Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528464

RESUMEN

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Asunto(s)
Arabidopsis , Sapindaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Hojas de la Planta/metabolismo , Sapindaceae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542248

RESUMEN

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Óvulo Vegetal , Sapindaceae , Óvulo Vegetal/genética , Fertilización/genética , Semillas , Sapindaceae/genética , Hexosas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255805

RESUMEN

GATA transcription factors, which are DNA-binding proteins with type IV zinc finger binding domains, have a role in transcriptional regulation in biological organisms. They have an indispensable role in the growth and development of plants, as well as in improvements in their ability to face various environmental stresses. To date, GATAs have been identified in many gene families, but the GATA gene in longan (Dimocarpus longan Lour) has not been studied in previous explorations. Various aspects of genes in the longan GATA family, including their identification and classification, the distribution of their positions on chromosomes, their exon/intron structures, a synteny analysis, their expression at different temperatures, concentration of PEG, early developmental stages of somatic embryos and their expression levels in different tissues, and concentrations of exogenous hormones, were investigated in this study. This study showed that the 22 DlGATAs could be divided into four subfamilies. There were 10 pairs of homologous GATA genes in the synteny analysis of DlGATA and AtGATA. Four segmental replication motifs and one pair of tandem duplication events were present among the DlGATA family members. The cis-acting elements located in promoter regions were also found to be enriched with light-responsive elements, which contained related hormone-responsive elements. In somatic embryos, DlGATA4 is upregulated for expression at the globular embryo (GE) stage. We also found that DlGATA expression was strongly up-regulated in roots and stems. The study demonstrated the expression of DlGATA under hormone (ABA and IAA) treatments in embryogenic callus of longan. Under ABA treatment, DlGATA4 was up-regulated and the other DlGATA genes did not respond significantly. Moreover, as demonstrated with qRT-PCR, the expression of DlGATA genes showed strong up-regulated expression levels under 100 µmol·L-1 concentration IAA treatment. This experiment further studied these and simulated their possible connections with a drought response mechanism, while correlating them with their expression under PEG treatment. Overall, this experiment explored the GATA genes and dug into their evolution, structure, function, and expression profile, thus providing more information for a more in-depth study of the characteristics of the GATA family of genes.


Asunto(s)
Sapindaceae , Sapindaceae/genética , Intrones , Factores de Transcripción GATA/genética , Hormonas
4.
J Agric Food Chem ; 71(47): 18622-18635, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37976371

RESUMEN

Embryogenic cultures of longan (Dimocarpus longan Lour.) contain various metabolites with pharmacological properties that may function in the regulation of somatic embryogenesis (SE). In this study, based on widely targeted metabolomics, 501 metabolites were obtained from the embryogenic calli, incomplete compact proembryogenic cultures, and globular embryos during early SE of longan, among which 41 flavonoids were differentially accumulated during the SE. Using RNA sequencing, 36 flavonoid-biosynthesis-related genes and 43 MYB and 52 bHLH transcription factors were identified as differentially expressed genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the flavonoid metabolism-related pathways were significantly enriched during the early SE. These results suggested that the changes in flavonoid levels in the embryogenic cultures of longan were mediated by MYBs and bHLHs via regulating flavonoid-biosynthesis-related genes, thus potentially regulating early SE. The identified metabolites in the embryogenic cultures of longan can be used to develop pharmaceutical ingredients.


Asunto(s)
Sapindaceae , Transcriptoma , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Sapindaceae/genética , Sapindaceae/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas
5.
PeerJ ; 11: e15929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753174

RESUMEN

The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally duplicated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Sapindaceae , Factores de Transcripción del Choque Térmico/genética , Estrés Fisiológico/genética , Intrones , Sapindaceae/genética
6.
Plant J ; 115(5): 1277-1297, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37235696

RESUMEN

Plant embryogenic calli (ECs) can undergo somatic embryogenesis to regenerate plants. This process is mediated by regulatory factors, such as transcription factors and specifically expressed genes, but the precise molecular mechanisms underlying somatic embryogenesis at the single-cell level remain unclear. In this study, we performed high-resolution single-cell RNA sequencing analysis to determine the cellular changes in the EC of the woody plant species Dimocarpus longan (longan) and clarify the continuous cell differentiation trajectories at the transcriptome level. The highly heterogeneous cells in the EC were divided into 12 putative clusters (e.g., proliferating, meristematic, vascular, and epidermal cell clusters). We determined cluster-enriched expression marker genes and found that overexpression of the epidermal cell marker gene GDSL ESTERASE/LIPASE-1 inhibited the hydrolysis of triacylglycerol. In addition, the stability of autophagy was critical for the somatic embryogenesis of longan. The pseudo-timeline analysis elucidated the continuous cell differentiation trajectories from early embryonic cell division to vascular and epidermal cell differentiation during the somatic embryogenesis of longan. Moreover, key transcriptional regulators associated with cell fates were revealed. We found that ETHYLENE RESPONSIVE FACTOR 6 was characterized as a heat-sensitive factor that negatively regulates longan somatic embryogenesis under high-temperature stress conditions. The results of this study provide new spatiotemporal insights into cell division and differentiation during longan somatic embryogenesis at single-cell resolution.


Asunto(s)
Sapindaceae , Transcriptoma , Transcriptoma/genética , Sapindaceae/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Desarrollo Embrionario , Técnicas de Embriogénesis Somática de Plantas , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Physiol Biochem ; 196: 903-916, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36878164

RESUMEN

Longan (Dimocarpus longan) is a precious subtropical fruit with high nutritional value. The somatic embryogenesis (SE) affects the quality and yield of fruit. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. Thus, understanding the molecular basis of embryogenesis in longan will help to develop strategies for mass production of quality planting material. Lysine acetylation (Kac) plays an important role in diverse cellular processes, but limited knowledge is available regarding acetylation modifications in plant early SE. In this study, the proteome and acetylome of longan embryogenic callus (ECs) and globular embryos (GEs) were investigated. In total, 7232 proteins and 14,597 Kac sites were identified, and this resulted in the discovery of 1178 differentially expressed proteins and 669 differentially expressed acetylated proteins. KEGG and GO analysis showed that glucose metabolism, carbon metabolism, fatty acid degradation, and oxidative phosphorylation pathways were influenced by Kac modification. Furthermore, sodium butyrate (Sb, a deacetylase inhibitor) led to reduced the proliferation and delayed the differentiation of ECs by regulating the homeostasis of reactive oxygen species (ROS) andindole-3-acetic acid (IAA). Our study provides a comprehensive proteomic and acetylomic analysis to aid in understanding the molecular mechanisms involved in early SE, representing a potential tool for genetic improvement of longan.


Asunto(s)
Proteoma , Sapindaceae , Proteoma/metabolismo , Proteómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sapindaceae/genética , Sapindaceae/metabolismo
8.
Plant Physiol ; 192(3): 1799-1820, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930572

RESUMEN

Plant somatic embryogenesis (SE) is an in vitro biological process wherein bipolar structures are induced to form somatic cells and regenerate into whole plants. MicroRNA (miRNA) is an essential player in plant SE. However, the mechanism of microRNA408 (miR408) in SE remains elusive. Here, we used stable transgenic technology in longan (Dimocarpus longan) embryogenic calli to verify the mechanism by which miR408 promotes cell division and differentiation of longan early SE. dlo-miR408-3p regulated riboflavin biosynthesis by targeting nudix hydrolase 23 (DlNUDT23), a previously unidentified gene mediating N6-methyladenosine (m6A) modification and influencing RNA homeostasis and cell cycle gene expression during longan early SE. We showed that DlMIR408 overexpression (DlMIR408-OE) promoted 21-nt miRNA biosynthesis. In DlMIR408-OE cell lines, dlo-miR408-3p targeted and downregulated DlNUDT23, promoted riboflavin biosynthesis, decreased flavin mononucleotide (FMN) accumulation, promoted m6A level, and influenced miRNA homeostasis. DNA replication, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, the pentose phosphate pathway, and taurine and hypotaurine metabolism were also closely associated with riboflavin metabolism. In a riboflavin feeding assay, dlo-miR408-3p and pre-miR408 were upregulated and DlNUDT23 was downregulated, increasing the m6A level and cell division and differentiation in longan globular embryos. When riboflavin biosynthesis was inhibited, dlo-miR408-3p was downregulated and DlNUDT23 was upregulated, which decreased m6A modification and inhibited cell division but did not inhibit cell differentiation. FMN artificial demethylated m6A modification affected the homeostasis of precursor miRNA and miRNA. Our results revealed a mechanism underlying dlo-miR408-3p-activated riboflavin biosynthesis in which DlNUDT23 is targeted, m6A modification is dynamically mediated, and cell division is affected, promoting early SE in plants.


Asunto(s)
MicroARNs , Sapindaceae , Perfilación de la Expresión Génica , Sapindaceae/genética , Sapindaceae/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Riboflavina/metabolismo
9.
Plant Physiol ; 191(2): 1122-1137, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36494195

RESUMEN

As essential organs of reproduction in angiosperms, flowers, and the genetic mechanisms of their development have been well characterized in many plant species but not in the woody tree yellowhorn (Xanthoceras sorbifolium). Here, we focused on the double flower phenotype in yellowhorn, which has high ornamental value. We found a candidate C-class gene, AGAMOUS1 (XsAG1), through bovine serum albumin sequencing and genetics analysis with a Long Interpersed Nuclear Elements 1 (LINE1) transposable element fragment (Xsag1-LINE1-1) inserted into its second intron that caused a loss-of-C-function and therefore the double flower phenotype. In situ hybridization of XsAG1 and analysis of the expression levels of other ABC genes were used to identify differences between single- and double-flower development processes. These findings enrich our understanding of double flower formation in yellowhorn and provide evidence that transposon insertions into genes can reshape plant traits in forest trees.


Asunto(s)
Magnoliopsida , Sapindaceae , Fenotipo , Sapindaceae/genética , Magnoliopsida/genética , Elementos Transponibles de ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas
10.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203301

RESUMEN

B3 family transcription factors play an essential regulatory role in plant growth and development processes. This study performed a comprehensive analysis of the B3 family transcription factor in longan (Dimocarpus longan Lour.), and a total of 75 DlB3 genes were identified. DlB3 genes were unevenly distributed on the 15 chromosomes of longan. Based on the protein domain similarities and functional diversities, the DlB3 family was further clustered into four subgroups (ARF, RAV, LAV, and REM). Bioinformatics and comparative analyses of B3 superfamily expression were conducted in different light and with different temperatures and tissues, and early somatic embryogenesis (SE) revealed its specific expression profile and potential biological functions during longan early SE. The qRT-PCR results indicated that DlB3 family members played a crucial role in longan SE and zygotic embryo development. Exogenous treatments of 2,4-D (2,4-dichlorophenoxyacetic acid), NPA (N-1-naphthylphthalamic acid), and PP333 (paclobutrazol) could significantly inhibit the expression of the DlB3 family. Supplementary ABA (abscisic acid), IAA (indole-3-acetic acid), and GA3 (gibberellin) suppressed the expressions of DlLEC2, DlARF16, DlTEM1, DlVAL2, and DlREM40, but DlFUS3, DlARF5, and DlREM9 showed an opposite trend. Furthermore, subcellular localization indicated that DlLEC2 and DlFUS3 were located in the nucleus, suggesting that they played a role in the nucleus. Therefore, DlB3s might be involved in complex plant hormone signal transduction pathways during longan SE and zygotic embryo development.


Asunto(s)
Desarrollo Embrionario , Sapindaceae , Sapindaceae/genética , Cigoto , Hormonas
11.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555206

RESUMEN

A major determinant of fruit production in longan (Dimocarpus longan Lour.) is the difficulty of blossoming. In this study, high-throughput microRNA sequencing (miRNA-Seq) was carried out to compare differentially expressed miRNAs (DEmiRNAs) and their target genes between a continuous flowering cultivar 'Sijimi' (SJ), and a unique cultivar 'Lidongben' (LD), which blossoms only once in the season. Over the course of our study, 1662 known miRNAs and 235 novel miRNAs were identified and 13,334 genes were predicted to be the target of 1868 miRNAs. One conserved miRNA and 29 new novel miRNAs were identified as differently expressed; among them, 16 were upregulated and 14 were downregulated. Through the KEGG pathway and cluster analysis of DEmiRNA target genes, three critical regulatory pathways, plant-pathogen interaction, plant hormone signal transduction, and photosynthesis-antenna protein, were discovered to be strongly associated with the continuous flowering trait of the SJ. The integrated correlation analysis of DEmiRNAs and their target mRNAs revealed fourteen important flowering-related genes, including COP1-like, Casein kinase II, and TCP20. These fourteen flowering-related genes were targeted by five miRNAs, which were novel-miR137, novel-miR76, novel-miR101, novel-miR37, and csi-miR3954, suggesting these miRNAs might play vital regulatory roles in flower regulation in longan. Furthermore, novel-miR137 was cloned based on small RNA sequencing data analysis. The pSAK277-miR137 transgenic Arabidopsis plants showed delayed flowering phenotypes. This study provides new insight into molecular regulation mechanisms of longan flowering.


Asunto(s)
MicroARNs , Sapindaceae , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Sapindaceae/genética , Sapindaceae/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas
12.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430536

RESUMEN

Strigolactones (SLs), a new class of plant hormones, are implicated in the regulation of various biological processes. However, the related family members and functions are not identified in longan (Dimocarpus longan Lour.). In this study, 23 genes in the CCD, D27, and SMXL family were identified in the longan genome. The phylogenetic relationships, gene structure, conserved motifs, promoter elements, and transcription factor-binding site predictions were comprehensively analysed. The expression profiles indicated that these genes may play important roles in longan organ development and abiotic stress responses, especially during early somatic embryogenesis (SE). Furthermore, GR24 (synthetic SL analogue) and Tis108 (SL biosynthesis inhibitor) could affect longan early SE by regulating the levels of endogenous IAA (indole-3-acetic acid), JA (jasmonic acid), GA (gibberellin), and ABA (abscisic acid). Overexpression of SMXL6 resulted in inhibition of longan SE by regulating the synthesis of SLs, carotenoids, and IAA levels. This study establishes a foundation for further investigation of SL genes and provides novel insights into their biological functions.


Asunto(s)
Proteínas de Plantas , Sapindaceae , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sapindaceae/genética , Desarrollo Embrionario/genética
13.
PeerJ ; 10: e14015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172497

RESUMEN

Phytoremediation is a low-cost solution to fly ash pollution and the rhizosphere interactions between plant roots and the fly ash microbiome were important for the phytoremediation. To analyze the dynamic changes of the rhizosphere microbiome during yellowhorn cultivation in fly ash, the bacterial 16S rRNA gene V3-V4 region and the fungal ITS region of the rhizosphere microbiome were sequenced using Illumina MiSeq technology. The changes in fly ash physicochemical properties and the heavy metal content of different yellowhorn tissues were also analyzed. The results showed that both the bacterial and fungal communities were noticeably different after yellowhorn cultivation compared with the control sample. Proteobacteria and Acidobacteria levels increased (p < 0.05) and Firmicutes and Actinobacteria decreased (p < 0.05) in the bacterial community after yellowhorn cultivation. In the fungal community, Ascomycota and Mortierellomycota decreased (p < 0.05), while Chytridiomycota increased (p < 0.05). The levels of four heavy metals (Cr, Cd, Hg, Pb and As) decreased in the fly ash after yellowhorn cultivation. These metals were absorbed by the yellowhorn plants and accumulated in the fibrous root, taproot, stem and leaf tissues of these plants. Accordingly, the abundance of bacteria that could solubilize heavy metals increased (p < 0.05). In summary, the cultivation of yellowhorn affected the composition of the rhizosphere microbial communities in fly ash, which is of great significance for the biological remediation of fly ash.


Asunto(s)
Metales Pesados , Sapindaceae , Ceniza del Carbón , ARN Ribosómico 16S/genética , Bacterias/genética , Sapindaceae/genética
14.
Gene ; 826: 146453, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35337851

RESUMEN

Cytochrome P450 (CYP), a multi-gene superfamily, is involved in a broad range of physiological processes, including hormone responses and secondary metabolism throughout the plant life cycle. Longan (Dimocarpus longan), a subtropical and tropical evergreen fruit tree, its embryonic development is closely related to the yield and quality of fruits. And a large number of secondary metabolites, such as flavonoids and carotenoids, are also produced during the longan somatic embryogenesis (SE). It is important, therefore, to study potential functions of CYPs in longan. However, the knowledge of longan CYPs is still very limited. Here, a total of 327 DlCYPs were identified using the genome-search method, which could be classified into nine clans. The expansion of the DlCYP family was mainly caused by tandem duplication (TD) events. Promoter cis-acting elements analysis elucidated that DlCYPs played important roles in hormonal responses. A total of 246 DlCYPs exhibited six different expression patterns during the early SE based on longan transcriptomic data. Eight DlCYPs underwent alternative splicing (AS) events, and they might produce one to six isoforms. And the AS transcript of DlCYP97C1 might act as an alternative to the full-length transcript in ICpEC and GE stages. Finally, protein-protein interaction (PPI) networks and miRNA target prediction elucidated that DlCYPs might be involved in the phenylpropanoid metabolic pathway and primarily regulated and targeted by miR413. In summary, our results provided valuable inventory for understanding the classification and biological functions of DlCYPs and provided insight into further functional verification of DlCYPs during the longan early SE.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Sapindaceae , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Desarrollo Embrionario , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sapindaceae/genética
15.
Gene ; 821: 146286, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35176425

RESUMEN

Core cell cycle genes (CCCs) are essential regulators of cell cycle operation. In this study, a total of 69 CCCs family members, including 37 CYCs, 20 CDKs, five E2F/DPs, three KRPs, two RBs, one CKS and one Wee1, were identified from the longan genome. Phylogenetic and motifs analysis showed the evolutionary conservation of CCCs. Transcriptome dataset showed that CCCs had various expression patterns during longan early somatic embryogenesis (SE). Either CKS or CYCD3;2 silencing increased the expression of RB-E2F pathway genes, and the silencing of CYCD3;2 might induce the process of apoptosis in longan embryogenic callus (EC) cells. In addition, The qRT-PCR results showed that the expression levels of CDKG2, CYCD3;2, CYCT1;2, CKS and KRP1 were elevated by ABA, 2,4-D and PEG4000 treatments, while CDKG2 and CYCT1;2 were inhibited by NaCl treatment. In conclusion, our study provided valuable information for understanding the characterization and biological functions of longan CCCs.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/farmacología , Proteínas de Ciclo Celular/genética , Perfilación de la Expresión Génica/métodos , Sapindaceae/crecimiento & desarrollo , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Técnicas de Embriogénesis Somática de Plantas , Polietilenglicoles/farmacología , Sapindaceae/efectos de los fármacos , Sapindaceae/genética , Cloruro de Sodio/efectos adversos
16.
BMC Genomics ; 23(1): 27, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991482

RESUMEN

BACKGROUND: Handeliodendron Rehder and Eurycorymbus Hand.-Mazz. are the monotypic genera in the Sapindaceae family. The phylogenetic relationship of these endangered species Handeliodendron bodinieri (Lévl.) Rehd. and Eurycorymbus cavaleriei (Lévl.) Rehd. et Hand.-Mazz. with other members of Sapindaceae s.l. is not well resolved. A previous study concluded that the genus Aesculus might be paraphyletic because Handeliodendron was nested within it based on small DNA fragments. Thus, their chloroplast genomic information and comparative genomic analysis with other Sapindaceae species are necessary and crucial to understand the circumscription and plastome evolution of this family. RESULTS: The chloroplast genome sizes of Handeliodendron bodinieri and Eurycorymbus cavaleriei are 151,271 and 158,690 bp, respectively. Results showed that a total of 114 unique genes were annotated in H. bodinieri and E. cavaleriei, and the ycf1 gene contained abundant SSRs in both genomes. Comparative analysis revealed that gene content, PCGs, and total GC content were remarkably similar or identical within 13 genera from Sapindaceae, and the chloroplast genome size of four genera was generally smaller within the family, including Acer, Dipteronia, Aesculus, and Handeliodendron. IR boundaries of the H. bodinieri showed a significant contraction, whereas it presented a notable expansion in E. cavaleriei cp genome. Ycf1, ndhC-trnV-UAC, and rpl32-trnL-UAG-ccsA were remarkably divergent regions in the Sapindaceae species. Analysis of selection pressure showed that there are a few positively selected genes. Phylogenetic analysis based on different datasets, including whole chloroplast genome sequences, coding sequences, large single-copy, small single-copy, and inverted repeat regions, consistently demonstrated that H. bodinieri was sister to the clade consisting of Aesculus chinensis and A. wangii and strongly support Eurycorymbus cavaleriei as sister to Dodonaea viscosa. CONCLUSION: This study revealed that the cp genome size of the Hippocastanoideae was generally smaller compared to the other subfamilies within Sapindaceae, and three highly divergent regions could be used as the specific DNA barcodes within Sapindaceae. Phylogenetic results strongly support that the subdivision of four subfamilies within Sapindaceae, and Handeliodendron is not nested within the genus Aesculus.


Asunto(s)
Genoma del Cloroplasto , Sapindaceae , Animales , Especies en Peligro de Extinción , Genómica , Filogenia , Sapindaceae/genética
17.
Mol Biol Rep ; 49(2): 917-929, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34741709

RESUMEN

BACKGROUND: Understanding genetic variation is critical for the protection and maintenance of fragmented and highly disturbed habitats. The Taita Hills of Kenya are the northernmost part of the Eastern Arc Mountains and have been identified as one of the world's top ten biodiversity hotspots. Over the past century the current forests in the Taita Hills have become highly fragmented. In order to appraise the influence of anthropological disturbance and fragmentation on plant species in these mountains, we studied the genetic variation and population structure of Dodonaea viscosa (L.) Jacq. (Sapindaceae), using newly developed microsatellite (SSR) markers, combined with ecological niche modelling analyses (ENMs). METHODS AND RESULTS: We utilized the Illumina paired-end technology to sequence D. viscosa's genome and developed its microsatellite markers. In total, 646,428 sequences were analyzed, and 49,836 SSRs were identified from 42,638 sequences. A total of 18 out of 25 randomly selected primer pairs were designed to test polymorphism among 92 individuals across eight populations. The average observed heterozygosity and expected heterozygosity ranged from 0.119 to 0.982 and from 0.227 to 0.691, respectively. Analysis of molecular variance (AMOVA) revealed 78% variance within populations and only 20% among the eight populations. According to ENM results, D. viscosa's suitable habitats have been gradually reducing since the last glacial maximum (LGM), and the situation will worsen under the extreme pessimist scenario of (representative concentration pathway) RCP 8.5. Moreover, genetic diversity was significantly greater in larger fragments. CONCLUSIONS: In the present study, we successfully developed and tested SSR markers for D. viscosa. Study results indicate that fragmentation would constitute a severe threat to plant forest species. Therefore, urgent conservation management of smaller fragmented patches is necessary to protect this disturbed region and maintain the genetic resources.


Asunto(s)
Repeticiones de Microsatélite/genética , Sapindaceae/genética , Conservación de los Recursos Naturales , Bosques , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Kenia , Polimorfismo Genético/genética
18.
BMC Plant Biol ; 21(1): 464, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641783

RESUMEN

BACKGROUND: Yellowhorn (Xanthoceras sorbifolium), an endemic woody oil-bearing tree, has become economically important and is widely cultivated in northern China for bioactive oil production. However, the regulatory mechanisms of seed development and lipid biosynthesis affecting oil production in yellowhorn are still elusive. MicroRNAs (miRNAs) play crucial roles in diverse aspects of biological and metabolic processes in seeds, especially in seed development and lipid metabolism. It is still unknown how the miRNAs regulate the seed development and lipid biosynthesis in yellowhorn. RESULTS: Here, based on investigations of differences in the seed growth tendency and embryo oil content between high-oil-content and low-oil-content lines, we constructed small RNA libraries from yellowhorn embryos at four seed development stages of the two lines and then profiled small RNA expression using high-throughput sequencing. A total of 249 known miRNAs from 46 families and 88 novel miRNAs were identified. Furthermore, by pairwise comparisons among the four seed development stages in each line, we found that 64 miRNAs (53 known and 11 novel miRNAs) were differentially expressed in the two lines. Across the two lines, 15, 11, 10, and 7 differentially expressed miRNAs were detected at 40, 54, 68, and 81 days after anthesis, respectively. Bioinformatic analysis was used to predict a total of 2654 target genes for 141 differentially expressed miRNAs (120 known and 21 novel miRNAs). Most of these genes were involved in the fatty acid biosynthetic process, regulation of transcription, nucleus, and response to auxin. Using quantitative real-time PCR and an integrated analysis of miRNA and mRNA expression, miRNA-target regulatory modules that may be involved in yellowhorn seed size, weight, and lipid biosynthesis were identified, such as miR172b-ARF2 (auxin response factor 2), miR7760-p3_1-AGL61 (AGAMOUS-LIKE 61), miR319p_1-FAD2-2 (omega-6 fatty acid desaturase 2-2), miR5647-p3_1-DGAT1 (diacylglycerol acyltransferase 1), and miR7760-p5_1-MED15A (Mediator subunit 15a). CONCLUSIONS: This study provides new insights into the important regulatory roles of miRNAs in the seed development and lipid biosynthesis in yellowhorn. Our results will be valuable for dissecting the post-transcriptional and transcriptional regulation of seed development and lipid biosynthesis, as well as improving yellowhorn in northern China.


Asunto(s)
Metabolismo de los Lípidos/genética , MicroARNs/genética , ARN de Planta/genética , Sapindaceae/crecimiento & desarrollo , Sapindaceae/genética , Sapindaceae/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , China , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo
19.
Plant J ; 108(4): 1037-1052, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34519122

RESUMEN

Rambutan is a popular tropical fruit known for its exotic appearance, has long flexible spines on shells, extraordinary aril growth, desirable nutrition, and a favorable taste. The genome of an elite rambutan cultivar Baoyan 7 was assembled into 328 Mb in 16 pseudo-chromosomes. Comparative genomics analysis between rambutan and lychee revealed that rambutan chromosomes 8 and 12 are collinear with lychee chromosome 1, which resulted in a chromosome fission event in rambutan (n = 16) or a fusion event in lychee (n = 15) after their divergence from a common ancestor 15.7 million years ago. Root development genes played a crucial role in spine development, such as endoplasmic reticulum pathway genes, jasmonic acid response genes, vascular bundle development genes, and K+ transport genes. Aril development was regulated by D-class genes (STK and SHP1), plant hormone and phenylpropanoid biosynthesis genes, and sugar metabolism genes. The lower rate of male sterility of hermaphroditic flowers appears to be regulated by MYB24. Population genomic analyses revealed genes in selective sweeps during domestication that are related to fruit morphology and environment stress response. These findings enhance our understanding of spine and aril development and provide genomic resources for rambutan improvement.


Asunto(s)
Frutas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Sapindaceae/genética , Transcriptoma , Adaptación Fisiológica , Domesticación , Flores/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genómica , Glucósidos/biosíntesis , Taninos Hidrolizables , Anotación de Secuencia Molecular , Fotosíntesis , Sapindaceae/crecimiento & desarrollo , Especificidad de la Especie , Gusto
20.
Am J Bot ; 108(7): 1234-1251, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34219219

RESUMEN

PREMISE: The economically important, cosmopolitan soapberry family (Sapindaceae) comprises ca. 1900 species in 144 genera. Since the seminal work of Radlkofer, several authors have attempted to overcome challenges presented by the family's complex infra-familial classification. With the advent of molecular systematics, revisions of the various proposed groupings have provided significant momentum, but we still lack a formal classification system rooted in an evolutionary framework. METHODS: Nuclear DNA sequence data were generated for 123 genera (86%) of Sapindaceae using target sequence capture with the Angiosperms353 universal probe set. HybPiper was used to produce aligned DNA matrices. Phylogenetic inferences were obtained using coalescence-based and concatenated methods. The clades recovered are discussed in light of both benchmark studies to identify synapomorphies and distributional evidence to underpin an updated infra-familial classification. KEY RESULTS: Coalescence-based and concatenated phylogenetic trees had identical topologies and node support, except for the placement of Melicoccus bijugatus Jacq. Twenty-one clades were recovered, which serve as the basis for a revised infra-familial classification. CONCLUSIONS: Twenty tribes are recognized in four subfamilies: two tribes in Hippocastanoideae, two in Dodonaeoideae, and 16 in Sapindoideae (no tribes are recognized in the monotypic subfamily Xanthoceratoideae). Within Sapindoideae, six new tribes are described: Blomieae Buerki & Callm.; Guindilieae Buerki, Callm. & Acev.-Rodr.; Haplocoeleae Buerki & Callm.; Stadmanieae Buerki & Callm.; Tristiropsideae Buerki & Callm.; and Ungnadieae Buerki & Callm. This updated classification provides a backbone for further research and conservation efforts on this family.


Asunto(s)
Sapindaceae , Evolución Biológica , Filogenia , Sapindaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA