Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
2.
Food Res Int ; 191: 114728, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059922

RESUMEN

With the increasing need to promote healthy and sustainable diets, seaweeds emerge as an environmentally friendly food source, offering a promising alternative for food production. The aim of this study was to characterize the brown seaweed Sargassum filipendula from the coast of São Paulo, Brazil, regarding its nutritional and techno-functional properties using two dehydration methods, oven drying and lyophilized. A commercial dried sample was used as a control. Analyses of proximate composition, mineral determination, amino acid determination, antioxidant capacity, pH, color, scanning electron microscopy, X-ray diffraction, thermal properties, Fourier-transform infrared spectroscopy, and techno-functional properties were performed. Seaweed flours showed significant differences in physicochemical composition, with dietary fiber content of seaweed flours exceeding 70 %. Glutamic and aspartic acids were the most abundant amino acids, with contents of 88.56 and 56.88 mg/g of protein in Sargassum oven drying. Both for antioxidant potential and bioactive compounds, Sargassum lyophilized flours showed the highest levels of compounds. Sargassum lyophilized exhibited lighter color compared to Sargassum oven drying and Sargassum commercial. Emulsion formation, foam formation capacity and stability were higher in Sargassum lyophilized, as well as water and oil absorption. The results suggest that seaweeds can be used to formulate a wide variety of food products, such as sausages, bread, cakes, soups, and sauces.


Asunto(s)
Antioxidantes , Liofilización , Valor Nutritivo , Sargassum , Algas Marinas , Sargassum/química , Antioxidantes/análisis , Algas Marinas/química , Fibras de la Dieta/análisis , Brasil , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Aminoácidos/análisis , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Desecación/métodos
3.
Mar Drugs ; 22(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057425

RESUMEN

Searching for natural products with anti-tumor activity is an important aspect of cancer research. Seaweed polysaccharides from brown seaweed have shown promising anti-tumor activity; however, their structure, composition, and biological activity vary considerably, depending on many factors. In this study, 16 polysaccharide fractions were extracted and purified from three large brown seaweed species (Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida). The chemical composition analysis revealed that the polysaccharide fractions have varying molecular weights ranging from 8.889 to 729.67 kDa, and sulfate contents ranging from 0.50% to 10.77%. Additionally, they exhibit different monosaccharide compositions and secondary structures. Subsequently, their anti-tumor activity was compared against five tumor cell lines (A549, B16, HeLa, HepG2, and SH-SY5Y). The results showed that different fractions exhibited distinct anti-tumor properties against tumor cells. Flow cytometry and cytoplasmic fluorescence staining (Hoechst/AO staining) further confirmed that these effective fractions significantly induce tumor cell apoptosis without cytotoxicity. qRT-RCR results demonstrated that the polysaccharide fractions up-regulated the expression of Caspase-3, Caspase-8, Caspase-9, and Bax while down-regulating the expression of Bcl-2 and CDK-2. This study comprehensively compared the anti-tumor activity of polysaccharide fractions from large brown seaweed, providing valuable insights into the potent combinations of brown seaweed polysaccharides as anti-tumor agents.


Asunto(s)
Antineoplásicos , Apoptosis , Polisacáridos , Sargassum , Algas Marinas , Undaria , Humanos , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Algas Marinas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Sargassum/química , Undaria/química , Línea Celular Tumoral , Animales , Phaeophyceae/química , Células Hep G2 , Células HeLa , Ratones , Algas Comestibles
4.
Sci Rep ; 14(1): 15064, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956395

RESUMEN

Sargassum horneri (S. horneri), a brown seaweed excessively proliferating along Asian coastlines, are damaging marine ecosystems. Thus, this study aimed to enhance nutritional value of S. horneri through lactic acid bacteria fermentation to increase S. horneri utilization as a functional food supplement, and consequently resolve coastal S. horneri accumulation. S. horneri supplemented fermentation was most effective with Lactiplantibacillus pentosus SH803, thus this product (F-SHWE) was used for further in vitro studies. F-SHWE normalized expressions of oxidative stress related genes NF-κB, p53, BAX, cytochrome C, caspase 9, and caspase 3, while non-fermented S. horneri (SHWE) did not, in a H2O2-induced HT-29 cell model. Moreover, in an LPS-induced HT-29 cell model, F-SHWE repaired expressions of inflammation marker genes ZO1, IL1ß, IFNγ more effectively than SHWE. For further functional assessment, F-SHWE was also treated in 3T3-L1 adipocytes. As a result, F-SHWE decreased lipid accumulation, along with gene expression of adipogenesis markers PPARγ, C/EBPα, C/EBPß, aP2, and Lpl; lipogenesis markers Lep, Akt, SREBP1, Acc, Fas; inflammation markers IFN-γ and NF-κB. Notably, gene expression of C/EBPß, IFN-γ and NF-κB were suppressed only by F-SHWE, suggesting the enhancing effect of fermentation on obesity-related properties. Compositional analysis attributed the protective effects of F-SHWE to acetate, an organic acid significantly higher in F-SHWE than SHWE. Therefore, F-SHWE is a novel potential anti-obesity agent, providing a strategy to reduce excess S. horneri populations along marine ecosystems.


Asunto(s)
Células 3T3-L1 , Adipocitos , Fermentación , Inflamación , Estrés Oxidativo , Sargassum , Sargassum/química , Ratones , Animales , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Humanos , Inflamación/metabolismo , Lactobacillus pentosus/metabolismo , Células HT29 , Adipogénesis/efectos de los fármacos
5.
Fish Shellfish Immunol ; 151: 109754, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977113

RESUMEN

Copper (Cu) is a crucial element that plays a vital role in facilitating proper biological activities in living organisms. In this study, copper oxide nanoparticles (CuO NPs) were synthesized using a straightforward precipitation chemical method from a copper nitrate precursor at a temperature of 85 °C. Subsequently, these NPs were coated with the aqueous extract of Sargassum angustifolium algae. The size, morphology, and coating of the NPs were analyzed through various methods, revealing dimensions of approximately 50 nm, a multidimensional shaped structure, and successful algae coating. The antibacterial activity of both coated and uncoated CuO NPs against Vibrio harveyi, a significant pathogen in Litopenaeus vannamei, was investigated. Results indicated that the minimum inhibitory concentration (MIC) for uncoated CuO NPs was 1000 µg/mL, whereas for coated CuO NPs, it was 500 µg/mL. Moreover, the antioxidant activity of the synthesized NPs was assessed. Interestingly, uncoated CuO NPs exhibited superior antioxidant activity (IC50 ≥ 16 µg/mL). The study also explored the cytotoxicity of different concentrations (10-100 µg/mL) of both coated and uncoated CuO NPs. Following 48 h of incubation, cell viability assays on shrimp hemocytes and human lymphocytes were conducted. The findings indicated that CuO NPs coated with alga extract at a concentration of 10 µg/mL increased shrimp hemocyte viability. In contrast, uncoated CuO NPs at a concentration of 25 µg/mL and higher, as well as CuO NPs at a concentration of 50 µg/mL and higher, led to a decrease in shrimp hemocyte survival. Notably, this study represents the first quantitative assessment of the toxicity of CuO NPs on shrimp cells, allowing for a comparative analysis with human cells.


Asunto(s)
Cobre , Nanopartículas del Metal , Penaeidae , Sargassum , Vibrio , Animales , Cobre/química , Cobre/farmacología , Penaeidae/efectos de los fármacos , Vibrio/efectos de los fármacos , Sargassum/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Acuicultura , Pruebas de Sensibilidad Microbiana , Hemocitos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124694, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914030

RESUMEN

The healthy benefits of seaweed have increased its market demand in recent times. Quality control is crucial for seaweed to ensure the customers' interest and the sustainable development of seaweed farming industry. This study developed a quality control method for seaweed Sargassum fusiforme, rapid and simple, using near-infrared spectroscopy (NIR) and chemometrics for the prediction of antioxidant capacity of S. fusiforme from different growth stages, S. fusiforme was distinguished according to growth stage by partial least squares-discriminant analysis (PLS-DA) and particle swarm optimization-support vector machine (PSO-SVM). The antioxidant properties including 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) were quantified using competitive adaptive reweighted sampling (CARS)-PLS model. Based on the spectra data preprocessed by multiplicative scatter and standard normal variate methods, the PSO-SVM models can accurately identify the growth stage of all S. fusiforme samples. The CARS-PLS models exhibited good performance in predicting the antioxidant capacity of S. fusiforme, with coefficient of determination (RP2) and root mean square error (RMSEP) values in the independent prediction sets reaching 0.9778 and 0.4018 % for ABTS, 0.9414 and 2.0795 % for DPPH, and 0.9763 and 2.4386 µmol L-1 for FRAP, respectively. The quality and market price of S. fusiforme should increase in the order of maturation < growth < seedling regarding the antioxidant property. The overall results indicated that the NIR spectroscopy accompanied by chemometrics can assist for the quality control of S. fusiforme in a more rapid and simple manner. This study also provided a customer-oriented concept of seaweed quality grading based on deep insight into the antioxidant capability of S. fusiforme at different growth stages, which is highly valuable for precise quality control and standardization of seaweed market.


Asunto(s)
Antioxidantes , Control de Calidad , Espectroscopía Infrarroja Corta , Espectroscopía Infrarroja Corta/métodos , Antioxidantes/análisis , Antioxidantes/química , Análisis de los Mínimos Cuadrados , Sargassum/química , Máquina de Vectores de Soporte , Análisis Discriminante , Picratos/química , Algas Marinas/química , Algas Marinas/crecimiento & desarrollo , Benzotiazoles/química , Ácidos Sulfónicos/química , Compuestos de Bifenilo/química
7.
Nutrients ; 16(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38892548

RESUMEN

We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-ß plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Suplementos Dietéticos , Modelos Animales de Enfermedad , Algas Marinas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Algas Marinas/química , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Extractos Vegetales/farmacología , Ratones Transgénicos , Sargassum/química , Humanos , Placa Amiloide , Colesterol/metabolismo , Colesterol/sangre , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau/metabolismo
8.
Sci Rep ; 14(1): 12874, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834629

RESUMEN

Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Dinitroclorobenceno , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Sargassum , Animales , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Sargassum/química , Ratones , Células RAW 264.7 , Humanos , Etanol/química , Extractos Vegetales/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Piel/efectos de los fármacos , Piel/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inmunoglobulina E/sangre , Citocinas/metabolismo
9.
Sci Rep ; 14(1): 13282, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858416

RESUMEN

Recent research has emphasized the role of macrophage-secreted factors on skeletal muscle metabolism. We studied Sargassum Serratifolium ethanol extract (ESS) in countering lipopolysaccharide (LPS)-induced changes in the macrophage transcriptome and their impact on skeletal muscle. Macrophage-conditioned medium (MCM) from LPS-treated macrophages (LPS-MCM) and ESS-treated macrophages (ESS-MCM) affected C2C12 myotube cells. LPS-MCM upregulated muscle atrophy genes and reduced glucose uptake, while ESS-MCM reversed these effects. RNA sequencing revealed changes in the immune system and cytokine transport pathways in ESS-treated macrophages. Protein analysis in ESS-MCM showed reduced levels of key muscle atrophy-related proteins, TNF-α, IL-6, IL-1, and GDF-15. These proteins play crucial roles in muscle function. These findings highlight the intricate relationship between the macrophage transcriptome and their secreted factors in either impairing or enhancing skeletal muscle function. ESS treatment has the potential to reduce macrophage-derived cytokines, preserving skeletal muscle function.


Asunto(s)
Macrófagos , Atrofia Muscular , Extractos Vegetales , Sargassum , Sargassum/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratones , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Transcriptoma , Lipopolisacáridos , Citocinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Línea Celular , Medios de Cultivo Condicionados/farmacología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos
10.
Mar Drugs ; 22(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38921558

RESUMEN

Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sargassum , Xantófilas , Virus Zika , Antivirales/farmacología , Antivirales/aislamiento & purificación , Antivirales/química , Virus Zika/efectos de los fármacos , Animales , Sargassum/química , Chlorocebus aethiops , Xantófilas/farmacología , Xantófilas/aislamiento & purificación , Xantófilas/química , Células Vero , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
11.
Mar Drugs ; 22(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921584

RESUMEN

The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.


Asunto(s)
Antibacterianos , Antioxidantes , Algas Marinas , Algas Marinas/química , Argelia , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Sargassum/química , Espectroscopía Infrarroja por Transformada de Fourier , Phaeophyceae/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem
12.
Front Biosci (Landmark Ed) ; 29(5): 194, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38812330

RESUMEN

BACKGROUNDS: Melanogenesis, regulated by genetic, hormonal, and environmental factors, occurs in melanocytes in the basal layer of the epidermis. Dysregulation of this process can lead to various skin disorders, such as hyperpigmentation and hypopigmentation. Therefore, the present study investigated the effect of ultrasonic-assisted ethanol extract (SHUE) from Sargassum horneri (S. horneri), brown seaweed against melanogenesis in α-melanocyte-stimulating hormone (MSH)-stimulated B16F10 murine melanocytes. METHODS: Firstly, yield and proximate compositional analysis of the samples were conducted. The effect of SHUE on cell viability has been evaluated by using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After that, the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes were examined. Western blot analysis was carried out to investigate the protein expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2). In addition, the effect of extracellular signal-regulated kinase (ERK) on the melanogenesis process was assessed via Western blotting. RESULTS: As per the analysis, SHUE contained the highest average yield on a dry basis at 28.70 ± 3.21%. The findings showed that SHUE reduced the melanin content and cellular tyrosinase activity in α-MSH-stimulated B16F10 murine melanocytes. Additionally, the expression levels of MITF, TRP1, and TRP2 protein were significantly downregulated by SHUE treatment in α-MSH-stimulated B16F10 murine melanocytes. Moreover, SHUE upregulated the phosphorylation of ERK and AKT in α-MSH-stimulated B16F10 murine melanocytes. In addition, experiments conducted using the ERK inhibitor (PD98059) revealed that the activity of SHUE depends on the ERK signaling cascade. CONCLUSION: These results suggest that SHUE has an anti-melanogenic effect and can be used as a material in the formulation of cosmetics related to whitening and lightening.


Asunto(s)
Etanol , Melaninas , Melanocitos , Monofenol Monooxigenasa , Sargassum , Animales , Sargassum/química , Melaninas/biosíntesis , Melaninas/metabolismo , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Ratones , Etanol/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , alfa-MSH/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Oxidorreductasas Intramoleculares/metabolismo
13.
Int J Biol Macromol ; 272(Pt 1): 132574, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810846

RESUMEN

This study focuses on the identification and characterization of a glycoprotein from Sargassum fusiforme (Harvey) Setchell (SFGP), as well as investigating its potential anti-inflammatory properties both in vitro and in vivo, along with the underlying mechanism. SDS-PAGE analysis revealed a prominent band with a molecular weight of <10 kDa, consisting of 58.39 % protein and 41.61 % carbohydrates, which was confirmed through glycoprotein staining and Coomassie blue staining. Various analytical techniques, including high-resolution mass spectrometry (HRMS), FTIR, amino acid analysis, and UV-visible spectrometry, provided evidence for the presence of monosaccharides (such as d-glucose and mannose) and 17 amino acids linked by an O-glycopeptide bond. In vitro and in vivo studies were conducted to assess the anti-inflammatory activities of SFGP. The results demonstrated that SFGP effectively attenuated nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in LPS-treated RAW264.7 cells. Moreover, SFGP administration significantly and dose-dependently suppressed TLR4/MyD88 signaling as well as the phosphorylation of MAPKs, IκB, and NF-κB, leading to a reduction in the production of TNF-α, IL-1ß, and IL-6 in LPS-stimulated RAW264.7 cells. Furthermore, the anti-inflammatory efficacy of SFGP was validated in a carrageenan-induced inflammatory mouse model. These findings indicate that SFGP exhibits anti-inflammatory characteristics and has the potential to be utilized as a novel anti-inflammatory agent.


Asunto(s)
Antiinflamatorios , Glicoproteínas , Factor 88 de Diferenciación Mieloide , FN-kappa B , Sargassum , Transducción de Señal , Receptor Toll-Like 4 , Animales , Sargassum/química , Receptor Toll-Like 4/metabolismo , Ratones , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Transducción de Señal/efectos de los fármacos , Células RAW 264.7 , Factor 88 de Diferenciación Mieloide/metabolismo , Glicoproteínas/farmacología , Glicoproteínas/química , Ciclooxigenasa 2/metabolismo , Masculino , Lipopolisacáridos , Citocinas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Algas Comestibles
14.
Proc Natl Acad Sci U S A ; 121(23): e2312173121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805287

RESUMEN

The year 2021 marked a decade of holopelagic sargassum (morphotypes Sargassum natans I and VIII, and Sargassum fluitans III) stranding on the Caribbean and West African coasts. Beaching of millions of tons of sargassum negatively impacts coastal ecosystems, economies, and human health. Additionally, the La Soufrière volcano erupted in St. Vincent in April 2021, at the start of the sargassum season. We investigated potential monthly variations in morphotype abundance and biomass composition of sargassum harvested in Jamaica and assessed the influence of processing methods (shade-drying vs. frozen samples) and of volcanic ash exposure on biochemical and elemental components. S. fluitans III was the most abundant morphotype across the year. Limited monthly variations were observed for key brown algal components (phlorotannins, fucoxanthin, and alginate). Shade-drying did not significantly alter the contents of proteins but affected levels of phlorotannins, fucoxanthin, mannitol, and alginate. Simulation of sargassum and volcanic ash drift combined with age statistics suggested that sargassum potentially shared the surface layer with ash for ~50 d, approximately 100 d before stranding in Jamaica. Integrated elemental analysis of volcanic ash, ambient seawater, and sargassum biomass showed that algae harvested from August had accumulated P, Al, Fe, Mn, Zn, and Ni, probably from the ash, and contained less As. This ash fingerprint confirmed the geographical origin and drift timescale of sargassum. Since environmental conditions and processing methods influence biomass composition, efforts should continue to improve understanding, forecasting, monitoring, and valorizing sargassum, particularly as strandings of sargassum show no sign of abating.


Asunto(s)
Biomasa , Sargassum , Sargassum/química , Ecosistema , Jamaica , Estaciones del Año , Erupciones Volcánicas
15.
Chemosphere ; 359: 142282, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719120

RESUMEN

The use of Sargassum spp., a brown invasive algae, for the production of biochars (BCs) or activated carbons (ACs) and their efficiency to sequestrate chlordecone (CLD) in soil has been recently suggested. The objective of this study was to assess the potential of microwave prepared Sargasso biochar (BCS) amendment in Andosol on the bioavailability of chlordecone in laying hens and piglets, when exposed to this matrix. The efficiency of BCS was compared to a commercial activated carbon, DARCO® (ACD), used as a positive control and to an unamended soil. Samples of CLD-contaminated Andosol were amended with 2% of each carbonaceous matrix and let maturing for 3 months. Thereafter, adequate doses of soil were administered into the laying hens and piglets diets every day during the exposure phase, to simulate involuntary soil ingestion which may happen in practical conditions when animals are reared outside. Finally, bioavailability tests were carried out on target tissue (liver, muscle, adipose tissues and egg yolk). The results showed that the highest reduction of CLD bioavailability was obtained with ACD in both animal species. For laying hens, ACD showed reductions of around 60% (liver: 59%, muscle: 57% and egg yolk: 56%) whereas the BCS showed reduction of around 30% (liver: 31%, muscle: 26% and egg yolk: 30%) compared to the unamended soil. For piglets, only the liver showed interpretable results with reduction of 65% with ACD and 41% with BCS. Overall, BCS is efficient reducing CLD availability but in a lower extend than ACD. This discrepancy may be explained by the variations of physico-chemical characteristics that exist between the two matrices, resulting, from the additional activation phase for DARCO®. Therefore, to improve the efficiency of BCS it would be interesting to move towards DARCO® characteristics by determining out the optimal microwave pyrolysis parameters.


Asunto(s)
Carbón Orgánico , Pollos , Clordecona , Microondas , Sargassum , Contaminantes del Suelo , Animales , Carbón Orgánico/química , Porcinos , Contaminantes del Suelo/análisis , Sargassum/química , Suelo/química , Disponibilidad Biológica , Femenino , Restauración y Remediación Ambiental/métodos
16.
Int J Biol Macromol ; 270(Pt 2): 132497, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763236

RESUMEN

To alleviate the adverse effects of chemotherapy and bolster immune function, a novel polysaccharide derived from Sargassum fusiforme named as SFP-αII. The structural composition of SFP-αII predominantly consisted of guluronic and mannuronic acids in a molar ratio of 33.8:66.2, with an average molecular weight of 16.5 kDa. Its structure was primarily characterized by →4)-α-GulA-(1 â†’ and →4)-ß-ManA-(1 â†’ linkages confirmed by FT-IR, methylation, and NMR analyses. The absence of a triple-helix structure was in SFP-αII was confirmed using circular dichroism and Congo red dye assays. The dimensions varied with lengths ranging from 20 nm up to 3 µm revealed by atomic force microscopy (AFM). SFP-αII has been found to enhance immunomodulatory activity in cyclophosphamide (CTX)-induced immunosuppressed mice. This was evidenced by improvements in immune organ indices, cytokine levels, and the release of nitric oxide (NO). Specifically, SFP-αII mitigated immunosuppression by upregulating the secretion of IL-1ß (167.3 %) and TNF-α (227.1 %) at a dose of 400 mg/kg, compared with the CTX group in macrophages. Ultimately, SFP-αII may serve as a mechanism for immune enhancement through modulation of TLR4-mediated NF-κB and MAPK signaling pathways. This integration of traditional Chinese and Western medicine, leveraging SFP-αII as a potential functional food could be pivotal in alleviating immunosuppressive side effects in CTX treatment.


Asunto(s)
Polisacáridos , Sargassum , Sargassum/química , Animales , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Citocinas/metabolismo , Células RAW 264.7 , Ciclofosfamida/farmacología , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Masculino , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Peso Molecular , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Algas Comestibles
17.
Nanomedicine ; 59: 102755, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762132

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder and identifying disease-causing pathways and drugs that target them has remained challenging. Herein, selenium nanoparticles decorated with polysaccharides from Sargassum fusiforme (SFPS-SeNPs) were investigated on 6-OHDA-induced neurotoxicity in PC12 cells and rats. 6-OHDA can significantly increase neurotoxicity, oxidative stress and decrease the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) both in vitro and vivo. In vitro, treatment with SFPS-SeNPs can significantly decrease 6-OHDA cytotoxicity, reactive oxygen species (ROS) production or malondialdehyde (MDA) levels, and cell apoptosis, significantly increased the activity of SOD and GPx. In vivo, 6-OHDA exposure could also decrease the expression of Nrf2 and OH-1, while treatment with SFPS-SeNPs (1 mg Se/kg) increased. SFPS-SeNPs can protect neurons from 6-OHDA-induced neurotoxicity by regulating apoptosis and Nrf2/ARE pathway. The present study demonstrated that SFPS-SeNPs is a good candidate for developing a new drug against neurodegenerative diseases such as PD.


Asunto(s)
Apoptosis , Nanopartículas , Estrés Oxidativo , Oxidopamina , Polisacáridos , Sargassum , Selenio , Animales , Ratas , Células PC12 , Sargassum/química , Selenio/farmacología , Selenio/química , Polisacáridos/farmacología , Polisacáridos/química , Nanopartículas/química , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Factor 2 Relacionado con NF-E2/metabolismo , Algas Comestibles
18.
Int J Biol Macromol ; 269(Pt 1): 132073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705328

RESUMEN

Selenium nanoparticles (SeNPs) are a potential tumor therapeutic drug and have attracted widespread attention due to their high bioavailability and significant anticancer activity. However, the poor water solubility and degradability of selenium nanoparticles severely limit their application. In this study, spherical selenium nanoparticles with a particle size of approximately 50 nm were prepared by using Sargassum fusiforme polysaccharide (SFPS) as a modifier and Tween-80 as a stabilizer. The results of in vitro experiments showed that Sargassum fusiforme polysaccharide-Tween-80-Selenium nanoparticles (SFPS-Tw-SeNPs) had a significant inhibitory effect on A549 cells, with an IC50 value of 6.14 µg/mL, and showed antitumor cell migration and invasion ability against A549 cells in scratch assays and cell migration and invasion assays (transwell assays). Western blot experiments showed that SFPS-Tw-SeNPs could inhibit the expression of tumor migration- and invasion-related proteins. These results suggest that SFPS-Tw-SeNPs may be potential tumor therapeutic agents, especially for the treatment of human lung cancer.


Asunto(s)
Movimiento Celular , Nanopartículas , Polisacáridos , Sargassum , Selenio , Sargassum/química , Humanos , Selenio/química , Movimiento Celular/efectos de los fármacos , Polisacáridos/química , Polisacáridos/farmacología , Células A549 , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Tamaño de la Partícula , Proliferación Celular/efectos de los fármacos , Algas Comestibles
19.
Chemosphere ; 356: 141877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579948

RESUMEN

This study investigated the catalytic activity of biochar materials derived from algal biomass Sargassum fusiforme (S. fusiforme) for groundwater remediation. A facile single-step pyrolysis process was used to prepare S. fusiforme biochar (SFBCX), where x denotes pyrolysis temperatures (600 °C-900 °C). The surface characterization revealed that SFBC800 possesses intrinsic N and P heteroatoms. The optimum experimental condition for acetaminophen (AAP) degradation (>98.70%) was achieved in 60 min using 1.0 mM peroxymonosulfate (PMS), 100 mg L-1 SFBC800, and pH 5.8 (unadjusted). Moreover, the degradation rate constant (k) was evaluated by the pseudo-first-order kinetic model. The maximum degradation (>98.70%) of AAP was achieved within 60 min of oxidation. Subsequently, the k value was calculated to be 6.7 × 10-2 min-1. The scavenger tests showed that radical and nonradical processes are involved in the SFBC800/PMS system. Moreover, the formation of reactive oxygen species (ROS) in the SFBC800/PMS system was confirmed using electron spin resonance (ESR) spectroscopy. Intriguingly, both radical (O2•-, •OH, and SO4•-) and nonradical (1O2) ROS were formed in the SFBC800/PMS system. In addition, electrochemical studies were conducted to verify the electron transfer process of the nonradical mechanism in the SFBC800/PMS system. The scavenger and electron spin resonance (ESR) spectroscopy showed that singlet oxygen (1O2) is the predominant component in AAP degradation. Under optimal condition, the SFBC800/PMS system reached ∼81% mineralization of AAP within 5 min and continued to ∼85% achieved over 60 min of oxidation. Coexisting ions and different aqueous matrices were investigated to examine the feasibility of the catalyst system, and the SFBC800/PMS system was found to be effective in the remediation of AAP-contaminated groundwater, river water, and effluent water obtained from wastewater treatment plants. Moreover, the SFBC800-activated PMS system demonstrated reusability. Our findings indicate that the SFBC800 catalyst has excellent catalytic activity for AAP degradation in aquatic environments.


Asunto(s)
Acetaminofén , Carbón Orgánico , Sargassum , Contaminantes Químicos del Agua , Acetaminofén/química , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Agua Subterránea/química , Cinética , Oxidación-Reducción , Peróxidos/química , Especies Reactivas de Oxígeno , Sargassum/química , Contaminantes Químicos del Agua/química
20.
Mar Pollut Bull ; 202: 116413, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677104

RESUMEN

The contents of 24 elements were determined in seven species of macroalgae collected in Ceara-Brazil, in the rainy and dry seasons of 2022. The samples were digested, and the analytes were quantified by ICP-OES and Hg by direct analyzer. The CRM CD-200 was analyzed for accuracy and obtained recoveries were higher than 95 %. The seaweed species have different inorganic element profiles with predominant elements being: Ca, K, Na, Mg and P. The Sargassum vulgare species stood out for its Hg and As contents (1.479 ± 0.005 mg kg-1 and 172 ± 6 mg kg-1, both in the rainy seasons). Ulva lactuca attracted attention for its high concentration of V (46.4 ± 3.4 mg kg-1, rainy season). In general, the elemental content levels in the macroalgae samples were higher in the rainy season. Long-term studies to comprehend the effect of seasonality on the elemental composition of seaweed must be carried out.


Asunto(s)
Monitoreo del Ambiente , Algas Marinas , Algas Marinas/química , Brasil , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Sargassum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA