RESUMEN
To combat the permanent exposure to potential pathogens every organism relies on an immune system. Important factors in innate immunity are antimicrobial peptides (AMPs) that are structurally highly diverse. Some AMPs are known to belong to the saposin-like proteins (SAPLIPs), a group of polypeptides with a broad functional spectrum. The model organism Dictyostelium discoideum possesses a remarkably large arsenal of potential SAPLIPs, which are termed amoebapore-like peptides (Apls), but the knowledge about these proteins is very limited. Here, we report about the biochemical characterization of AplE1, AplE2, AplK1, and AplK2, which are derived from the two precursor proteins AplE and AplK, thereby resembling prosaposins of vertebrates. We produced these Apls as recombinant polypeptides in Escherichia coli using a self-splicing intein to remove an affinity tag used for purification. All recombinant Apls exhibited pore-forming activity in a pH-dependent manner, as evidenced by liposome depolarization, showing higher activities the more acidic the setting was. Lipid preference was detected for negatively charged phospholipids and in particular for cardiolipin. Antimicrobial activity against various bacteria was found to be inferior in classical microdilution assays. However, all of the Apls studied permeabilized the cytoplasmic membrane of live Bacillus subtilis. Collectively, we assume that the selected Apls interact by their cationic charge with negatively charged bacterial membranes in acidic environments such as phagolysosomes and eventually lyse the target cells by pore formation.
Asunto(s)
Dictyostelium , Saposinas , Dictyostelium/genética , Dictyostelium/metabolismo , Saposinas/metabolismo , Saposinas/química , Saposinas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Secuencia de Aminoácidos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Escherichia coli/genética , Escherichia coli/metabolismoRESUMEN
OBJECTIVE: This study focuses on the association between seminal concentration of prosaposin and ambient air pollutants and whether the association affects the normal fertilization rate in vitro fertilization (IVF) treatment. METHODS: The cohort of 323 couple participants aged 22-46 was recruited from Jan. 2013 to Jun. 2018. At enrollment, resident address information was obtained and semen parameters of male counterparts were evaluated according to WHO criteria. We used inverse distance weighting interpolation to estimate the levels of ambient pollutants (SO2, O3, CO, NO2, PM2.5, and PM10) in the surrounding area. The exposure of each participant was estimated based on the data gathered from air quality monitoring stations and their home address over various periods (0-9, 10-14, and 0-90 days) before semen sampling. The generalized linear regression model (GLM) and the Bayesian kernel machine regression (BKMR) were used to analyze the associations between pollutants, semen parameters, prosaposin, and normal fertilization. Additionally, the mediating effect of prosaposin and semen parameters on the link between pollutants and normal fertilization was investigated. RESULTS: GLM and BKMR showed exposure to ambient air pollutants was all associated with the concentration of seminal prosaposin, among them, O3 and CO were also associated with normal fertilization (-0.10, 95â¯%CI: -0.13, -0.06; -26.43, 95â¯%CI: -33.79, -19.07). Among the semen parameters, only the concentration of prosaposin and total motile sperm count (TMC) was associated with normal fertilization (0.059, 95â¯%CI: 0.047, 0.071; 0.016, 95â¯%CI: 0.012, 0.020). Mediation analysis showed that prosaposin played a stronger mediating role than TMC in the relationship between short-term exposure to O3 and fertilization (66.83â¯%, P<0.001 versus 3.05â¯%, P>0.05). CONCLUSION: Seminal plasma prosaposin showed a stronger meditating effect reflect the correlation between ambient air pollutants and normal fertilization rate than conventional semen parameters, which may be used as one of the indicators between pollution and fertilization in IVF.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Semen , Masculino , Humanos , Semen/efectos de los fármacos , Semen/química , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Saposinas , Fertilización In Vitro , Adulto Joven , Persona de Mediana Edad , Fertilización/efectos de los fármacos , Análisis de Semen , Estudios de CohortesRESUMEN
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.
Asunto(s)
Enfermedad de Gaucher , Glucosilceramidasa , Proteínas de Membrana de los Lisosomas , Receptores Depuradores , Saposinas , Glucosilceramidasa/genética , Glucosilceramidasa/deficiencia , Glucosilceramidasa/metabolismo , Humanos , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Saposinas/deficiencia , Saposinas/genética , Saposinas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Fibroblastos/metabolismo , Mutación , Lisosomas/metabolismo , Lisosomas/enzimología , Hexosaminidasas/metabolismo , Hexosaminidasas/genética , Hexosaminidasas/deficiencia , Masculino , FemeninoRESUMEN
Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fagosomas , Animales , Caenorhabditis elegans/metabolismo , Fagosomas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Saposinas/metabolismo , Lisosomas/metabolismo , Fagocitosis , Ceramidas/metabolismoRESUMEN
In most vertebrates, adult neural stem cells (NSCs) continuously give rise to neurons in discrete brain regions. A critical process for maintaining NSC pools over long periods of time in the adult brain is NSC quiescence, a reversible and tightly regulated state of cell-cycle arrest. Recently, lysosomes were identified to regulate the NSC quiescence-proliferation balance. However, it remains controversial whether lysosomal activity promotes NSC proliferation or quiescence, and a finer influence of lysosomal activity on NSC quiescence duration or depth remains unexplored. Using RNA sequencing and pharmacological manipulations, we show that lysosomes are necessary for NSC quiescence maintenance. In addition, we reveal that expression of psap, encoding the lysosomal regulator Prosaposin, is enriched in quiescent NSCs (qNSCs) that reside upstream in the NSC lineage and display a deep/long quiescence phase in the adult zebrafish telencephalon. We show that shRNA-mediated psap knockdown increases the proportion of activated NSCs (aNSCs) as well as NSCs that reside in shallower quiescence states (signed by ascl1a and deltaA expression). Collectively, our results identify the lysosomal protein Psap as a (direct or indirect) quiescence regulator and unfold the interplay between lysosomal function and NSC quiescence heterogeneities.
Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Saposinas/genética , Saposinas/metabolismo , Pez Cebra/metabolismo , Telencéfalo/metabolismo , Encéfalo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Células Madre Adultas/metabolismoRESUMEN
The islets of Langerhans are clusters of endocrine cells surrounded by exocrine acinar cells in the pancreas. Prosaposin is a housekeeping protein required for normal lysosomal function, but its expression level is significantly different among tissues. Prosaposin also exists in various body fluids including serum. Intracellularly, prosaposin activates lysosomes and may support autophagy, and extracellularly, prosaposin promotes survival of neurons via G protein-coupled receptors. In this study, prosaposin and its mRNA expression were examined in endocrine cells of the islets as well as in exocrine acinar cells in the pancreas of mice by in situ hybridization and immunostaining. High expression levels of prosaposin were found in Alpha, Beta and Delta cells in the islets, whereas prosaposin mRNA expression was faint or negative and prosaposin immunoreactivity was negative in exocrine acinar cells. The high expression levels of prosaposin in endocrine cells may indicate that prosaposin plays a crucial role in crinophagy, which is a characteristic autophagy in peptide-secreting endocrine cells, and/or that prosaposin is secreted from pancreatic islets. Since prosaposin has been reported in serum, this study suggests a new possible function of the Langerhans islets.
Asunto(s)
Islotes Pancreáticos , Saposinas , Animales , Saposinas/metabolismo , Saposinas/genética , Ratones , Islotes Pancreáticos/metabolismo , Células Acinares/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Autofagia/genética , MasculinoRESUMEN
Polymorphisms in the PSAP gene, which encodes prosaposin and is involved in the lysosomal function, yielded conflicting results regarding the association with Parkinson's disease (PD). Therefore, this study aims to investigate the role of PSAP in familial PD (FPD), early onset PD (EOPD) with age at onset before 50 years old, and sporadic PD (SPD) among Taiwanese population, and summarize relevant studies via meta-analysis. By sequencing exon 1 to 14 in 183 FPD and 219 EOPD, two novel exonic variants were found in EOPD, including p.A146E (c.437C > A) on exon 5 and p.Y248C (c.743A > G) on exon 7. Furthermore, four previously reported intronic variants (rs142614739/rs74733861), rs749823, rs4747203 and rs885828) in intron 11 and 12 were analyzed in 485 SPD and 712 in-hospital controls, in addition to the aforementioned FPD and EOPD groups. The adjusted odd ratios (ORs) by age and sex, only rs142614739 was significantly associated with higher risk of EOPD (OR = 1.85, 95% CI = 1.33-2.58). The risk effect was further confirmed by the meta-analysis of the association between rs142614739 and the risk of PD in both common effect (OR = 1.29, 95% CI = 1.11-1.50) and random effect (OR = 1.29, 95% CI = 1.11-1.50). Our findings suggest that the PSAP rs142614739 variant is associated with the risk of EOPD. Further functional studies are warranted to elucidate the biochemical mechanisms.
Asunto(s)
Enfermedad de Parkinson , Humanos , Persona de Mediana Edad , Edad de Inicio , Estudios de Casos y Controles , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Saposinas/genética , Pueblos del Este de AsiaRESUMEN
Tumors develop strategies to evade immunity by suppressing antigen presentation. In this work, we show that prosaposin (pSAP) drives CD8 T cell-mediated tumor immunity and that its hyperglycosylation in tumor dendritic cells (DCs) leads to cancer immune escape. We found that lysosomal pSAP and its single-saposin cognates mediated disintegration of tumor cell-derived apoptotic bodies to facilitate presentation of membrane-associated antigen and T cell activation. In the tumor microenvironment, transforming growth factor-ß (TGF-ß) induced hyperglycosylation of pSAP and its subsequent secretion, which ultimately caused depletion of lysosomal saposins. pSAP hyperglycosylation was also observed in tumor-associated DCs from melanoma patients, and reconstitution with pSAP rescued activation of tumor-infiltrating T cells. Targeting DCs with recombinant pSAP triggered tumor protection and enhanced immune checkpoint therapy. Our studies demonstrate a critical function of pSAP in tumor immunity and may support its role in immunotherapy.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Saposinas , Escape del Tumor , Humanos , Células Dendríticas/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Saposinas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Glicosilación , Inmunoterapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunologíaRESUMEN
BACKGROUND: Previous research has established a connection between polymorphisms rs4747203 and rs885828 in the prosaposin (PSAP) gene and an increased risk of Parkinson's disease (PD). However, other studies have found no significant difference in risk compared to the general population. METHODS: To evaluate the current evidence linking rs4747203 and rs885828 to PD risk, we conducted a comprehensive search of PubMed, the Web of Science, Embase, and the Cochrane Library for relevant studies up until May 2023. In addition, we analyzed data from the publicly available "PD Variant Browser". We performed a meta-analysis using Stata 17.0 to synthesize the findings from the selected studies. RESULTS: Our meta-analysis, which included data from six published studies and the public database, revealed no significant association between PD risk and either rs4747203 [OR (95% CI) = 0.99 (0.93-1.05), I2 = 90.3%, P = 0.635] or rs885828 [OR (95% CI) = 1.01 (0.95-1.07), I2 = 90.7%, P = 0.773]. These results remained consistent when examining subgroups of individuals within or outside of Asia. CONCLUSION: The available evidence does not support an association between the genotype at rs4747203 or rs885828 and the risk of PD.
Asunto(s)
Enfermedad de Parkinson , Humanos , Predisposición Genética a la Enfermedad/genética , Genotipo , Enfermedad de Parkinson/genética , Polimorfismo Genético , Saposinas/genéticaRESUMEN
Prosaposin (PSAP), a potent neurotrophic factor, is found in neuronal and non-neuronal tissues and various biological fluids. Neuropathological conditions often alter PSAP production in neural tissues. However, little is known about its alterations in non-neural tissues, particularly in the salivary glands, which are natural reservoirs of various neurotrophic factors. In this study, we explored whether neurotoxic stimulation by kainic acid (KA), a glutamate analog, altered PSAP levels in the salivary system of rats. The results revealed that KA injection did not alter total saliva production. However, KA-induced neurotoxic stimulation significantly increased the PSAP level in the secreted saliva but decreased it in the serum. In addition, KA-induced elevated immunoreactivities of PSAP and its receptors have been observed in the granular convoluted tubule (GCT) cells of the submandibular gland (SMG), a major salivary secretory organ. Indeed, a large number of PSAP-expressing immunogold particles were observed in the secretory granules of the SMG. Furthermore, KA-induced overexpression of PSAP was co-localized with secretogranin in secretory acini (mostly in GCT cells) and the ductal system of the SMG, suggesting the release of excess PSAP from the salivary glands into the oral cavity. In conclusion, the salivary system produces more PSAP during neurotoxic conditions, which may play a protective role in maintaining the secretory function of the salivary glands and may work in distant organs.
Asunto(s)
Glándulas Salivales , Saposinas , Ratas , Animales , Glándula Submandibular , Saliva , Proteínas PortadorasRESUMEN
Studies have reported that Prosaposin (PSAP) is neuroprotective in cerebrovascular diseases. We hypothesized that PSAP would reduce infarct volume by attenuating neuronal apoptosis and promoting cell survival through G protein-coupled receptor 37(GPR37)/PI3K/Akt/ASK1 pathway in middle cerebral artery occlusion (MCAO) rats. Two hundred and thirty-five male and eighteen female Sprague-Dawley rats were used. Recombinant human PSAP (rPSAP) was administered intranasally 1 h (h) after reperfusion. PSAP small interfering ribonucleic acid (siRNA), GPR37 siRNA, and PI3K specific inhibitor LY294002 were administered intracerebroventricularly 48 h before MCAO. Infarct volume, neurological score, immunofluorescence staining, Western blot, Fluoro-Jade C (FJC) and TUNEL staining were examined. The expression of endogenous PSAP and GPR37 were increased after MCAO. Intranasal administration of rPSAP reduced brain infarction, neuronal apoptosis, and improved both short- and long-term neurological function. Knockdown of endogenous PSAP aggravated neurological deficits. Treatment with exogenous rPSAP increased PI3K expression, Akt and ASK1 phosphorylation, and Bcl-2 expression; phosphorylated-JNK and Bax levels were reduced along with the number of FJC and TUNEL positive neurons. GPR37 siRNA and LY294002 abolished the anti-apoptotic effect of rPSAP at 24 h after MCAO. In conclusion, rPSAP attenuated neuronal apoptosis and improved neurological function through GPR37/PI3K/Akt/ASK1 pathway after MCAO in rats. Therefore, further exploration of PSAP as a potential treatment option in ischemic stroke is warranted.
Asunto(s)
Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Ratas , Masculino , Femenino , Humanos , Animales , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Saposinas/metabolismo , Saposinas/farmacología , Saposinas/uso terapéutico , Transducción de Señal , Administración Intranasal , Apoptosis , ARN Interferente Pequeño/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéuticoRESUMEN
We tracked prosaposin (PSAP), a trophic factor, using an antibody specific to its proteolytic portion and an antibody to sortilin that traffics PSAP only to the lysosome. Immunostaining revealed that PSAP was distributed mainly on the basal side of seminiferous tubules, where many Sertoli cells and pachytene spermatocytes contained PSAP and its distribution differed depending on the stage of the spermatogenic cycle. The PSAP-sortilin complex was sorted to large lysosomes in the basal cytoplasm of Sertoli cells, where it may be processed into saposins. In contrast, in the thinner apical cytoplasm of Sertoli cells, PSAP in small lysosomes was transported to the apical side around sperm heads or into the lumen for secretion. The results of in situ hybridization analyses suggested that immature tubular cells in young animals produce PSAP to self-stimulate proliferation. However, in adults, not only Sertoli cells but also pachytene spermatocytes produce and secrete PSAP around germ cells or into the tubular lumen to stimulate cell proliferation or differentiation in a paracrine or autocrine manner. In summary, PSAP is not only a precursor of lysosomal enzymes but also a pivotal trophic factor in organogenesis in the immature testis and spermatogenesis in the mature testis.
Asunto(s)
Saposinas , Testículo , Ratas , Animales , Masculino , Semen , Células de Sertoli , EspermatogénesisRESUMEN
Prosaposin (PSAP) modulates glycosphingolipid metabolism and variants have been linked to Parkinson's disease (PD). Here, we find altered PSAP levels in the plasma, CSF and post-mortem brain of PD patients. Altered plasma and CSF PSAP levels correlate with PD-related motor impairments. Dopaminergic PSAP-deficient (cPSAPDAT) mice display hypolocomotion and depression/anxiety-like symptoms with mildly impaired dopaminergic neurotransmission, while serotonergic PSAP-deficient (cPSAPSERT) mice behave normally. Spatial lipidomics revealed an accumulation of highly unsaturated and shortened lipids and reduction of sphingolipids throughout the brains of cPSAPDAT mice. The overexpression of α-synuclein via AAV lead to more severe dopaminergic degeneration and higher p-Ser129 α-synuclein levels in cPSAPDAT mice compared to WT mice. Overexpression of PSAP via AAV and encapsulated cell biodelivery protected against 6-OHDA and α-synuclein toxicity in wild-type rodents. Thus, these findings suggest PSAP may maintain dopaminergic lipid homeostasis, which is dysregulated in PD, and counteract experimental parkinsonism.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/genética , Dopamina , Neuronas Dopaminérgicas , Enfermedad de Parkinson/genética , Saposinas/genética , EsfingolípidosRESUMEN
Macrophages release soluble mediators following efferocytic clearance of apoptotic cells to facilitate intercellular communication and promote the resolution of inflammation. However, whether inflammation resolution is modulated by extracellular vesicles (EVs) and vesicular mediators released by efferocytes is not known. We report that efferocyte-derived EVs express prosaposin, which binds to macrophage GPR37 to increase expression of the efferocytosis receptor Tim4 via an ERK-AP1-dependent signaling axis, leading to increased macrophage efferocytosis efficiency and accelerated resolution of inflammation. Neutralization and knockdown of prosaposin or blocking GRP37 abrogates the pro-resolution effects of efferocyte-derived EVs in vivo. Administration of efferocyte-derived EVs in a murine model of atherosclerosis is associated with an increase in lesional macrophage efferocytosis efficiency and a decrease in plaque necrosis and lesional inflammation. Thus, we establish a critical role for efferocyte-derived vesicular mediators in increasing macrophage efferocytosis efficiency and accelerating the resolution of inflammation and tissue injury.
Asunto(s)
Vesículas Extracelulares , Saposinas , Animales , Ratones , Apoptosis , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Fagocitosis , Saposinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
Krabbe disease is an inherited demyelinating disease caused by a genetic deficiency of the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase (GALC). The Twitcher (Twi) mouse is a naturally occurring, genetically and enzymatically authentic mouse model that mimics infantile-onset Krabbe disease. The major substrate for GALC is the myelin lipid GalCer. However, the pathogenesis of Krabbe disease has long been explained by the accumulation of psychosine, a lyso-derivative of GalCer. Two metabolic pathways have been proposed for the accumulation of psychosine: a synthetic pathway in which galactose is transferred to sphingosine and a degradation pathway in which GalCer is deacylated by acid ceramidase (ACDase). Saposin-D (Sap-D) is essential for the degradation of ceramide by ACDase in lysosome. In this study, we generated Twi mice with a Sap-D deficiency (Twi/Sap-D KO), which are genetically deficient in both GALC and Sap-D and found that very little psychosine accumulated in the CNS or PNS of the mouse. As expected, demyelination with the infiltration of multinucleated macrophages (globoid cells) characteristic of Krabbe disease was milder in Twi/Sap-D KO mice than in Twi mice both in the CNS and PNS during the early disease stage. However, at the later disease stage, qualitatively and quantitatively comparable demyelination occurred in Twi/Sap-D KO mice, particularly in the PNS, and the lifespans of Twi/Sap-D KO mice were even shorter than that of Twi mice. Bone marrow-derived macrophages from both Twi and Twi/Sap-D KO mice produced significant amounts of TNF-α upon exposure to GalCer and were transformed into globoid cells. These results indicate that psychosine in Krabbe disease is mainly produced via the deacylation of GalCer by ACDase. The demyelination observed in Twi/Sap-D KO mice may be mediated by a psychosine-independent, Sap-D-dependent mechanism. GalCer-induced activation of Sap-D-deficient macrophages/microglia may play an important role in the neuroinflammation and demyelination in Twi/Sap-D KO mice.
Asunto(s)
Leucodistrofia de Células Globoides , Ratones , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Saposinas/genética , Psicosina/metabolismo , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Modelos Animales de EnfermedadRESUMEN
The paratympanic organ (PTO) is a small sense organ in the middle ear of birds that contains hair cells similar to those found in vestibuloauditory organs and receives afferent fibers from the geniculate ganglion. To consider the histochemical similarities between the PTO and vestibular hair cells, we examined the expression patterns of representative molecules in vestibular hair cells, including prosaposin, G protein-coupled receptor (GPR) 37 and GPR37L1 as prosaposin receptors, vesicular glutamate transporter (vGluT) 2 and vGluT3, nicotinic acetylcholine receptor subunit α9 (nAChRα9), and glutamic acid decarboxylase (GAD) 65 and GAD67, in the postnatal day 0 chick PTO and geniculate ganglion by in situ hybridization. Prosaposin mRNA was observed in PTO hair cells, supporting cells, and geniculate ganglion cells. vGluT3 mRNA was observed in PTO hair cells, whereas vGluT2 was observed in a small number of ganglion cells. nAChRα9 mRNA was observed in a small number of PTO hair cells. The results suggest that the histochemical character of PTO hair cells is more similar to that of vestibular hair cells than that of auditory hair cells in chicks.
Asunto(s)
Pollos , Saposinas , Animales , Saposinas/metabolismo , Oído Medio , Células Ciliadas Auditivas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Sphingolipidoses are a subcategory of lysosomal storage diseases (LSDs) caused by mutations in enzymes of the sphingolipid catabolic pathway. Like many LSDs, neurological involvement in sphingolipidoses leads to early mortality with limited treatment options. Given the role of myelin loss as a major contributor toward LSD-associated neurodegeneration, we investigated the pathways contributing to demyelination in a CRISPR-Cas9-generated zebrafish model of combined saposin (psap) deficiency. psap knockout (KO) zebrafish recapitulated major LSD pathologies, including reduced lifespan, reduced lipid storage, impaired locomotion and severe myelin loss; loss of myelin basic protein a (mbpa) mRNA was progressive, with no changes in additional markers of oligodendrocyte differentiation. Brain transcriptomics revealed dysregulated mTORC1 signaling and elevated neuroinflammation, where increased proinflammatory cytokine expression preceded and mTORC1 signaling changes followed mbpa loss. We examined pharmacological and genetic rescue strategies via water tank administration of the multiple sclerosis drug monomethylfumarate (MMF), and crossing the psap KO line into an acid sphingomyelinase (smpd1) deficiency model. smpd1 mutagenesis, but not MMF treatment, prolonged lifespan in psap KO zebrafish, highlighting the modulation of acid sphingomyelinase activity as a potential path toward sphingolipidosis treatment.
Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Esfingolipidosis , Animales , Esfingomielina Fosfodiesterasa/genética , Pez Cebra/metabolismo , Saposinas/genética , Diana Mecanicista del Complejo 1 de la RapamicinaRESUMEN
The epidemiologically important food-borne trematode Opisthorchis felineus infests the liver biliary tract of fish-eating mammals and causes disorders, including bile duct neoplasia. Many parasitic species release extracellular vesicles (EVs) that mediate host-parasite interaction. Currently, there is no information on O. felineus EVs. Using gel electrophoresis followed by liquid chromatography coupled with tandem mass spectrometry, we aimed to characterize the proteome of EVs released by the adult O. felineus liver fluke. Differential abundance of proteins between whole adult worms and EVs was assessed by semiquantitative iBAQ (intensity-based absolute quantification). Imaging, flow cytometry, inhibitor assays, and colocalization assays were performed to monitor the uptake of the EVs by H69 human cholangiocytes. The proteomic analysis reliably identified 168 proteins (at least two peptides matched a protein). Among major proteins of EVs were ferritin, tetraspanin CD63, helminth defense molecule 1, globin 3, saposin B type domain-containing protein, 60S ribosomal protein, glutathione S-transferase GST28, tubulin, and thioredoxin peroxidase. Moreover, as compared to the whole adult worm, EVs proved to be enriched with tetraspanin CD63, saposin B, helminth defense molecule 1, and Golgi-associated plant pathogenesis-related protein 1 (GAPR1). We showed that EVs are internalized by human H69 cholangiocytes via clathrin-dependent endocytosis, whereas phagocytosis and caveolin-dependent endocytosis do not play a substantial role in this process. Our study describes for the first time proteomes and differential abundance of proteins in whole adult O. felineus worms and EVs released by this food-borne trematode. Studies elucidating the regulatory role of individual components of EVs of liver flukes should be continued to determine which components of EV cargo play the most important part in the pathogenesis of fluke infection and in a closely linked pathology: bile duct neoplasia. SIGNIFICANCE: The food-borne trematode Opisthorchis felineus is a pathogen that causes hepatobiliary disorders in humans and animals. Our study describes for the first time the release of EVs by the liver fluke O. felineus, their microscopic and proteomic characterization, and internalization pathways by human cholangiocytes. Differential abundance of proteins between whole adult worms and EVs was assessed. EVs are enriched with canonical EV markers as well as parasite specific proteins, i.e. tetraspanin CD63, saposin B, helminth defense molecule 1, and others. Our findings will form the basis of the search for potential immunomodulatory candidates with therapeutic potential in the context of inflammatory diseases, as well as novel vaccine candidates.
Asunto(s)
Exosomas , Neoplasias , Opistorquiasis , Opisthorchis , Animales , Humanos , Opisthorchis/metabolismo , Opistorquiasis/parasitología , Opistorquiasis/patología , Exosomas/patología , Proteómica , Saposinas/metabolismo , Tetraspaninas/metabolismo , MamíferosRESUMEN
Saposin and its precursor prosaposin are endogenous proteins with neurotrophic and anti-apoptotic properties. Prosaposin or its analog prosaposin-derived 18-mer peptide (PS18) reduced neuronal damage in hippocampus and apoptosis in stroke brain. Its role in Parkinson's disease (PD) has not been well characterized. This study aimed to examine the physiological role of PS18 in 6-hydroxydopamine (6-OHDA) cellular and animal models of PD. We found that PS18 significantly antagonized 6-OHDA -mediated dopaminergic neuronal loss and TUNEL in rat primary dopaminergic neuronal culture. In SH-SY5Y cells overexpressing the secreted ER calcium-monitoring proteins, we found that PS18 significantly reduced thapsigargin and 6-OHDA-mediated ER stress. The expression of prosaposin and the protective effect of PS18 were next examined in hemiparkinsonian rats. 6-OHDA was unilaterally administered to striatum. The expression of prosaposin was transiently upregulated in striatum on D3 (day 3) after lesioning and returned below the basal level on D29. The 6-OHDA-lesioned rats developed bradykinesia and an increase in methamphetamine-mediated rotation, which was antagonized by PS18. Brain tissues were collected for Western blot, immunohistochemistry, and qRTPCR analysis. Tyrosine hydroxylase immunoreactivity was significantly reduced while the expressions of PERK, ATF6, CHOP, and BiP were upregulated in the lesioned nigra; these responses were significantly antagonized by PS18. Taken together, our data support that PS18 is neuroprotective in cellular and animal models of PD. The mechanisms of protection may involve anti-ER stress.