s)
Escherichia coli , Inflamación , Salmonella typhimurium , Sideróforos , Animales , Escherichia coli/metabolismo , Escherichia coli/genética , Sideróforos/metabolismo , Ratones , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Ratones Endogámicos C57BL , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Microbioma Gastrointestinal , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Femenino , Hierro/metabolismo , Simbiosis , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo
18.
Microbiol Res ; 285: 127773, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833830

RESUMEN

Salmonella is an important foodborne pathogen. Given the ban on the use of antibiotics during the egg-laying period in China, finding safe and effective alternatives to antibiotics to reduce Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infections in chickens is essential for the prevention and control of this pathogen and the protection of human health. Numerous studies have shown that unsaturated fatty acids have a positive effect on intestinal inflammation and resistance to infection by intestinal pathogens. Here we investigated the protective effect of α-linolenic acid (ALA) against S. Typhimurium infection in chickens and further explored its mechanism of action. We added different proportions of ALA to the feed and observed the effect of ALA on S. Typhimurium colonization using metagenomic sequencing technology and physiological index measurements. The role of gut flora on S. Typhimurium colonization was subsequently verified by fecal microbiota transplantation (FMT). We found that ALA protects chickens from S. Typhimurium infection by reducing intestinal inflammation through remodeling the gut microbiota, up-regulating the expression of ileocecal barrier-related genes, and maintaining the integrity of the intestinal epithelium. Our data suggest that supplementation of feed with ALA may be an effective strategy to alleviate S. Typhimurium infection in chickens.


Asunto(s)
Ciego , Pollos , Suplementos Dietéticos , Microbioma Gastrointestinal , Mucosa Intestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella typhimurium , Ácido alfa-Linolénico , Animales , Pollos/microbiología , Salmonella typhimurium/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/administración & dosificación , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Mucosa Intestinal/microbiología , Ciego/microbiología , Alimentación Animal , Trasplante de Microbiota Fecal
19.
Ultrason Sonochem ; 107: 106926, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823083

RESUMEN

The consumption of ready-to-eat fresh produce raises the issue of food-borne pathogen infections; thus, disinfecting ready-to-eat produce for commercial use, such as in homes and restaurants, is important to ensure food safety. Chemical sanitizers are typically used for disinfection. Ultraviolet-light emitting diodes (UV-LEDs) are a novel non-thermal disinfection technology that consumes less energy and generates less heat than traditional UV lamps, making them more appealing to consumers. In this study, we combined ultrasonic (US) washing method with UV-LEDs (US-UV-LEDs) to develop a technique for disinfecting fresh produce without using chemical sanitizers and compared its efficacy with three common household sanitizers ("84" (sodium hypochlorite) disinfectant, kettle descaler (citric acid), and vinegar (acetic acid)). In addition, we investigated the efficacy of this method in controlling pathogen numbers in the water used to wash (washing water) the produce to prevent cross-contamination between water and produce. Cherry tomatoes and lettuce were selected as produce models and Salmonella Typhimurium and Escherichia coli O157:H7 were used as the bacterial models. The results showed that US-UV-LEDs reduced the numbers of S. Typhimurium and E. coli O157:H7 on produce by 2.1-2.2 log CFU/g, consistent with the results achieved by the three household sanitizers; however, kettle descaler and vinegar had a limited effect (2.6-3.5 log CFU/mL) on residual pathogens in the washing water. Furthermore, we created washing water with low (754 mg/L) and high (1425 mg/L) chemical oxygen demand (COD) levels and determined the disinfection efficacy of "84" disinfectant and US-UV-LEDs. The results showed that US-UV-LEDs reduced the number of S. Typhimurium and E. coli O157:H7 by 2.0-2.1 and 1.8-2.1 log CFU/g under low and high COD levels, respectively, which was similar a result to that of "84" disinfectant. However, the residual pathogen numbers in the washing water were reduced to 1.4-1.9 log CFU/mL after treatment with US-UV-LED under high COD, whereas the pathogens were undetected in the washing water disinfected with "84" disinfectant. These results suggest that US-UV-LEDs have better application potential than acidic household sanitizers, but chlorine sanitizer remains the most effective disinfecting method.


Asunto(s)
Desinfección , Escherichia coli O157 , Rayos Ultravioleta , Desinfección/métodos , Escherichia coli O157/efectos de los fármacos , Salmonella typhimurium/efectos de los fármacos , Ondas Ultrasónicas , Microbiología de Alimentos , Lactuca/microbiología , Solanum lycopersicum/microbiología , Sonicación
20.
Sci Rep ; 14(1): 14045, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890495

RESUMEN

A composite of Zinc oxide loaded with 5-weight % silver decorated on carbon nanotubes (Ag-loaded ZnO: CNT) was synthesized using a simple refluxed chemical method. The influence of deviation in the weight % of carbon nanotube loading on photocatalytic dye degradation (methylene blue and rose bengal) and antibiotic (antimicrobial and antifungal) performance was investigated in this study. The light capture ability of Ag-loaded ZnO:CNT in the visible region was higher in photocatalytic activity than that of Ag-loaded ZnO and ZnO:CNT. The bandgap of the Ag-loaded ZnO: CNT was tuned owing to the surface plasmon resonance effect. The photocatalytic degradation investigations were optimized by varying the wt% in CNTs, pH of dye solution, concentration of the dye solution, and amount of catalytic dose. Around 100% photocatalytic efficiency in 2 min against MB dye was observed for Ag doped ZnO with 10 wt% CNT composite at pH 9, at a rate constant 1.48 min-1. Bipolaris sorokiniana fungus was first time tested against a composite material, which demonstrated optimum fungal inhibition efficiency of 48%. They were also tested against the bacterial strains Staphylococcus aureus, Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium, which showed promising antibacterial activity compared to commercially available drugs. The composite of Ag doped ZnO with 5 wt% CNT has shown competitive zone inhibition efficacy of 21.66 ± 0.57, 15.66 ± 0.57, 13.66 ± 0.57 against bacterial strains Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium which were tested for the first time against Ag-loaded ZnO:CNT.


Asunto(s)
Antibacterianos , Antifúngicos , Nanotubos de Carbono , Plata , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Plata/química , Plata/farmacología , Nanotubos de Carbono/química , Antibacterianos/farmacología , Antibacterianos/química , Catálisis , Antifúngicos/farmacología , Antifúngicos/química , Staphylococcus aureus/efectos de los fármacos , Azul de Metileno/química , Azul de Metileno/farmacología , Colorantes/química , Colorantes/farmacología , Rosa Bengala/química , Rosa Bengala/farmacología , Pruebas de Sensibilidad Microbiana , Salmonella typhimurium/efectos de los fármacos , Concentración de Iones de Hidrógeno , Fotólisis , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA